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Abstract.  The possibility of using the cubic self-action effect of 
intense radiation for the additional time compression of Gaussian 
beams with a quasi-uniform cross section is investigated. The abil-
ity to recompress 30-fs Gaussian pulses down to 14 fs (16 fs) with the 
heterogeneity of less than 1.5 fs (2 fs) on the spatial scale, which 
corresponds to the energy level 63 % (86 %) of the beam, is theoreti-
cally demonstrated at the B-integral of ~3.

Keywords: compression of intense femtosecond pulses, self-phase 
modulation, cubic nonlinearity. 

1. Introduction

Under the influence of intense laser radiation, the dependence 
of the medium polarisation on the external field strength 
is nonlinear. In an isotropic medium the cubic nonlinearity 
is most important. It leads to a number of negative effects 
such as large-scale and small-scale self-focusing and self-phase 
modulation [1 – 4]. The last effect can be used for an addi-
tional time compression of high-power laser pulses. The idea 
of the pulse compression is rather simple: an intense optical 
pulse propagating in a nonlinear medium broadens its spec-
trum, acquires the phase modulation and stops to be Fourier 
transform limited in the spectral-temporal domain; in this 
case, external chirped mirrors allows the phase to be corrected 
and the pulse duration to be reduced. This technique is widely 
used in fibre optics, where the pulse broadens its own spec-
trum upon propagation in an optical fibre [5, 6]. At present, 
temporal self-compression of femtosecond pulses has been 
experimentally studied during their propagation and filamen-
tation in gases [7, 8] and capillaries [9 – 11]. However, it should 
be emphasised that these techniques due to the optical break-
down cannot be used for the high energy laser pulses. In this 
case, use is made of collimated beams without focusing and 
transparent dielectrics, i.e. crystals or glasses, as a spectrum 

broadening optical medium. The authors of [12, 13] demon-
strated theoretically the possibility of using self- and cross-
action effects to shorten the optical pulse duration, resulting 
from the generation of the second harmonic of femtosecond 
radiation with a uniform intensity distribution in space. 
Experimental confirmation of the possible application of the 
self-phase modulation effect arising during the propagation 
of intense (1 TW cm–2) pulses in glass for their temporal com-
pression is presented in [14, 15].

In the case of nonuniform intensity distribution in space, 
different regions of a laser beam accumulate a different non-
linear phase (B-integral), which leads to nonuniform temporal 
compression across the beam cross section with help of chirped 
mirrors. In this paper we consider the possibility of accumula-
tion of a quasi-uniform nonlinear phase across the beam by 
optical radiation with initial Gaussian intensity distribution 
in space and time. The main idea is to implement a glass defo-
cusing lens as a nonlinear medium. Using numerical simula-
tions we have demonstrated the possibility of quasi-uniform 
temporal recompression of an optical pulse in the cross sec-
tion of the Gaussian beam. 

2. Accumulation of a quasi-uniform nonlinear 
phase

Temporal compression of optical pulses with the Gaussian 
temporal and spatial intensity distribution is controlled by the 
nonlinear phase accumulation, commonly known as the 
B-integral
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where l0 is the centre wavelength; g is the cubic nonlinearity; 
I(r, t, x) is the intensity; r is the transverse coordinate; L is the 
nonlinear medium thickness; and x is the longitudinal coor
dinate of the beam in a nonlinear medium. The typical value 
of the nonlinearity coefficient is g = (3 – 15) ́  10–7 cm2 GW–1.

The propagation of the laser beam with the Gaussian 
intensity distribution in space through a plane-parallel plate 
leads to a spatially nonuniform accumulation of the nonlinear 
phase. The accumulation of a quasi-uniform nonlinear phase 
is possible, if the laser beam passes through a defocusing lens 
with parabolic or spherical surfaces. The lens parameters are 
chosen to maintain an almost constant product of intensity 
and optical path length in a nonlinear medium across each 
beam. The laser beam passed through such a lens can be col-
limated by an off-axis parabolic mirror. As a result, the beam 
will preserve the plane phase and the Gaussian intensity pro-
file as well as will accumulate the quasi-uniform B-integral 
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across the beam cross section. Figure 1 illustrates the princi-
pal accumulation scheme.

The optimum thickness and the curvature of the input and 
output surfaces of the negative lens can be found using the 
geometric optics approximation and numerical simulation. 
Let us define the input and output surfaces of the lens by the 
functions z1(r) and z2(r) (Fig. 1). For spherical surfaces of the 
lens these functions have the form:

( ) | | ,z r R r d R F
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where R1,2 are the radii of spherical surfaces; d is the lens 
thickness; and F is the focal distance of the lens.

We define the transverse intensity distribution as 
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where I0 is the peak intensity; R^ is the Gaussian beam radius; 
t is the time; and T is the pulse duration FWHM. The minimum 
thickness of the lens should be chosen based on the desired 
B‑integral accumulated by the central ray:
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Depending on the transverse coordinate, the rays accumulate 
the B-integral
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where L(r1) = ( ) [ ( ) ( )]r r z r z r2 1
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- + -  and r1,2 are the 
input and output transverse coordinates. In (5) we assumed 
that the laser beam radius on the output surface of the lens, R, 
increases insignificantly, i.e. DR/R << 1. The problem of the 
accumulation of a quasi-uniform nonlinear phase by the 
Gaussian beams is reduces to the problem of minimising the 

difference |B(r1) – B0| at fixed values of the variable t and 
duration T. By varying the curvature radii of the input and 
output surfaces of the lens, R1 and R2, it is possible to provide 
a quasi-uniform accumulation of the nonlinear phase for a 
given set of laser beam parameters.

Let us minimise the difference on two spatial scales |r1| £ R 
and |r1| £ w = R 2 , corresponding to uniform nonlinear 
phase accumulation and spectrum broadening of 63 % and 
86 % of the total beam energy. The choice between the spatial 
scales R or w (or other) should be determined by the require-
ments to the deviation of the pulse duration across the Gaussian 
beam cross section from the average value.

As an example, we consider a Gaussian beam with R^ = 
0.74 cm with the pulse duration T = 30 fs, energy 100 mJ and 
centre wavelength 800 nm. For these parameters the peak 
intensity is 1.8 TW cm–2, and the lens thickness d = 0.63 mm 
for the K8 glass ( g = 3.35 ́  10–7 cm2 GW–1, the refractive 
index n = 1.5) corresponds to the B-integral value of 3. The 
optimal curvature radii of spherical surfaces are R1 = 3.17 cm 
and R2 = 739 cm and R1 = 2.12 cm and R2 = 740 cm for R and 
w spatial scales. The focal distances are equal to –6.32 cm 
and  –4.24 cm, respectively. In this case, the increase in the 
beam radius, DR/R, does not exceed 3 ́  10–2. The lens, which 
is optimal for the R scale, and an off-axis parabolic mirror 
are shown in Fig. 1. Figure 2 presents the dependences of the 
B‑integral accumulated in the lenses and in the plane-parallel 
glass plate of the same thickness d on the transversal coor
dinate normalised to the radius R. In the case of optimal 
defocusing lenses, the variation of the B-integral for the 
Gaussian beam does not exceed 10 % and 27 % of the value 
of B = 3 for R and w spatial scales, respectively. At the same 
time for the plane-parallel glass plate, this value is 63 %.

It is also important to note that the cubic nonlinearity 
leads to the appearance of self-focusing. The self-focusing can 
be of two types: large-scale and small-scale. For the laser 
parameters mentioned above, the spatial scale of large-scale 
self-focusing is about 30 cm, which significantly exceeds the 
thickness of the lens. The large-scale self-focusing changes the 
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Figure 1.  Principal scheme of accumulation of a quasi-uniform B-integral 
by the Gaussian beams.

B/rad

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0 0.5 1.0 1.5 r/R

1

2

3

Figure 2.  B-integral accumulated by a Gaussian beam in the plane-
parallel glass plate ( 1 ) and in the defocusing lens, which are optimal 
for R ( 2 ) and w ( 3 ) scales vs. the normalised transverse coordinate.
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beam divergence, but is not crucial for the above beam 
parameters. The spatial scale of small-scale self-focusing 
(SSSF) is determined by the equality of the B-integral to 
unity. The SSSF leads to amplification of the spatial noise of 
the laser beam, thereby causing the damage of optical ele-
ments. For the observed case (B = 3) there is a possibility to 
damage the defocusing lens, but the implementation of the 
SSSF suppression method [13, 16] makes the probability 
insignificant.

3. Temporal compression

The cubic nonlinearity makes an initially Fourier transform 
limited pulse broaden spectrally and become self-phase modu-
lated. Once, the desired uniform spectral broadening is pro-
duced; a nonlinear chirp can be partially compensated 
by reflecting light from mirrors with anomalous dispersion. 
As shown in [12, 13], a correction (even of a quadratic spectral 
phase component) can significantly reduce the pulse duration. 
Mathematically, the operation of the compensation can be 
written as:

Ac(t) = F–1(exp(–iaw2/2)F(Aout(t, L))),	 (6)

where Aout(t, L) is the complex field amplitude at the output 
of the lens; F and F–1 are the direct and inverse Fourier trans-
form in the spectral-temporal domain; and a is the quadratic 
dispersion coefficient.

In general, to find the field distribution at the lens output, 
in addition to the laws of geometrical optics and the influence 
of cubic nonlinearity, the effect of group velocity dispersion is 
needed to be taken into account. The evolution of the field 
amplitude of the incidence pulse can be described by the equa-
tion [1]: 
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where A(t – z/u, z) is the complex amplitude of the electric 
field; b = (3pkc(3))/(2n2) is the cubic nonlinearity parameter; 
u  is the group velocity; z is the longitudinal coordinate; 
k2 = ¶2k/¶w2|w = w0 is the linear material dispersion, which is 
responsible for pulse broadening in a medium with a refrac-
tive index dispersion; w0 = 2pc/l0; and k is the wave vector. 
For the glass in question, the parameter k2 = 47.1 fs2 mm–1 at 
800 nm. Equation (7) can be solved numerically. 

Figure 3 shows the distributions of the pulse durations 
across the Gaussian beam cross section after the quadratic 
spectral phase correction. For the Gaussian beam passed 
through the defocusing lens, the quadratic dispersion coeffi-
cient a was chosen to minimise the pulse duration at the edge 
of the beam, i.e. at r = R (or w), and for the laser parameters 
presented above it was –105 fs2 (–169 fs2). In considering 
the spectrum broadening of the Gaussian beam in the plane-
parallel glass plate, the parameter a was chosen to minimise 
the pulse duration in the beam centre and was equal to –65 fs2.

According to Fig. 3, implementation of the defocusing 
lens, which is optimal for R (or w) scales, makes it possible 
to  broaden the spectrum and compress the 30-fs Gaussian 
pulse down to 14 fs (16 fs) with the deviation of the duration 
1.5 fs (2 fs). When using the plane-parallel glass plate with the 
same thickness, the variation of the duration across the beam 
cross section at the R spatial scale exceeds 7 fs.

The presented technique of quasi-uniform temporal com-
pression of the Gaussian beams has one significant disadvan-
tage, which restricts its implementation for pulses with shorter 
durations. The dispersion properties of glass are as important 
as values of cubic nonlinearity and refractive index, because 
the defocusing lens produces the radial group velocity delay. 
The difference between group and phase velocities does not 
permit compensating the effect completely. But the right 
choice of the lens material can minimise it. For the lens in 
question (optimal for the R scale) the group velocity delay of 
the beam centre and its edges (r = R) after propagation 
through the defocusing lens and the off-axis parabolic mirror 
does not exceed the duration of the initial pulse under an 
assumption that the telescope preserves the plane wave front. 
Moreover, at present there has been developed the technique 
of almost complete correction of the radial group delay for 
ultrashort pulses [17]. 

4. Conclusions

In this paper, a method for accumulating a quasi-uniform 
nonlinear phase across the Gaussian beams with a peak inten-
sity of a few TW cm–2 using defocusing lenses with spherical 
surfaces has been proposed and investigated. The accumulated 
B-integral leads to quasi-uniform spectrum broadening across 
the beam cross section. The beam with the broaden spectrum 
may be compressed by chirped mirrors introducing only a linear 
negative chirp. The possibility of quasi-uniform temporal com-
pression of a Gaussian beam with a pulse duration of 30 fs 
down to 14 fs (16 fs) with the deviation 1.5 fs (2 fs) on the 
beam radius, which corresponds to 63 % (86 %) of the total 
beam energy, has been demonstrated with help of numerical 
methods. In the framework of the presented model, the 
observed techniques can be applied to any optical beams with 
the Gaussian spatial profile. For reliable experimental imple-
mentation of the technique it is important to operate with 
laser beams with a stable intensity distribution.
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Figure 3.  Pulse durations across the Gaussian beam vs. the normalised 
transversal coordinate after the correction of the quadratic phase com-
ponent of the spectrum for the cases when the B-integral is accumulated 
in the plane-parallel glass plate ( 1 ) and in the defocusing lens, which are 
optimal for R ( 2 ) and w ( 3 ) spatial scales.
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