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Abstract.   We have developed a technique for investigating the evo-
lution of spatial inhomogeneities in high-power laser systems based 
on multi-stage parametric amplification. A linearised model of the 
inhomogeneity development is first devised for parametric amplifi-
cation with the small-scale self-focusing taken into account. It is 
shown that the application of this model gives the results consistent 
(with high accuracy and in a wide range of inhomogeneity parame-
ters) with the calculation without approximations. Using the lin-
earised model, we have analysed the development of spatial inho-
mogeneities in a petawatt laser system based on multi-stage para-
metric amplification, developed at the Institute of Laser Physics, 
Siberian Branch of the Russian Academy of Sciences (ILP SB RAS). 

Keywords: petawatt laser system, spatial heterogeneity, small-scale 
self-focusing, parametric amplification, femtosecond pulses. 

1. Introduction 

The method of optical parametric amplification of few-cycle 
pulses opens the way for the development of a new type of 
laser source with extremely short pulse duration and intensity 
exceeding 1023 W cm–2 [1 – 3]. Laser radiation in such systems 
is strongly influenced by nonlinear effects associated with 
amplification of spatial intensity inhomogeneities in the beam 
cross section, which may lead to significant deterioration of 
the amplified beam profile, or even to a breakdown of optical 
elements. 

The main mechanism of amplification of spatial inhomo-
geneities in high-power laser systems is a small-scale self-
focusing caused by the third-order nonlinearity [4 – 6]. This 
issue has been comprehensively investigated for the case of 
laser amplification, but the development of small-scale self-
focusing for parametric amplification still remains unex-
plored. Unlike laser amplification, parametric amplification 
is an instantaneous phase-sensitive process (at characteristic 
times of less than 1 fs), i.e., depends on the instantaneous val-
ues of the field at a given point in space and time. As a result, 
the behaviour of small-scale self-focusing can change mark-

edly compared to the case of laser amplification, in particular 
due to such effects as reverse energy transfer from the ampli-
fied beam to the pump beam. For example, Ginzburg et al. [7] 
considered the influence of small-scale self-focusing on sec-
ond harmonic generation in an intense laser field. Using the 
Bespalov – Talanov theory [4], Ginzburg et al. developed a 
linearised model, which allowed the maximally admissible 
level of spatial inhomogeneities to be determined for the fun-
damental radiation beam. In particular, the results of paper 
[7] show a significant difference in the gain spectrum of small-
scale inhomogeneities during the radiation propagation in a 
cubic-nonlinearity medium and second harmonic generation 
in such a medium. 

In this paper, in order to study the development of small-
scale self-focusing during the parametric amplification, we 
have developed and analysed for the first time the linearised 
system of equations describing the noncollinear parametric 
interaction. We have studied the applicability of the devel-
oped model to compare it, in particular, with the results 
obtained by solving the complete (non-linearised) system of 
equations. Based on the model we have proposed a method 
for analysing the inhomogeneity gain, used in the petawatt 
laser system based on multi-stage parametric amplification in 
BBO crystal and LBO, developed at the ILP SB RAS [2]. 

2. Simulation of inhomogeneity development 

2.1. Models describing the development of inhomogeneities 

The development of inhomogeneities can be simulated in two 
ways [8]. The first approach involves direct modelling of inho-
mogeneities with different initial parameters – an amplitude 
and a phase. In this paper, the simulation was carried out by 
solving a system of truncated parametric amplification equa-
tions, extended to take into account diffraction, birefringence, 
self- and cross-phase modulation [8, 9]: 
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exp i iA t k zm m m m z0e w= - +] g is the electric field strength of 
the wave m; Am is the electric field envelope (hereafter m = s, 
i, p is a signal wave, idler wave and pump wave, respectively); 
sm is the second-order nonlinearity coefficient; gmn is the non-
linear refractive index, which characterises the phase modula-
tion of the wave m by the wave n (n = s, i, p); wm is the fre-
quency of the wave m; wm0 is the carrier frequency of the wave 
m; km is the wave vector; ug is the group velocity of the pump; 
km0z = km0cos am; am is the angle of the wave vector of the 
wave m with the axis z; nm is the refractive index of the 
medium; q is the angle with the optical axis of the crystal; F+, 
F– are the operators of the direct and inverse Fourier trans-
form, respectively; and Dk is the wave detuning. 

By expanding the refractive index in the expression for the 
wave vector and the cosine in the denominator of the first 
term of the operator Lmt  by kx and ky, this system is reduced 
to the well-known truncated equations with drift and diffrac-
tion operators. Also, system (1) can be derived using the 
approach described in [10], by maintaining the angular depen-
dence of the wave vector and by substituting E =As ́

( ) ( )exp expi i i it k z A t k zs s i i iz zw w- + + - +  + Apexp(– iwpt +
)ik zpz . Thus, the system of equations can simulate all the 

effects that make a significant contribution to the evolution of 
inhomogeneities. This approach to modelling the inhomoge-
neities suggests a significant number of time-consuming cal-
culations and their analysis. 

Another approach, first proposed for modelling the devel-
opment of inhomogeneities during the parametric amplifica-
tion, makes it possible to simultaneously carry out the calcu-
lations for a wide range of parameters of spatial perturba-
tions. The main idea is to simulate inhomogeneities as a small 
correction to the fundamental field [4, 7]. This assumption 
allows us to derive a linear system of equations for the pertur-
bation field. Since such a system of equations is cumbersome, 
we present below only one of the equations (the complete sys-
tem includes six equations) 
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Em,j  = exp iA k z, ,m j m jz-^ h, j = 0, 1, 2 (the zero subscript corre-
sponds to the field of the fundamental wave, and 1 and 2 – to 
angular components of the inhomogeneity of a single wave; 
the sum of the projections of the wave vector of these com-
ponents at the front face of the crystal is equal to zero); a is 
the angle between the amplified wave and the pump wave in 
a noncollinear scheme; the remaining arguments in the trig-
onometric functions are small angles of the inhomogeneity 
components with the fundamental wave, the first subscript 
corresponding to the direction of the inhomogeneity wave, 
and the second – to the plane: 1 – critical to synchronism, 2 
– uncritical. 

As far as we know, such a linearised model that takes into 
account the parametric amplification and self-focusing is pro-
posed for the first time. It allows one to assess the angular 
distribution of the complex gain of the perturbation field, 
which makes it possible to calculate the evolution of arbitrary 
spatial inhomogeneities. The obvious disadvantage of the 
model is the inability to account for a number of effects, such 
as changes in the profile of the perturbations due to diffrac-
tion, saturation of parametric amplification, etc. Thus, it is 
important to know the range of applicability of the model. 
The next part of the work is devoted to the study of the range 
of applicability of the model for a number of specific cases. 

2.2. Effective cubic susceptibility for LBO and BBO crystals 

To determine the effect of small-scale self-focusing on the 
evolution of inhomogeneities, it is important to use the most 
accurate value of gmn in equations (1) and (2). Below we pres-
ent the experimental data on the cubic nonlinear susceptibil-
ity tensor and interpret them in order to obtain the values of 
these coefficients for the BBO and LBO crystal used in our 
petawatt system. The expressions for the effective cubic sus-
ceptibility in self- and cross-phase modulation can be easily 
derived from the crystal symmetry and Kleinman’s rules 
[11,  12]. The expressions obtained for BBO and LBO crystals 
(only in the XY plane) are presented in Table 1. 

The tensor components ( cim) for the BBO crystal were 
taken from [13]: c11 = 503 pm2 V–2, c10 = –24 pm2 V–2, c16 = 
146 pm2 V–2, and c33 = –104 pm2 V–2. Despite the anomalous 
value of c33, this component does not have a significant 
impact on the effective cubic nonlinearity coefficient for the 
phase-matching angles in question. For the LBO crystal the 
data are scarce. The measured values of n2 [14] gave c11 = 
236  pm2 V–2 and c22=173 pm2 V–2. The component c33 = 
244 pm2 V–2 was obtained from the formula for the effective 
cubic susceptibility ( )

eff
3c  [15] from the components c11 and c22: 
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where ( )
eff i
3c  is the effective cubic susceptibility; n0i is the refrac-

tive index for configuration i. We have chosen this approach 
because the formula (3) has yielded good results when calcu-
lating the coefficient c11 from the coefficient c22 and back for 
the LBO crystal (with accuracy up to 5%), and for the KTP 
crystal having the same symmetry mm2 [16] (with accuracy up 
to 10 %). The components c16 = 80 pm2 V–2, c18=68  pm2 V–2 
and c24 = 70 pm2 V–2 for the LBO crystal were evaluated in the 
approximation of an isotropic medium as c16 = ( c11 + c33)/6, 
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c18 = ( c11 + c22)/6 and c24 = ( c22 + c33)/6. Thus, using the 
above values of the components of the cubic nonlinearity ten-
sors we have calculated effective values of the cubic nonlin-
earity coefficient gmn (Table 2).

3. Analysis of the models 

3.1. Applicability of the linearised model 

As noted above, the linearised equations of parametric ampli-
fication with the nonlinear self- and cross-phase modulation 
taken into account have limited ranges of applicability. Below 
we consider the ranges for the cases of nonlinear propagation 
and parametric amplification. Since the boundaries of these 
ranges depend on the parameters of a specific problem, we 
have investigated their most characteristic range. To deter-
mine the deviation of the calculation results in the linearised 
approximation from the results of model (1), we have per-
formed a comparison under the following assumptions: the 
spatial shape of the perturbation is Gaussian, and the spatial 
profile of the fundamental beams is super-Gaussian (eighth 
order). The latter allows us to reconstruct the conditions of 
the fundamental radiation profile, given in model (2). Then, 
we calculate the complex angular gain of the field in the com-
plete model: 
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where the first subscript i(0) indicates the presence (absence) 
of inhomogeneities in the beam, and the second subscript L(0) 
corresponds to the output (input) crystal face. The angular 
gain of the field in the linearised model has the form 
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where Alin L is the amplified perturbation field in the linearised 
model at the output of the medium, and Alin 0 is the initial 
wave field, which causes perturbation. Knowing both gains in 

the linearised model and the direct calculation, we estimate 
the error D as follows: 
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where the integration is performed over the angles, in which 
the gain with respect to the intensity exceeds e–2 of the peak 
value. It is important to note that the gains include phase 
characteristics of amplified perturbations, which, as will be 
shown below, are important for the correct reconstruction of 
the amplified perturbation profile. 

First, we consider the case of nonlinear propagation of the 
pump wave only in an isotropic medium, i.e., from nonlinear 
effects only self-phase modulation will be taken into account. 
This process is characterised by a B-integral: 

L
B peak0

0
= ( )dk I z zgy ,	 (7)

where k0 is the wave vector in a vacuum; g is a nonlinear refrac-
tive index; Ipeak is the peak intensity; and L is the length of the 
medium. The simulation was performed for a short (0.1 cm) 
and long (10 cm) TF-8 glass block (g = 9.69 ́  10–16 cm2 W–1) for 
the B integral ranging from 1 to 4  rad, the emission wave-
length of 532 nm and the inhomogeneity radius of 50 mm. 
These parameters correspond to the most effective inhomoge-
neity component gain with the angle 10 – 20 and 1 – 2 mrad 
between the wave vectors of the perturbation and fundamen-
tal wave for L = 0.1 and 10 cm, respectively. This choice 
allows one to conduct a study both in the case of weak and 
strong contribution of diffraction. Figure 1 shows the depen-
dence of the error D on the ratio of the peak intensity of the 
inhomogeneity, Iihm, to the peak intensity of the fundamental 
beam, I0. Good agreement of the results in a wide range of 
perturbation intensities, especially for small values of the 
B-integral, is caused by the smallness of the inhomogeneity 
gain due to self-focusing. 

Next, we consider the case of parametric amplification of 
800-nm radiation under pumping at 532 nm with an intensity 
of 10 GW cm–2 in the BBO crystal with the noncollinearity 
angle 2.3° (deff for these parameters is 2.1 pm V–1). The inten-

Table  1.  Expressions for effective cubic susceptibilities in case of self- and cross-phase modulation in BBO and LBO crystals.

Crystal Polarisation* Expression

ВВО (symmetry 3m)

o – o ( )
eff
3

11c c=

e – e cos sin cos sin sin sin
2
3 2 2 2 3( )

eff
3

11
4

16
2
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2

33
4c c q c q c q q j c q= + - +

o – e, e – o 2 3cos sin sin sin
3
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3

11
2

16
2

10c c q c q c q j= + +

LВО (symmetry mm2), XY plane

o – o ( )
eff
3

33c c=

e – e sin sin cos
2
3 2( )

eff
3

11
4

18
2

22
4c c j c j c j= + +

o – e, e – o sin cos( )
eff
3

16
2

24
2c c j c j= +

* The first symbol indicates the polarisation of the wave, which experiences modulation, the second  –  the polarisation of the modulating wave, i.e., for 
example, o  –  e means the ooe ® e interaction.

Table  2.  The values of the coefficients gmn.

Crystal gss, gii /10–16 сm2 W–1 gsi, gis /10–16 сm2 W–1 gsp, gps /10–16 сm2 W–1 gip, gpi /10–16 сm2 W–1 gpp /10–16 сm2 W–1

BBO (q = 23.7°, j = 90°) 5.16 10.32 3.72 3.72 4.26

LBO (XY plane, j = 11.8°) 2.68 5.36 1.55 1.55 1.94
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sity of the amplified radiation and the crystal length were cho-
sen so as to achieve the desired gain and saturation. We con-
sidered the gains 102 and 104 in the absence of gain saturation 
in the case of saturation to the maximum gain level (full satu-
ration) and up to the 70 % level underreconversion. To study 
the effect of large B-integrals, we considered the cases with an 
increased cubic nonlinearity coefficient g. When performing 
calculations, the inhomogeneity was initially present in the 
pump, and the comparison was made for the inhomogeneity 
resulting in an amplified wave. 

The results of the comparison are presented in Fig. 2. The 
data obtained within the framework of the linearised model 
sufficiently well coincide with direct calculation. Basically, 
the error is introduced by smoothing the inhomogeneities due 
to diffraction. It is also important to note that the linearised 
model properly accounts for birefringence in the crystal 
because its effect on the evolution of small inhomogeneities 
(100 – 500 mm) is significant. Phase effects will be discussed in 
more detail in Section 4. 

3.2. Interpretation of the results of the model 

As noted above, the result of the calculation of the evolution 
of inhomogeneities under parametric amplification in the lin-
earised model is the angular gain spectrum of their field. Since 

the gain spectrum comprises a phase change, it plays an 
important role in determining the resulting total field of the 
fundamental wave and its amplified inhomogeneity. For 
example, in the case of beam propagation in a medium with 
cubic nonlinearity the phase accumulated by an unperturbed 
beam is different from the phase of the perturbed beam due to 
the difference in the intensities. Obviously, a weak field, as a 
solution to equation (2), must include the phase change. For 
example, in a direction at a small angle to the propagation 
axis of the fundamental wave, the initial-phase-averaged gain 
of the small addition to the fundamental field intensity due to 
the self-phase modulation will be approximately equal to 2B2 
+ 1 [7]. Considering the evolution of a sufficiently large per-
turbation, it is easy to understand that its intensity remains 
the same, because it is not subjected to self-focusing, and only 
the phase changes. Nevertheless, using the intensity gain [7], 
the intensity of the beam propagating in a medium with a 
cubic nonlinearity evolves when it is impossible in principle. 
However, using the calculated complex gain for obtaining the 
resulting total field, it can be shown that the field intensity 
remains constant with high accuracy, and the estimated accu-
mulated phase closely matches the exact solution, this differ-
ence being due to the approximations used. It follows that for 
a correct analysis of the real growth of perturbations it is cru-
cial to reconstruct the total field of the perturbation and the 
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Figure 1.  Comparison of the calculation results obtained by the lin-
earised model with direct calculations for (a) short (0.1 cm) and (b) long 
(10 cm) TF-8 glass block. 
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Figure 2.  Comparison of the models for the case of parametric amplifi-
cation for the gains G =  (a) 100 and (b) 10000.  
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fundamental wave on the basis of the complex gain. As one of 
the most important quantitative characteristics of the growth 
of inhomogeneities is their peak intensity, the evolution of 
inhomogeneities will be analysed by using the peak intensity 
gain, taking into account the phase characteristics of the 
inhomogeneities, which is given by the expression for a given 
spatial perturbation profile Ainh: 
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where sup means both a minimum and a maximum value of 
the inhomogeneity profile. It follows from formula (8), for 
example, that at the initial perturbation of the pump with a 
10 % amplitude from its peak intensity and at a gain 2 at the 
output, the amplified wave will have a peak that is 20 % of its 
peak intensity, and at a gain –2 – a dip of 20 %. 

Figures 3a and b show the angular inhomogeneity gains 
with respect to intensity and the calculated resulting spatial 
profile of the inhomogeneity in the case of a Gaussian ini-
tial distribution with the divergence of 2 mrad during the 
propagation of 532-nm radiation in a 10-cm-long TF-8 
glass block at B = 3 rad. The initial profiles are shown in 
Figs 3e and f. It is particularly noteworthy that a signifi-
cant gain at zero angles does not lead to amplification of 
large size inhomogeneities, but only changes their nonlin-
ear phase incursion, which is observed in the calculation in 
the complete model. 

Unlike cubic nonlinearity, parametric amplification does 
not contribute significantly to the phase of the amplified 
beam. Such a contribution is possible, for example, at small-

size inhomogeneities due to birefringence [17], which is 
observed in Figs 3c and d in the case of parametric amplifica-
tion with G = 100 and saturation to the maximum gain. It also 
follows from Figs 3c and d that the discrepancy between the 
peak intensity gain and the maximum of the angular intensity 
gain spectrum is caused by the ‘stretching’ of the spatial pro-
file due to birefringence. In general, the data presented show 
that the use of the intensity gain to study the inhomogeneity 
gives incorrect results. Thus, the analysis of inhomogeneities 
requires the calculation of their resulting profile with the 
phase taken into account, especially in the case of a signifi-
cant contribution of cubic nonlinearity. In Section 4 we con-
sider the technique for estimating the growth of inhomogene-
ities by the peak intensity gain. 

4. Analysis of inhomogeneities in the petawatt 
laser system 

Currently, the ILP SB RAS is developing a scheme of a pet-
awatt laser system based on multi-stage parametric amplifica-
tion with picosecond pumping (Fig. 4). The system is charac-
terised by high pump intensity due to picosecond pump pulse 
duration, which makes it possible to use it with high effi-
ciency. The parameters of the system are selected with the 
help of numerical simulations [2]. Thus, in the first stage use is 
made of the BBO crystal, because it has a high nonlinearity 
and a broad gain spectrum. The use of LBO crystals for sub-
sequent stages is a compromise between high nonlinearity 
with a broad gain spectrum and a large available aperture. 
Simulations have shown that for such a system to be realised, 
the LBO crystal aperture should be 100 – 120 mm. The pump 
energy at each stage is selected such that it has a maximum 
intensity from the standpoint of resistance to optical break-
down; this allows the conversion efficiency of about 30 %. In 
this case, the B-integral of the entire system is equal to 
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Figure 3.  (a, c) Typical spatial profiles of the amplified inhomogeneity and (b, d) angular gain spectra obtained in the simulations of the inhomoge-
neity gain in the case of (a, b) nonlinear propagation (B = 3 rad, L = 10 cm) and (c, d) parametric amplification (G = 100) upon saturation to the 
maximum gain. For comparison are presented (e) the initial spatial profile and (f) the angular spectrum of the inhomogeneity corresponding to the 
divergence of 2 mrad. 



	 S.A. Frolov, V.I. Trunov, E.V. Pestryakov,  et al.486

0.45 rad, and the B-integral in a single stage does not exceed 
0.2 rad. 

In the case of our petawatt system, the inhomogeneities 
under parametric amplification can be divided into large- and 
small-scale ones. The former are amplified mainly due to 
parametric amplification, the latter – due to small-scale self-
focusing, and the boundary between them is roughly equiva-
lent to the angular width of the phase matching of nonlinear 
crystals. The divergence of the small-scale inhomogeneities, 
corresponding to characteristic parameters of the laser sys-
tems based on parametric amplification stages with picosec-
ond pumping (the length of the crystals is a few millimetres, 
the radiation intensity is ~10 GW cm–2), as follows from the 
results of the calculations, lies in the range of 5 – 15 mrad, i.e., 
typically lies outside the angular phase-matching width of 
nonlinear crystals, and the parametric amplification occurs in 
a narrow band of the angular spectrum. The exception is a 
crystal with a large angular phase matching width, such as 
LBO.

Also, in the absence of spatial filtration when the beam 
size between the stages changes, small-scale inhomogeneities 
can undergo transition into large-scale ones and will be ampli-
fied by the parametric process; as shown below, they may be 
suppressed. The large-scale inhomogeneity gain is determined 
by the degree of gain saturation. Thus, in the case of gain 
without saturation they are characterised by a significant pos-
itive gain, whereas in the case of reconversion, the gain will be 
negative; when the maximum gain is saturated up to a certain 
level, it may be equal to zero. In this case, large-scale inhomo-
geneities, unlike small-scale ones, cannot be suppressed by 
spatial filtering; therefore, it is especially important to per-
form an analysis of the inhomogeneity gain in all the stages of 
the laser system in order to reduce the net gain. Next, using 
the linearised model we have analysed the development of 
spatial perturbations in the petawatt system for its three 
stages. Within the framework of the analysis of the inhomo-
geneity evolution we consider the dependence of the gain on 
their size, taking into account the parametric amplification 
and nonlinear phase modulation. We assume that initial per-
turbation is present in the pump, and its evolution is consid-
ered in the amplified wave. The results of calculations for the 
different sets of the effects taken into account are shown in 
Fig. 5. 

Let us consider first the effect of the nonlinear phase mod-
ulation without parametric amplification (Figs 5a – c). With 
these parameters of our system, small-scale self-focusing leads 
to the most significant amplification of small inhomogene-

ities, in this case, with the divergence of 9 mrad for the first 
stage and 8 mrad for the second and third stages. As might be 
expected, at large B-integrals for which calculations were car-
ried out, the inhomogeneities will be significantly amplified; 
however, in the first stage the gain is very small due to bire-
fringence and noncollinearity in the stage with the BBO 
crystal, which introduce ‘walk-off’ of the inhomogeneity in 
the pump relative to the signal wave and do not produce a 
significant intensity perturbation in the amplified wave. 
This is confirmed by calculations: in the absence of birefrin-
gence and noncollinearity, the gain is equal to 5, and in the 
presence of birefringence – to 1.1. For this reason, due to 
lower birefringence in LBO crystals in the second stage, a 
larger peak gain is observed. However, in the third stage due 
to resizing and the absence of the spatial filtration, the 
amplified peak is shifted to 1 – 2 mrad; in this case, as a result 
of small-scale self-focusing a new peak is formed, centred at 
6 – 8 mrad. 

As was mentioned above, in parametric amplification 
the characteristic determining the inhomogeneity gain is the 
degree of saturation which is demonstrated by our results 
(Figs 5d – f). The first stage ensures the reconversion and, 
therefore, has a considerable negative gain. The other stages 
of the petawatt system are configured to saturate to a level 
of the maximum gain; therefore, large-scale spatial pertur-
bations are considerably suppressed. At a high nonlinear 
phase modulation, the dependence in the region of 5 – 20 
mrad, exceeding the angular phase-matching width of para-
metric amplification, becomes mainly the same as in the 
absence of parametric amplification (Figs 5a – c). The excep-
tion is the last stage where the gain at larger angles is sig-
nificant and makes a greater contribution to the net gain due 
to the saturation of the parametric amplification. The great-
est change occurs in the transition region of 1 – 5 – mrad, 
where the contribution of parametric amplification is 
already significant. One can see that the inhomogeneity in 
the form of peaks from the previous stage is suppressed by 
gain saturation, and inhomogeneities in the form of dips are 
amplified. 

Thus, the numerical simulations show that the growth of 
large-scale inhomogeneities in the developed petawatt system 
is limited by the operation of the stages in the saturation 
regime, while small-scale inhomogeneities do not develop 
because of the smallness of the B-integral. It is also shown 
that in the case of parametric amplification with a large 
B-integral, quantitative parameters change compared with 
the propagation without amplification. Changes mainly occur 
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dard; ( 4 ) stretcher; ( 5 ) compressor; Ipeak is the peak intensity of the pump; Ep is the pump energy.
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in the transition region (1 – 5 mrad), but also take place in the 
region, typical of small-scale inhomogeneities (5 – 20 mrad). It 
is also important to note that the parametric amplification 
can significantly suppress the amplified inhomogeneities from 
the previous stage due to telescoping of the beams between 
the stages when the size of the beams changes. 

5. Conclusions 

A linearised model is proposed for the first time to calculate 
the evolution of perturbations in high-power laser systems 
based on parametric amplification. The use of such a model 
has some significant advantages over direct simulation, 
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because the angular gain spectrum is obtained, which allows 
one to calculate the increase in the inhomogeneity of any size 
and profile. 

The linearised model can be used in a wide range of the 
perturbations parameters for nonlinear propagation and for 
parametric amplification, including at large B-integrals. The 
study of phase characteristics of the angular inhomogeneity 
gain spectrum in the problems of nonlinear propagation and 
parametric amplification shows that the intensity gain in 
inhomogeneities does not reflect the real growth of perturba-
tions. Even at large intensity gains (~102), the increase in the 
peak intensity, in calculations employing the complex gain, 
may be reduced by two orders of magnitude. For this reason, 
we have developed a method for analysing the peak inhomo-
geneity intensity gain, which allows us to estimate their real 
change. 

Using the technique developed, we have analysed the evo-
lution of the inhomogeneities in the developed scheme of the 
petawatt laser system based on multi-stage parametric ampli-
fication. The calculations for the nonlinear propagation and 
parametric amplification with both low and high cubic non-
linearity have made it possible to determine the influence of 
each of the effects of the inhomogeneity gain. It is established 
that in the case of small-scale inhomogeneities (divergence of 
5 – 20 mrad), in the amplified wave of greatest influence is 
birefringence, while the effect of parametric amplification is 
quite weak. On the other hand, in the transition region 
(1 – 5 mrad), the inhomogeneity gain varies significantly (due 
to suppression of inhomogeneities from the previous stage by 
parametric amplification). 

Thus, the linearised model and method of analysis allow 
us to study the development of inhomogeneities of any size 
and shape in high-power laser systems based on multi-stage 
parametric amplification. This opens up the possibility of 
developing the methods of small-scale self-focusing suppres-
sion, taking into account the parametric amplification, which 
will finally improve the parameters of high-power laser sys-
tems. 
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