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Abstract.  A principle of designing a high-resolution low-coherent 
THz tomograph, which makes it possible to investigate media with 
a high spatial resolution (in the range l0 – 2l0, where l0 is the average 
probe wavelength) is considered. The operation principle of this 
tomograph implies probing a medium by radiation with a coherence 
length of 8l0 and recording a hologram of a focused image of a 
fixed layer of this medium using spatially separated counterpropa-
gating object and reference beams. Tomograms of the medium 
studied are calculated using a temporal approach based on applica-
tion of the time correlation function of probe radiation. 
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1. Introduction

Remote determination of parameters of objects (in particular, 
by interferometry methods) is most often performed using 
highly coherent probe radiation. However, some modern tasks 
call for low-coherence probe radiation. An example is tomo
graphy of continuous media [1, 2], which is based on record-
ing holograms of different layers in a medium under study. 
There are two versions of low-coherent tomographs aimed at 
solving this problem with application of probe light. One of 
them is a short-focus version [3], based on focused-image 
holography [4] according to the Gabor scheme, where the ref-
erence beam and the object beam backscattered by a medium 
are unidirectional [5]. According to [3], this version does not 
allow one to obtain high-quality tomograms of a medium at 
large depths from its surface because of multiply backscat-
tered probe radiation from this medium. The second version, 
proposed in [6], is a long-focal-length optical scheme based on 
focused-image holography according to the Leith – Upatnieks 
scheme [7], with crossed reference and object beams. The 
layer-by-layer resolution in this version is one and a half 
higher than in the short-focus version; this difference is due to 
the use of long-focal-length lenses (whose aperture receives 
only singly scattered radiation) and probe radiation with a 

minimally possible coherence length Lcm = 8 l0 [8], where l0 
is  the average radiation wavelength. The main drawback of 
all optical versions of low-coherent tomographs is that they 
are inefficient for media exhibiting strong light absorption. A 
THz version of a low-coherent tomograph based on focused-
image holography, in which the reference and object beams 
propagate in close-to-opposite directions, was proposed in 
[9]. This version can efficiently be used for media characterised 
by much weaker absorption of THz probe radiation, for exam-
ple, media with a low concentration of water molecules in the 
probe radiation path [10]. This tomograph implies also the use of 
probe radiation with a coherence length Lcm = 8 l0. In this case, 
the reference and object beams interfere on a diffusively scat-
tering plate, and then a significantly enlarged interference pat-
tern is projected onto the detector matrix. However, scattering 
from the aforementioned plate leads to a large energy loss; 
therefore, this version calls for compact high-power narrow-
band THz sources and highly sensitive THz detectors, which are 
now absent. In addition, this version does not provide a maxi-
mally possible layer-by-layer resolution. 

In this paper we consider a version of a low-coherent THz 
tomograph based on focused-image holography according to 
the Denisiuk scheme [11], which provides a limiting layer-by-
layer resolution. In this scheme the object and reference 
beams are spatially separated and oppositely directed. This 
scheme allows one to use compact low-power THz sources 
with a monochromator forming probe radiation character-
ised by different coherence lengths Lc, including the radiation 
coherence length: Lc = Lcm = 8 l0 [12]. The main principles of 
low-coherent tomography based on counterpropagating beams 
are analysed in Section 2. It is shown that the layer-by-layer 
resolution can reach 2l0 in this case. A schematic of a long-
focal-length low-coherent THz tomograph based on spatially 
separated counterpropagating beams is presented in Section 3. 
The layer-by-layer resolution of the tomographs based on 
counterpropagating beams and the error in determining the 
parameters of media studied by these tomographs are analysed 
in the Appendix.

2. Basic principles of low-coherent tomography 
based on counterpropagating beams

Let us consider a relatively simple device implementing the 
basic principles of low-coherent tomography based on coun-
terpropagating beams. First, we introduce a coordinate system 
x, y, z (Fig. 1). Let a source ( 1 ) with a built-in monochromator 
[12] be located on the x axis and generate linearly polarised 
low-coherent radiation with an electric field component Еs(t) = 
ЕmU(t), where Em is the amplitude; U(t) = u(t) cos [w0t + y(t)] 
is a dimensionless function describing the temporal evolution 
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of this component; w0 is the high carrier frequency; y(t) and 
u(t) £ 1 are, respectively, the rapidly varying phase and slowly 
varying Es modulation function; and t is the current observa-
tion time [13]. A spherical wave emitted by source ( 1 ) is trans-
formed with the aid of lens ( 2 ) (which is also located on the 
x axis) into a plane wave. The latter is split into two beams by 
semitransparent mirror ( 3 ) and mirror ( 4 ). One of these two 
beams, being reflected from mirror ( 5 ) and semitransparent 
mirror ( 6 ), probes medium ( 7 ) with flat boundary ( 8 ) along 
the z axis. The probe beam reflects back from different layers 
of the medium to form an object beam, which interferes with 
an oppositely directed reference beam, formed from the sec-
ond beam with a certain time delay.

To reveal the details of the formation of the interference 
pattern by the object and reference beams, we will consider 
more thoroughly the character of their propagation to the 
meeting point with the coordinates x = 0, y = 0 and z. The 
total propagation time of the probe beam and the counter-
propagating object beam [reflected from boundary ( 8 )] to this 
point is tp(z) = (2d + ho + 2zb – z)/c, where d is the distance 
between mirrors ( 3 ) and ( 4 ), ho is the distance between mir-
rors ( 5 ) and ( 6 ), zb is the z coordinate of boundary ( 8 ) and 
c is the speed of light in air. At the same time, the reference 
beam is directed toward the time-delay unit (composed of two 
mirrors), which is depicted at three different lengths Z from 
the x axis ( 9 ), ( 9a ) and ( 9b ). When displacing this unit, the 
delay time tdr of the reference beam propagating to the same 
point (x = 0, y = 0, z) changes according to the law tdr(Z) = 
(2Z + hr + z)/c, where hr is the distance between the mirrors 
forming the time-delay unit, which is equal to the distance ho 
between mirrors ( 5 ) and ( 6 ). In essence, this scheme is a 
Mach – Zehnder interferometer, whose object and reference 
arms contain a reference-beam delay unit and a medium under 

study, respectively. As can be seen in Fig. 1, the object inter-
ferometer arm is oriented along the z axis.

Let the reference-beam delay unit be initially located at 
a distance Zi = d + zb – zi [position ( 9а ) in Fig. 1], at which 
some fixed point with the coordinates x = 0, y = 0 and zi = Lc 
in the object arm of Mach – Zehnder interferometer obeys the 
relation tdr(Zi) = tp(zi). Then, as was shown in [9], standing 
wave ( 10а ) is formed around this point as a result of addition 
of the object- and reference-beam fields; this wave consists of 
interference fringes, each with a width l0 /2. These fringes are 
concentrated in a fairly limited region: zi – Lc /4 £ z £ zi + Lc /4. 
At a coherence length Lc = Lcm = 8 l0, standing wave ( 10а ) is 
concentrated in a narrow range: 6 l0 £ z £ 10 l0. Specifically 
this narrow region of interference of counterpropagating object 
and reference beams is the basic factor for implementing 
tomographs with a layer-by-layer resolution on the order of 
2 l0 [9]. The intensity distribution in this region can be mea-
sured by displacing detector ( 11а ) (with a narrow probe slid 
out from it) along interference fringes. When displacing the 
time-delay unit to the left [with respect to position ( 9а )], the 
interference region (and, therefore, the standing wave) should 
synchronously shift in the same direction. Provided that the 
reference-wave delay unit is displaced by the distance Z0 
from the x axis [position ( 9b ) in Fig. 1], at which the relation 
tdr(Z0) = tp(z = 0) is satisfied, the standing wave takes position 
( 10b ) in the range –Lc /4 £ z £ Lc /4.

Thus, the interference pattern of the reference and object 
beams depends on the coordinates x, y and z and the displace-
ment Z of the reference-wave delay unit from the x axis. Let 
us analyse this pattern by an example of a transparent dielec-
tric medium with flat boundary ( 8 ), into which one small inho-
mogeneity ( 12 ) (also with flat boundaries) is inserted at 
a depth l,  from boundary ( 8 ). In this case, the parameters zb, 
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Figure 1.  Block diagram of a low-coherent tomograph based on counterpropagating reference and object beams:	
( 1 ) low-coherent radiation source; ( 2 ) lens; ( 3 ) and ( 6 ) semitransparent mirrors; ( 4 ) and ( 5 ) highly reflecting mirrors; ( 7 ) medium; ( 8 ) boundary of 
the medium; ( 9a ), ( 9b ) and ( 9 ) initial, central and current positions of the reference-beam time-delay unit; ( 10а ) standing wave formed with the 
reference-beam delay unit in the initial position; ( 10b ) standing waves formed with the reference-beam delay unit in the central and current posi-
tions; ( 11a ) and ( 11b ) detectors of time-averaged intensity in standing waves in the initial and fixed positions; ( 12 ) small inhomogeneity in the 
medium; and ( 13 ) computational device. The dotted oval shows a region of minimum size where four interference fringes of approximately equal 
intensity can still be formed at a probe coherence length Lc ³ Lсm = 8 l0.
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z,  = zb + l, , zr = z,  + lh, n, , nh and nr (lh and nh are, respec-
tively, the thickness and refractive index of inhomogeneity 
( 12 ), while n,  and nr are, respectively, the refractive indices 
of the medium on the left and on the right from the inhomo-
geneity) completely characterise both the position of the 
medium under study and its internal structure. Since n, , nh 
and nr are real numbers, the dependence of the instantaneous 
intensity distribution in the interference pattern on the dis-
placement Z of the reference-wave delay unit can be written 
as I (x, y, z, Z, t) = [Er (t, x, y, z, Z) + Eo(t, x, y, z)]2. Here, with 
allowance for the fact that the boundary layers of the medium 
are flat,

Er (t, x, y, z, Z) = EmU [t – (2Z + z + hr)/c]	 (1)

is the instantaneous value of the electric field component in 
the reference beam and 

Eo(t, x, y, z) = Em{kbU[t – (2d + ho + 2zb – z)/c] 

	 + k,U[t + (2d + ho + 2zb + 2 l n, ,z)/c] 

	 + krU[t + (2d + ho + 2zb + 2 l n, ,  +2lhnh – z)/c]} 	 (2)

is the instantaneous value of the electric field component in 
the object beam (here, kb, k,  and kr are the reflection coeffi-
cients). Furthermore, the Z value will be interpreted as the 
fourth coordinate of the intensity I and field Er. It is the inten-
sity distribution áI(x, y, z, Z, t)ñt, averaged over time T >> tс = 
Lс /с [tc is the coherence time of the radiation generated by 
source ( 1 ) (see Fig. 1)], that is recorded in practice. The angle 
brackets á ...ñt indicate averaging of the function F(t) over 
time: 

áF(t)ñt = F ( ) ,dT t t1 t T

0

0+y

where t0 is the initial instant of averaging. When normalised 
to Еm

2 , the distribution takes the form

-
In(x, y, z, Z) = áI(x, y, z, Z, t)ñt /Еm

2  .	 (3)

We will analyse the function  
-
In(x, y, z, Z) using the temporal 

approach proposed in [13], which is based on the time correla-
tion function

В(t) = áU(t)U(t + t)ñt = cos (w0 t) Вu (t),	 (4)

where Вu (t) = á u(t) u(t + t) cos [ y(t) – y(t + t)]ñt is the 
coherence function of the radiation generated by the source. 
The coherence function of determines its coherence time and 
length:

( )dT B1
c u

t T

0

0

t t t=
+y ,  Lс = сtс.

On the assumption that y(t) is a random process, described 
by the Gaussian law with a correlation time ty and standard 
deviation sy >> p, and that u(t) = exp (–t2/ti

2), where ti is the 
width of function u(t) at the level e–1, the coherence function 
is a Gaussian: Вu (t) = exp(–t2/tc2), where tc » 2ti at ti >> ty /sy 
and tс » ty /sy at ti << ty /sy [8]. When ti >> ty /sy, the radia-
tion generated by the source is a pulse of duration ti, while in 

the case ti << ty /sy the radiation is continuous. Furthermore, 
we assume the following conditions to be satisfied: kb << 1, 
k,  << 1 and kr << 1, where kb = (n,  – 1)/(n,  + 1), k,  = 
(nh – n, )/(n,  + nh) and kr = (nh – nr)/(n,  + nr) are the reflection 
coefficients of the probe radiation from boundary ( 8 ) of the 
medium under study and from the left and right boundaries of 
inhomogeneity ( 12 ). Taking into account relations (3) 
and  (4) and the results of [13], one can show that, at T >> 
tс >> 2p/w0

-
In(x, y, z, Z) » 1 + kb Вu [2(Z + z – d – zb)/Lс]

	 ´ cos [4p(Z + z – d – zb)/l0] 

	 + k,Вu [2(Z + z – d – zb – l n, , )/Lс]

	 ´ cos [4p(Z + z – d – zb – l n, , )/l0] 

	 + kr Вu [2(Z + z – d – zb – l n, ,  – lh nh)/Lс]

	 ´ cos [4p(Z + z – d – zb – l n, ,  – lh nh)/l0].	 (5)

It follows from relation (5) that the function  
-
In(x, y, z, Z) has 

maxima in both variables Z and z, with a period of l0 /2, and 
the envelope of  

-
In(x, y, z, Z) is a surface passing through these 

maxima; the surface equation is determined from the relation

V(Z, z) = 1 + kb Вu [2(Z + z – d – zb)/Lс] 

	 + k,Вu [2(Z + z – d – zb – l n, , )/Lс ] 

	 + kr Вu [2(Z + z – d – zb – l n, ,  – lh nh)/Lс ],	 (6)

where, for a Gaussian coherence function [for which Вu (t) » 
exp (– t2/tc2), Вu (2Z/c) = exp (–4Z2/Lс

2)].
Let the reference-beam time-delay unit be located at a dis-

tance Zi = d + zb – zi from the x axis [position ( 9а ) in Fig.1]. 
Then interference fringes are formed as a result of interfer-
ence of the reference beam with the object beams reflected 
from boundary ( 8 ) and from the left and right boundaries 
of  inhomogeneity ( 12 ). The intensity distribution in these 
fringes, described by the function Е2

m 
-
ITn (x, y, z, Zi ), is mea-

sured by detector ( 11а ). Measurement results can be used to 
construct the envelope V(Zi, z) of the function  

-
In (x, y, z, Zi ), 

which has three maxima at the points z = zi, z = zi  + l n, ,  
and  z = zi + l n, ,  + li ni (where zi = Lc): V(Zi, zi) = 1 + kb, 
V(Zi, zi + l n, , ) = 1 + k,  and V(Zi, zi + l n, ,+ lh nh) = 1 + kr. 
Three standing waves are formed around these points. One of 
these points ( 10а ) is located in the interval 3Lc /4 £ z £ 5Lc /4. 
In principle, if the values and positions of peaks of the enve-
lope V(Zi, z) are known and the relations kb = (n,  – 1)/(n,  + 1), 
k,  = (nh – n,)/(n,  + nh) and kr = (nh – nr)/(nh + nr) are taken 
into account, one can determine all parameters of a medium 
studied.

Another way for determining the parameters of medium 
( 7 ) is to fix the intensity detector in a interference fringe at the 
point with coordinates x = 0, y = 0 and z = 0 [position ( 11b ) 
in Fig. 1] with subsequent displacement of the reference-wave 
time-delay unit at different distances Z from the x axis. Then 
detector ( 11b ) will record a value Е2

m in the initial state of 
time-delay unit [position ( 9а ) in Fig. 1]. When this unit is 
displaced to the left from the initial position, three standing 
waves concentrated first at the points z = zi, z = zi + l n, ,  and 
z = zi + l n, ,  + lhnh, shift synchronously with the interference 
fringes forming these waves in the same direction. For example, 
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if the reference-wave delay unit is displaced at a distance 
Z0 = d + zb from the x axis [position ( 9b ) in Fig. 1], at which 
the relation tdr(Z0) = tp(z = 0) is satisfied, standing wave 
( 10а ) takes position ( 10b ) to be concentrated in the interval 
–Lc /4 £ z £ Lc /4. According to relation (5), the dependence of 
the intensity recorded by detector ( 11b ) on Z is determined 
for medium ( 7 ) by the function  

-
IT(Z) = 

-
I(x = 0, y = 0, z = 0, Z). 

This function, normalised to Е2
m [ 
-
ITn(Z) =  

-
IT(Z)/Е2

m], is shown 
in Fig. 2a.

It follows from relations (5) and (6) that the upper part of 
the envelope, passing through the maxima of function  

-
ITn(Z) 

[curve ( 1 )] can be written as

VT(Z) = V(Z, z = 0) = 1 + kbВu [2(Z – d – zb)/Lс] 

	 + k,Вu [2(Z – d – zb – l n, , )/Lс] 

	 + kr Вu [2(Z – d – zb – l n, ,  – lhnh)/Lс].	 (7)

Since the function VT(Z) depends on all parameters of the 
medium under study, it it expedient to define this function as 
a tomogram of the medium. It has three maxima: VT(Z0) = 
1 + kb, VT(Z, ) = 1 + k,  and V(Zr) = 1 + kr with the coor
dinates Z = Z0 = d + zb, Z = Z,  = Z0 + l n, ,  and Z = Zr = 
Z0 + l n, ,  + lhnh, respectively; these maxima coincide with the 
three largest maxima of the function  

-
ITn(Z). Note that the 

above relation Z0 = d + zb was derived from the equality of 
the reference-beam delay time tdr(Z0) and the propagation 
time tp(z = 0) of the object beam reflected from the boundary 
of the medium. Specifically due to this equality standing wave 
( 10а ) takes position ( 10b ). Similarly, it can be shown that, 
when the reference-beam time-delay unit is located at dis-
tances Z,  and Zr , the standing waves concentrated first at the 
points z = zi + l n, ,  and z = zi + l n, ,  + lhnh, also take position 
( 10b ). Based on the relations VT(Z0) = 1 + kb, VT(Z,) = 1 + k,  
and V(Zr) = 1 + kr, Z0 = d + zb, Z,  = Z0 + l n, ,  and Zr = 
Z0 + l n, ,  + lhnh, kb = (n,  – 1)/(n,  + 1), k,  = (nh – n,)/(n,  + nh) 
and kr = (nh – nr)/(nh + nr), one can determine all parameters 
of medium ( 7 ). These are the coordinates of the medium 
boundary, zb; the left and right boundaries (z,  = zb + l,  and 
zr = zb + l,  + lh) of inhomogeneity ( 12 ); the refractive indices 
n, , nh and nr on the left, inside and on the right of this inhomo-
geneity; and the inhomogeneity thickness lh:

zb = Z0 – d,  z,  = Z0 – d + (Z,  – Z0)[2/VT(Z0) – 1], 

zr = Z0 – d + (Z,  – Z0)[2/VT(Z0) – 1] + / ( )
,

V Z
Z Z

2 1T r

r

-
- , 	

(8)

lh = (Zr – Z,)/ni,  n,  = [2/VT(Z0) – 1]–1, 

nh = n, [2/VT(Z,) – 1]–1,  nr = [2/VT(Zr) – 1]–1.	
(9)

The tomogram VT(Z) and the parameters of the medium 
under study (zb, z,, zr, lh = zr – z, , n, , nh and nr) are determined 
by computational device ( 13 ) using the signals arriving from 
detector ( 11b ).

The introduction of a probe [slid out from the housing of 
detector ( 11b )] into a standing wave to record the intensity 
distribution in it (see Fig. 1) significantly distorts this distri-
bution. To avoid distortion, one must use a probe of thick-
ness much smaller than the wavelength l0. However, such thin 
probes have not been developed in the THz range. Therefore, 
we will consider below a version of a tomograph based on 
counterpropagating reference and object beams, separated at 
a certain distance: D = ho – hr. Being spatially separated, these 
beams do not interfere, as a result of which standing waves 
are not formed in this scheme. Therefore, instead of detectors 
for recording the intensity distribution in interference fringes 
( 11b ) (see Fig. 1), we propose to use detectors ( 10 ) and ( 11 ) of 
instantaneous values of electric field components in reference 
and object beams, located in the beam paths. The centre of the 
entrance aperture of detector ( 10 ) is fixed at the point with 
coordinates x = 0, y = 0 and z = 0 and the centre of the 
entrance aperture of detector ( 11 ) is at the point with coordi-
nates x = 0, y = –D and z = 0. Signals from these detectors 
arrive at computational device ( 13 ).

As well as in the case described above, a tomogram of a 
medium under study is calculated in computational device 
( 13 ) in the second version (compare Figs 1 and 3). Then the 
computational device uses the calculated tomogram to deter-
mine the coordinate of the boundary of the medium, zb; the 
coordinates of the left and right boundaries (z,  and zr) of 
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the inhomogeneity present in the medium; and the refractive 
indices n, , nh and nr on the left from the inhomogeneity, inside 
it and on the right from it. Note that the instantaneous field 
value in the reference beam is determined from the same for-
mula (1) in both versions. In addition, on the assumption that 
the relation d1 = d – D for the distance between mirrors ( 3 ) and 
( 4 ) is satisfied in the second version, the instantaneous field in 
the object beam is also determined from the same formula (2) 
for both versions. Therefore, the function  

-
ITn(x, y, z = 0, Z) 

and the tomogram of the medium in the second version are 
also found from formulas (6) and (7); hence, the parameters 
of the medium, zb, z, , zr, n, , nh and nr, are calculated from 
formulas (8) and (9) in the case of a tomograph based on 
counterpropagating, spatially separated reference and object 
beams (Fig. 3). 

The procedure for constructing a tomogram of a medium, 
an analysis of the error in determining its parameters and an 
analysis of the layer-by-layer resolution of tomographs based 
on counterpropagating beams are described in Appendix. 
Here, we present a qualitative estimation of the error in deter-
mining the parameters of the medium for a specific case where 
the thickness of the inhomogeneity present in the medium 
obeys the inequality lh £ 2.5 l0. As can be seen in Fig. 2b, vari-
ations in the maxima of the function  

-
ITn(x, y, z = 0, Z) are insig-

nificant at the coherence length Lс = 32 l0 of the radiation gen-
erated by source ( 1 ). This circumstance makes it possible to 
determine (with a very high accuracy) the reflection coeffi-
cients kb, k,  and kr and, as a consequence, the refractive indi-
ces n, , nh and nr, which are unambiguously related to the 
aforementioned coefficients. However, the maxima of enve-
lope ( 1 ) are very wide at Lс = 32 l0 (Fig. 2). For this reason, 
the deflection in the middle between the points Z,  and Zr 
[which allows one to distinguish the left boundary of inhomo-
geneity ( 12 ) from the right boundary] is very small. This fact 
indicates that the tomograph has a low resolution. The error 
in determining the coordinates of the left and right boundaries 

of the inhomogeneity (z,  and zr) and the boundary of the 
medium (zb) is very large for the same reason. When the 
parameter Lc is small (for example, Lс = 4 l0), variations in the 
maxima of function   

-
ITn(x, y, z = 0, Z) are very large (see Fig. 

2c). As a result, the error in determining the refractive indices 
n,, nh and nr is very large, although the deep deflection of the 
envelope between the points Z, and Zr significantly increases 
the possibility of discriminating the inhomogeneity boundaries 
or, in other words, the resolution of the tomograph. Finally, as 
the Appendix shows, there is an optimal coherence length of 
generated radiation: Lс = Lсm = 8 l0 (see Fig. 2d). In this case, 
variations in the maxima of function 

-
ITn(Z) are sufficiently 

small, whereas the deflection of envelope ( 1 ) between the 
points Z, and Zr is fairly large. Due to this, the high resolution 
of the tomograph is combined with the high accuracy in deter-
mining the inhomogeneity boundaries and the refractive indices 
n,, nh and nr. It is also shown in the Appendix that the tomo-
graph resolution depends on the refractive index of inhomoge-
neity, nh. At Lс = Lсm = 8 l0, the resolution RT = 2.5 l0 /nh. For 
example, if nh = 1.25, RT = 2 l0. This means that, at nh = 1.25, a 
tomograph based on counterpropagating beams can determine 
the coordinates zb, z,  and zr with an error 2 l0 and distinguish 
boundaries of an inhomogeneity of thickness lh = 2 l0.

3. Long-focal-length low-coherent THz tomograph 
based on spatially separated counterpropagating 
reference and object beams

The scheme presented in Fig. 3 can be used for tomography of 
layered media with flat irregularities at boundaries between 
internal layers, boundaries of the medium and inhomogeneity 
boundaries. In the case of steep irregularities on these surfaces 
(which are most often met in practice), only a very small part of 
the beam energy backscattered by inhomogeneity is captured 
by the counterpropagating reference beam. Let us consider 
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Figure 3.  Block diagram of a low-coherent tomograph based on spatially separated counterpropagating reference and object beams: 	
( 1 ) low-coherent radiation source; ( 2 ) lens; ( 3 ) and ( 6 ) semitransparent mirrors; ( 4 ) and ( 5 ) highly reflecting mirrors; ( 7 ) medium; ( 8 ) boundary 
of medium; ( 9a ), ( 9b ) and ( 9 ) initial, central and current positions of the reference-beam time-delay unit; ( 10 ) and ( 11 ) detectors of instantaneous 
fields in the object and reference beams; ( 12 ) small inhomogeneity in the medium; and ( 13 ) computational device.
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another version of a tomograph based on counterpropagating 
beams, which can efficiently be used for strongly inhomoge-
neous media, including layered media with steep irregularities 
at boundaries between layers. This is a long-focal-length low-
coherent THz tomograph based on spatially separated coun-
terpropagating reference and object beams. It is implemented 
as follows (Fig. 4). A source of low-coherent THz radiation 
( 1 ) with a coherence length 8 l0 irradiates parabolic mirror ( 2 ) 
(which  forms  a  reference  beam)  and  the  aperture  of  long-
focal-length  lens  ( 3 ).  Lens  ( 3 )  focuses  the  probe  radiation 
onto  segment  ( 4 )  of medium  ( 5 ), which  is  assumed  to be 
layered  to  simplify  further  presentation.  Then  long-focal-
length lens ( 6 ) forms a convergent object beam, which pro-
vides  (at  the  double  focal  distance  from  the  lens  aperture) 
real image ( 7 ) of the upper surface of layer ( 8a ), located at 
the  centre  of  segment  ( 4 ).  Segment  ( 4 )  is  assumed  to be  a 
parallelepiped  with  a  height  equal  to  the  longitudinal  size 
lb » 4 l0( f /D)2 of the waist region of beam ( 9 ) and a square 
base with a side ls » 2 l0( f/D), where f and D are, respectively, 
the focal distance and diameter of lens ( 6 ). Then the contour 

of  real  image  ( 7 )  is  a  square  with  a  side  ls  [which  is  also 
denoted as ( 7 )]. Let us introduce a coordinate system (x, y, z) 
with x and y axes directed along the sides of square ( 7 ), z axis 
oriented along the optical axis of lens ( 6 ), and origin of coor-
dinates located at the centre of this square (at the point x = 
y = z = 0). Then the  instantaneous field  in the object-beam 
cross section, located in square ( 7 ), can be written as a func-
tion Eo(t, x, y, z = 0) in the (x, y, z) coordinate system. The same 
square contains the entrance aperture of detector ( 10 ), which 
records the function Eo(t, x, y, z = 0).

The reference beam is directed [by parabolic mirror ( 2 )] 
to unit ( 11 ), which contains four mirrors and mobile corner 
reflector ( 12 ); the latter changes the time delay of the reference 
wave by moving in the range –lb /4 £ Z £ lb /4, where Z is the 
corner reflector coordinate. The central position of the corner 
reflector (at Z = 0) is indicated by number 12 in Fig. 4. The 
extreme  coordinates  of  the  corner  reflector,  Z =  lb /4,  are 
shown by dotted lines. The entrance aperture of detector ( 13 ) 
[which  records  the  instantaneous  field Eo(t, x,  y,  z  =  0, Z) 
in the reference beam, dependent on the current coordinate Z 
of the corner reflector]  is  in the path of the reference beam, 
emerging from unit ( 11 ) in the opposite (with respect to the 
object beam) direction, being centred at the point with coor-
dinates x = –D, y = 0 and z = 0. In this scheme, the reference-
beam delay time tdr(Z)  is determined by the reference-beam 
propagation time from mirror ( 2 ) to the corner reflector and 
then  from the  reflector  to  the entrance aperture of detector 
( 13 ), whereas the object-beam delay time tp is determined by 
the time of propagation of the radiation probing segment ( 4 ) 
from the aperture of lens ( 3 ) to different layers of the medium 
under study located in this segment and the radiation back-
scattered by these layers to the entrance aperture of detector 
( 10 ). The central position of  the corner reflector  (Z = 0)  is 
chosen  proceeding  from  the  equality  of  the  reference-  and 
object-beam  delay  times,  tdr  and  tp,  when  the  object  beam 
propagates from the front surface of layer ( 8a ). The instanta-
neous field values Eo(t, x, y, z = 0) and Er(t, x, y, z = 0, Z) in 
the object  and  reference beams,  recorded by detectors  ( 10 ) 
and ( 13 ), are introduced into computational device ( 14 ). This 
device calculates the total field intensity in the reference and 
object beams, averaged over time Т >> tc and normalised to 
E2
m;  for  the  transparent dielectric medium under  study,  this 

intensity is given by the relation

 
-
ITn(x, y, z = 0, Z) = áIn(t, x, y, Z)ñt,  (10)

where In(t, x, y, Z) = [Er(t, x, y, z = 0, Z) + Eo(t, x, y, z = 0)]2/E2
m. 

Then device  ( 14 )  calculates  the  function   
-
I 2Tn(x, y, z = 0, Z), 

averaged over the area Sa = pls2 of the entrance apertures of 
detectors ( 10 ) and ( 13 ):

( ) ( , , 0, ) .d dI Z
S

I x y z Z x y1
Tn

a
Tn= =u ryy   (11)

The  structure  of  the  function  ( )I ZTn
u ,  as  will  be  shown 

below,  is  similar  to  that of  the  function  
-
ITn(Z);  the  latter  is 

plotted  in Fig.  2a.  In particular,  its maxima are  also deter-
mined by the object beams, which propagate from different 
layers of the medium. Therefore, to perform detailed analysis 
of the function  ( )I ZTn

u , it is expedient to divide its domain of 
definition, –lb /4 £ Z £  lb /4,  into intervals hs no wider than 
6 l0. In particular, in the range from – l0 to 5 l0, the function 
( )I ZTn

u  corresponds to the region of layered medium ( 5 ), com-
posed of two layers, ( 8а ) and ( 8b ) (see Fig. 4), with thicknesses 
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Figure 4. Block diagram of a THz long-focal-length low-coherent tomo-
graph based on spatially  separated counterpropagating  reference and 
object beams: 
( 1 ) low-coherent radiation source; ( 2 ) parabolic mirror; ( 3 ) long-focal-
length lens for probing segment ( 4 ) of medium ( 5 ); ( 6 ) long-focal-length 
lens forming a real image of this segment; ( 7 ) central cross section of the 
real image of segment; ( 8а ) and ( 8b ) segment layers located in the region 
that is optically conjugate with cross section ( 7 ); ( 9 ) region of the beam 
waist; ( 10 ) detector recording the instantaneous value of electric field 
component in the image of segment ( 4 ); ( 11 ) reference-beam time-delay 
unit  containing  four mirrors  and  corner  reflector  ( 12 );  ( 13 ) detector 
recording  the  instantaneous value of electric  field component  in  the 
reference beam; ( 14 ) computational device forming a tomogram of the 
segment and determining the segment parameters from this tomogram; 
and ( 15 ) tomograph housing. Hollow arrows indicate the directions of 
longitudinal and transverse displacements of the tomograph housing.



	 I.I. Kuritsyn, V.I. Mandrosov, A.P. Shkurinov, et al.964

not larger than 2 l0, and their nearest vicinity. The analysis 
will be performed on the assumption that medium ( 5 ) consists 
of layers with fairly high irregularities on their surfaces. This 
means that the standard deviations of the distributions of 
irregularity heights xf(x, y), xb(x, y) and xm(x, y) on the front 
surface of layer ( 8a ), on the rear surface of neighbouring 
upper layer ( 8b ) and at the interface between these layers 
satisfy the conditions sb >> l0, sf >> l0 and sm >> l0. We 
assume also that the irregularities on the layer surfaces are 
sufficiently steep. This means that the following conditions 
are satisfied: gf = sf / f,  >> D/2f, gb = sb / b,  >> D/2f and gm = 
sm / m,  >> D/2f, where f, , b, , m, , gf, gb and gm are, respectively, 
the correlation lengths and mean slopes of the irregularities 
on the upper surface of the lower fragment, on the lower sur-
face of the upper fragment and at the interface between them. 
Then, to describe the parameters of layers ( 8а ) and ( 8b ) and 
their nearest vicinity, it is sufficient to use only nine parame-
ters: the refractive index nf of the layer adjacent to the upper 
surface of lower layer ( 8a ); the thickness ld and refractive 
index nd of this layer; the thickness lu and refractive index nu 
of upper layer ( 8b ); the refractive index nb of the layer adjacent 
to the lower surface of upper layer; and the mean slopes of 
irregularities, gf, gb and gm, on the upper surface of lower layer 
( 8a ), lower surface of upper layer ( 8b ) and the interface 
between them. Since layers ( 8a ) and ( 8b ) occupy a rather 
limited volume in the medium under study, the mean slopes 
of irregularities on their surfaces are very likely to coincide; 
this means that gf = gb = gm = sm / m, . Then, it is sufficient to 
use only seven parameters to describe the characteristics of 
layers ( 8a ) and ( 8b ) and the adjacent layers in the medium: 
nf, nd, nu, nb, ld, lu and gm. 

Let us now return to relation (11). To analyse it, we will 
take into account that lenses ( 3 ) and ( 6 ) are long-focal-length 
and that their optical axes make a small angle (no more than 
10°). It can be shown that, under these conditions, a wave 
probing layers ( 8а ) and ( 8b ) is almost flat in their vicinity 
and directed along the axis of lens ( 6 ) and that lens ( 6 ) filters 
off an almost plane wave in region ( 7 ) from the waves back-
scattered by these layers; this wave is also directed along the 
axis of lens ( 6 ). In this case, the instantaneous field value in 
cross section ( 7 ) can be written as

Eo(t, x, y, z = 0) » aEm{kfU[t + 2(nf – nd) xf (x, y)/c]

	 + kmU[t + 2ldnd/c + 2(nd – nu) xm(x, y)/c + jo] 

	 + kbU[t + 2(ldnd + lunu)/c + 2(nb – nu) xb(x, y)/c]},	 (12)

Er(t, x, y, z = 0, Z) = EmU(t – 2Z/c),	 (13)

where a << 1 is the attenuation coefficient of the object beam 
due to the scattering of the radiation probing layers ( 8a ) and 
( 8b ) from the numerous layers in medium ( 5 ) and the radia-
tion propagating from these layers toward lens ( 6 ); kf = 
(nf – nd)/(nf + nd); km = (nd – nu)/(nd + nu); kb = (nb – nu)/(nb + nu). 
It is noteworthy that the structure of relations (12) and (13) is 
similar to that of relations (1) and (2) for the instantaneous 
field values in the object and reference beams that are used 
in  the tomography schemes (see Figs 1 and 2) for layered 
media with smooth irregularities at the layer boundaries. 
Furthermore we assume that the heights of irregularities 
xf (x, y), xm(x, y) and xb(x, y) have a Gaussian distribution 
W(x) = (1/ps) exp(–s2/x2) with a Gaussian correlation func
tion á x(x1, y1) x(x2, y2)ñx = s2 exp{–[(x1 – x2)2 + (y1 – y2)2] / 2, }, 

where the angle brackets á...ñx indicate averaging over a random 
value x. Then, using relations (10) – (13) and taking into account 
that, according to [14, 15], ITnu (Z) » á ITn(Z)ñx at gm = sm / m,  >> 
d/2f, one can show the following: in the range from – l0 to 5 l0 
and with the conditions

kfu  = 1/[сm(nf + nd)]2 << 1, 

kmu  = 1/[сm(nd + nu)]2 << 1,	 (14)

kbu  = 1/[сm(nb + nu)]2 << 1,

(сm = gm /a2) satisfied, the following approximate (accurate to 
insignificant factors) equality holds true:

ITnu (Z) » 1 + kfu Вu
2(2Z/Lc)2 cos2(4pZ/l0) 

	 + kmu Вu
2 [2(Z – ldnd)/Lc] cos2[4p(Z – ldnd)/l0] 

	 + kbu Вu
2 [2(Z – ldnd – lunu)/Lc] cos2[4p(Z – ldnd – lunu)/l0].	(15)

The parameters   kfu , kmu  and kbu  in relation (15) can be inter-
preted as the intensity reflection coefficients from the upper 
surface of lower layer ( 12a ), the lower surface of upper layer 
( 12b ) and the interface between them. They decrease with an 
increase in the mean slope of irregularities gm on the surfaces 
of the layers of the medium. 

The envelope of the function ITnu (Z) in the range from 
– l0 to 5 l0,

VTu (Z) = 1 + kfu Вu
2 (2Z/Lc) + kmu Вu

2 [2(Z – ldnd)/Lc ] 

	 + kbu Вu
2 [2(Z – ldnd – lunu)/Lc ]	 (16) 

is actually a tomogram VTu (Z) of a portion of layered medium 
( 5 ), composed of two layers ( 8а ) and ( 8b ) (see Fig. 4) and 
their small vicinity, because it depends on the parameters 
nf, nd, nu, nb, ld, lu and gm, which completely determine the 
structure of this portion. It follows from relation (16) that 
the tomogram VTu (Z) has three maxima at the points Zf = 0, 
Zm = ldnd and Zb = ldnd + lunu: VTu (0) = 1 + 1/[сm(nf + nd)]2, 
VTu (Zm) = 1 + 1/[сm g(nd + nu)]2 and VTu (Zb) = 1 + 1/[сm(nb + nu)]2 
and that the following relations hold true if conditions (14) 
are satisfied:

VTu (Zm /2) = 1 + [Вu
2(Zm /2Lc)/с2m] 

	 ´ [1/(nb + nd)2 + 1/(nd + nu)2 ] ,

VTu [(Zm + Zb)/2] = 1 + {Вu
2 [(Zb – Zm)/2Lc]/с2m}

	 ´ [1/(nd + nu)2 + 1/(nb + nu)2 ] .

Based on these relations, one can construct a system of seven 
equations,

VTu (0) = 1 + 1/[сm(nf + nd)] 2, 

VTu (Zm) = 1 + 1/[сm(nd + nu)] 2, 

VTu (Zb) = 1 + 1/[сm(nb + nu)] 2,

Zm = ldnd,  Zb = ldnd + lunu,
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VTu (Zm /2) = 1 + [Вu
2 (Zm /2Lc)/с2m ] 	 (17)

	 ´ [1/(nb + nd)2 + 1/(nd + nu)2 ] ,

VTu [(Zm + Zb)/2] = 1 + {Вu
2 [(Zb – Zm)/2Lc]/с2m}

	 ´ [1/(nd + nu)2 + 1/(nb + nu)2 ] 

with respect to seven unknowns, which are determined in 
device ( 14 ) (see Fig. 4). These are the refractive indices nf, nd, 
nu and nb of the portion of the analysed medium, containing 
layers ( 8a ) and ( 8b ), and the adjacent region; the mean slope 
gm of irregularities on the surfaces of these layers; and the 
thicknesses of these layers (ld and lu). The parameters of the 
neighboring portions of the medium, which correspond to 
the ranges –7 l0 £ Z £ – l0 and 5 l0 £ Z £ 11 l0, are deter-
mined similarly. The number of these portions in segment ( 4 ) 
and the corresponding intervals of length hs = 6 l0 is deter-
mined by the relation Nd = lb /hs = ( f /D)2/3. At an aperture 
ratio D/f = 1/6 for lens ( 6 ), Nd = 12. A tomogram is calculated 
for each of the twelve portions of segment ( 4 ) in computa-
tional device ( 14 ), and this tomogram is used to determine 
the parameters nf, nd, nu, nb, ld, lu and gm for this portion.

Above we described in detail the procedure for deter
mining the tomogram of one segment ( 4 ) of medium ( 5 ). The 
following operations are performed to obtain tomograms of 
other segments of this medium. First, housing ( 15 ), which 
encloses a THz long-focal-length low-coherent tomograph 
based on counterpropagating beams, is placed in the initial 
position. In this position, lens ( 6 ) is focused to the boundary 
of the initial interfacial segment with a longitudinal size lb 
so as to form a real image of this boundary at a double focal 
distance from the aperture. Then the tomogram of this segment 
is obtained. After this procedure, the housing is shifted to the 
transverse direction by a value ls = 2 l0(f/D) and the tomo-
gram of the neighbouring interfacial segment of the medium 
is determined. The tomograms of all segments with a longitu-
dinal size lb, located at the same depth as the initial interfacial 
segment, are obtained similarly. Then housing ( 15 ) is shifted 
in the longitudinal direction by lb = 4 l0( f/D)2, and tomograms 
of all segments with a longitudinal size lb, located at a depth 
lb  from the boundary of medium ( 5 ), are determined. The 
tomograms of all segments located at a depth 2lb from the 
boundary of the medium are obtained in the same way, etc. 
It should be noted that the tomographs implemented according 
to the schemes depicted in Figs 3 and 4 have the same resolu-
tion and error in determining the parameters of medium. This 
means that a long-focal-length low-coherent THz tomograph 
based on spatially separated counterpropagating reference 
and object beams can distinguish boundaries of a layer with a 
thickness as small as 2 l0 from a tomogram of layered medium 
and determine the coordinates of boundaries of different layers 
with an error of 2 l0. In the THz wavelength range this means 
that boundaries of layers with thicknesses of 60 – 600 mm can 
be distinguished and the position of these boundaries can be 
determined with an error of 60 – 600 mm. The refractive indices 
of each layer can be found with a relative error of 0.06.

4. Conclusions

Tomographs based on counterpropagating beams (a kind of 
Mach – Zehnder interferometer, in which the object beam back-
scattered from a medium studied interferes with the reference 

beam) implement a layer-by-layer resolution equal to 2 l0 ( l0 
is the average radiation wavelength) when probing a medium 
by radiation with a coherence length of 8 l0. The error in 
determining the positions of the layer boundaries may also 
reach 2 l0. Based on this fact, we proposed a design of a long-
focal-length THz low-coherent tomograph, which can yield 
information about the sizes, mean slopes of surface irregulari-
ties and the refractive indices of inhomogeneities in a medium 
from a tomogram of this medium; the tomogram is formed by 
recording field amplitudes in spatially separated object and ref-
erence beams. For layered media, the layer-by-layer resolution 
of this tomograph is in the range of 60 – 600 mm; note that the 
error in determining the layer boundaries also lies in this range. 
A low-coherent THz tomograph of this design can efficiently 
be used for tomography of biological media, such as nail plates, 
cutaneous covering, and dental tissue.

Appendix. Analysis of layer-by-layer  
resolution and accuracy characteristics of  

a tomograph based on counterpropagating 
reference and object beams

Let us determine the layer-by-layer resolution and accuracy 
characteristics of a tomograph based on spatially separated 
counterpropagating beams by an example of a tomograph the 
scheme of which is presented in Fig. 3. We will start with the 
construction of a tomogram of a medium under study. This 
procedure is based on the fact that the envelope VT(Z) of the 
function  

-
ITn(Z) or, in other words, the tomogram of the medium 

passes through the maxima VT(Zk) of this function (Zk are the 
coordinates of the aforementioned maxima). The coordinates 
Zj of the largest maxima,  

-
ITn(Zj ), coincide with the coordi-

nates of the maxima VT(Zj ) of the tomogram VT(Z). This 
means that the equality VT(Zj ) =  

-
ITn(Zj ) is valid. The other 

maxima of the function  
-
ITn(Z) are located symmetrically with 

respect to Zj . In view of this fact, the first stage in calculation 
of the tomogram VT(Z) is the search for the coordinates Zk 
and the magnitudes of maxima of the function  

-
ITn(Zk) =  -

ITn(x = 0, y = 0, z = 0, Zk). Then the step approximation of the 
tomogram VT(Z) is determined in the intervals [Zk, Zk + 1] from 
the relation VT(Z) = VT(Zk) =  

-
ITn(Zk).

Let us now take into account the influence of noise on the 
error in determining the parameters of medium by the example 
of additive noise. It can be shown that in this case the main 
contribution is from the noise present in the object beam, the 
total field in which is Eo(t, x, y, z) + EnUn(t), where En is the 
noise field amplitude. Here, Un(t) is a random distribution 
with a correlation function Bn = áUn(t)Un(t + t)ñt, where the 
angle brackets á...ñt indicate averaging over time t. The func-
tion Bn determines the correlation time 

( )dT B1
n n

t

t T

0

0

t t t=
+y

of the additive noise, in the presence of which the tomogram 
VT(Z) is estimated from the formula

VT
t (Zk) = á IS(x, y, z = 0, Zk, t)ñt /Е2

m .	 (A1)

Here, IS(x, y, z = 0, Zk, t) = I(x, y, z = 0, Zk, t) + EnEo(t, x, y, z = 0) 
´Un(t) and Em is the amplitude of the electric field component 
generated by source ( 1 ) (Figs 1 and 3). In the absence of noise, 
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when En = 0, this estimate coincides with relation (3): VT
t (Zk) = 

VT(Zk). Under the conditions tn << tc << T, kb << 1, k,  << 1 
and kr << 1 (kb, k,  and kr are the reflection coefficients 
from the boundary of the medium and from the left and right 
boundaries of the inhomogeneity), which are generally per-
formed in practice, the variance of the estimate VT

t (Zk) of 
the tomogram VT(Z) can be written as Dv(Zj) = áVT

t (Zk)2 ñt – 
áVT
t (Zk)ñt2 » Entn /(EmT).
It can be shown that the additive noise affects most sig-

nificantly the accuracy in determining the refractive indices n, , 
nr and nh of different layers of medium studied. Hence, in the 
presence of additive noise, these parameters are calculated 
using the following estimates [rather than relation (9)]:

n,t  =1/[2/VT
t (Z0) – 1],  nht  = n, /[2/VT

t (Z, ) – 1], 

nrt  = 1/[2/VT
t (Zr) – 1].	

(A2)

It follows from (A2) that the relative error in estimating the 
refractive indices can be written as 

hn = (ánh2t ñt – ánht ñt2)1/2/nh = (án 2
,t ñt – án,t ñt2)1/2/n,  

	 = (án r2t ñt – ánrt ñt2)1/2/nr = [Entn/(EmT)]1/2.	 (A3)

Relation (A3) indicates that, even in the case of noise ampli-
tude comparable with the field amplitude, En » Еm, the suf-
ficiently short noise correlation time tn may provide a fairly 
high accuracy in estimating the refractive indices n, , nr and nh.

Note that, even in the absence of noise, when the maxima 
of tomogram VT(Z) do not coincide with the largest maxima 
of function  

-
ITn(Z) and the latter significantly varies in the 

vicinity of these maxima (a situation that is met in practice), a 
systematic error DVs in determining VT(Z) arises. This error 
reaches the largest value when the maxima of function  

-
ITn(Z) 

lie symmetrically with respect to the coordinates Zj of the largest 
maxima of tomogram VT(Z). This case is clearly depicted in 
Fig. 2c, where Zj = Zr . Based on relations (5) and (7) and with 
allowance for VT(Zr) » 1, we obtain the relation DVs = 
[VT(Zr) – VT(Zr ± l0)] » 4kr( l0 /Lс)2. It can be shown that, when 
determining the refractive indices n, , nr and nh, the relative 
systematic error is hs = 4( l0 /Lс)2. In particular, hs = hs1 = 1/8 
at Lс = 4 l0, hs = hs2 = 1/32 at Lс = 8 l0, and hs = hs3 = 1/128 at 
Lc = 32 l0. Hence, the coherence length of the radiation gener-
ated by source ( 1 ) (Fig. 4) must be not smaller than Lс = 8 l0 to 
provide a relative systematic error in determining the refractive 
indices smaller than 1/8.

Let us now analyse the resolution of a tomograph based 
on counterpropagating beams. We will use a tomogram of 
medium ( 7 ) (Figs 1 and 3), provided that n,  = nr and Zr = 
Z,  + 2.5 l0. In this case, the tomograms VT(Z, ) and VT(Zr) 
have equal maxima [VT(Z, ) = VT(Zr)] and the tomogram 
VT(Z) reaches a minimum [VT(Zmin)] in the middle of the 
interval Z,  £ Z £ Zr, at a point Zmin = Z,  + 1.25 l0. When the 
coherence length is sufficiently large (Lс = 32 l0, see Fig. 2b), 
VT(Zmin)/VT(Zr) = 0.97. In this case, one can hardly determine 
the coordinates of inhomogeneity boundaries, z,  and zr, and 
the inhomogeneity size lh = z,  – zr with acceptable accuracy, 
because these maxima are barely distinguishable at the afore-
mentioned relation between the maxima VT(Z,) and VT(Zr) and 
the minimum VT(Zmin). Let us define the tomograph resolu-
tion as the width of these maxima at a level of 0.85VT(Z,), 
indicated in Fig. 2c by a dot-dashed line. Then, this width is l0 
at Lс = 4 l0 (Fig. 2c) and VT(Zmin)/VT(Z,) = 0.5. This means 

that, at Lс = 4 l0, the tomograph can reveal an inhomogeneity 
with a size lh on the order of wavelength, but in this case the 
relative systematic error in determining the refractive indices 
n, , nr and nh of medium is fairly large: hs = 1/8.

Let us consider an intermediate case, where the coherence 
length of generated radiation is Lc = Lсm = 8 l0 (Fig. 2d). Under 
these conditions, when implementing a tomograph schemati-
cally shown in Fig. 1, one should generate a standing wave 
(marked by a dashed oval), the centre of which is formed by 
four interference fringes of almost identical intensity. As was 
shown in [8, 9], this is a region of minimum size in which these 
bands can be formed at a coherence length of probe radiation 
Lc ³ Lсm = 8 l0. In this case, the width of the maxima VT(Z, ) 
and VT(Zr) in the tomogram VT(Z) at a level of 0.85VT(Z,), 
which is indicated by a dot-dashed line in Fig. 2d, is 1.25 l0, 
a  value corresponding to the tomograph resolution RT = 
2.5 l0/nh. This is a limiting resolution at which these maxima 
[and, therefore, both boundaries of inhomogeneity ( 12 )] can 
be distinguished. This also means that the boundary coordi-
nates z,  and zr are determined with a small error: RT = 2.5 l0 /nh. 
The coordinate zb of boundary ( 8 ) of the medium under study 
is determined with the same error: RT = 2.5 l0 /nh. The rela
tion RT = 2.5 l0 /nh determines also the minimum thickness of 
inhomogeneity: lhm = RT = 2.5 l0 /nh, which can be derived 
from the tomogram VT(Z). For example, if nh = 1.25, lhm = 2 l0. 
Hence, at nh = 1.25, the resolution RT of a THz tomograph 
based on counterpropagating beams is in range of 60 – 600 mm. 
With a decrease in nh of inhomogeneity ( 12 ), the layer-by-
layer resolution of the tomograph is reduced. For example, 
if this inhomogeneity is an air cavity (for which nh = 1), the 
resolution of the tomograph is 2.5 l0 and, therefore, the mini-
mum size of inhomogeneity that can be resolved is lh = 2.5 l0. 
Thus, the layer-by-layer resolution of a tomograph based on 
counterpropagating beams depends on the refractive index of 
an inhomogeneity studied.

The proposed criterion for the resolution of a tomograph 
based on counterpropagating beams resembles the Rayleigh 
criterion, which is used to test the resolution of optics from an 
image of a two-point object, generated by this optics in the 
form of two Airy spots, specifically: the object points can be 
distinguished when the intensity ratio of the minimum located 
between these spots to the maximum in the spots is not smaller 
than 0.85 [14]. Thus, the condition Lc = Lсm = 8 l0 provides a 
high accuracy in determining the coordinate of the boundary 
(zb) of a medium under study, as well as the coordinates of the 
boundaries z,  and zr and thickness lh of an inhomogeneity in 
this medium at a small relative systematic error (hs = 1/32) 
in determining the refractive indices n, , nr and nh for different 
layers of this medium. This means that the case of Lc = Lсm = 
8 l0 is optimal for tomographs based on counterpropagating 
reference and object beams, including spatially separated beams. 
However, it can be shown that in this case, at a relative error in 
estimating the refractive indices n, , nr and nh, in the presence 
of additive noise hn ³ 3hs » 0.1, this noise affects the accuracy 
in determining refractive indices using tomographs based on 
spatially separated counterpropagating reference and object 
beams.
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