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Abstract.  A numerical simulation of the interaction of a laser pulse 
with ultrathin targets has revealed a possibility of generating thin 
dense relativistic electron layers. The maximum kinetic energy of 
the electron mirror can be gained using an optimal combination of 
the target thickness and the laser pulse intensity and duration. It is 
proposed to use an additional (second) laser target, located at an 
optimal distance from the first target to cut off the laser pulse from 
the electron layer when the latter gains a maximum kinetic energy. 
This relativistic electron mirror can be used for efficient generation 
of ‘hard’ coherent radiation via counter reflection of an additional 
(probe) laser pulse from the mirror.

Keywords: laser acceleration of electrons, coherent X rays, ultra-
thin laser target, relativistic mirror.

1. Introduction

Generation of short (with a wavelength shorter than the laser 
wavelength) dense relativistic electron bunches is urgent for 
studying and diagnosing ultrafast physical processes. These 
bunches allow for both direct electron microscopy and X-ray 
microscopy (through generation of short attosecond X-ray 
pulses) investigations. Short X-ray pulses also arise when 
additional laser pulses are scattered from electron bunches. 
Thin electron layers can be formed using different methods. 
For example, nonlinear oscillations of the electron density, 
excited in a laser target in the form of a gas jet, lead to genera-
tion of a sequence of thin electron bunches [1, 2]. Thin elec-
tron layers arise when a high-intensity p-polarised laser pulse 
is reflected from a solid target [3, 4]. Finally, when an intense 
laser pulse interacts with targets few micrometers thick, a 
rather thick (several hundreds of nanometres) bunch of fast 
electrons is generated at the rear side of the target [5]. As com-
pared with these versions, an ultrathin graphene target [6] 
irradiated by a circularly polarised pulse has a number of 
advantages. First, since only one electron bunch is generated, 
its charge may be rather high (more than 1 nC). Second, one 

can easily control the bunch parameters (energy, thickness, 
number of particles) by changing the laser intensity, pulse 
duration, and graphene layer thickness.

In this study we performed numerical simulation of the 
interaction of a laser pulse with ultrathin targets to show a 
possibility of generating thin dense relativistic electron layers. 
The maximum electron energy is obtained at some optimal 
combination of the target thickness and the laser pulse inten-
sity and duration. The optimal parameters are determined by 
solving the self-consistent system of Maxwell’s equations and 
the equation of motion of a thin electron layer. To obtain 
maximally possible electron energies for thin relativistic lay-
ers, one needs an additional plasma target to cut off laser 
radiation from the plasma screen at the instant when the elec-
tron energy reaches a peak value. Scattering of a counter-
propagating probe laser beam from the relativistic mirror 
formed makes it possible to generate ‘hard’ coherent electro-
magnetic radiation with a photon energy of several keV by 
converting the energy of the initial laser pulse generating an 
electron bunch with an efficiency of ~0.1 %.

2. Theoretical model of interaction between 
a thin electron layer and laser radiation

Numerical simulation shows that, when a linear polarised 
relativistic laser pulse irradiates an ultrathin (transparent) 
target, an electron bunch in the form of a thin flat layer is 
detached from the ion core and moves for a long time (as 
compared with the pulse duration) along with the electromag-
netic wave. The detachment of a thin electron layer from a 
target was simulated using the two-dimensional PIC-code [7] 
for a thin carbon target (graphene). Figure 1 shows the spatial 
distributions of the electron density and laser field Ey at 
instants t = 17 and 33 fs after the onset of the pulse – target 
interaction. It can be seen that the first few periods of the laser 
pulse are sufficient to detach electrons from ions and to form 
a thin relativistic electron layer, propagating along with the 
laser pulse without diffusion in the longitudinal direction. 
Thus, the PIC simulation shows that an ultrathin laser target 
generates a thin one-dimensional relativistic electron layer 
moving along with the laser pulse. Note that the laser pulse 
leaves electrons behind at a distance of ~2gx

2 ctL (where gx is 
the bunch Lorentz factor and tL is the laser pulse duration), 
which has a macroscopic value on the order of few millime-
tres. 

The motion of the electron layer is not equivalent to the 
motion of an individual electron in a wave, because a high 
concentration of electrons at some field point changes signifi-
cantly the field structure at this point. Let us derive a system 
of equations taking into account this effect to describe the 
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electron layer dynamics. In the one-dimensional spatial 
approximation and in the limit of infinitely thin electron layer 
(a case where the electron density distribution is described by 
a d function), one can perform integration over the charge 
distribution in one-dimensional Lienard – Wiechert poten-
tials, express the intrinsic fields of the layer in terms of its 
mechanical variables, and then write dynamic equations con-
taining only the external field and electron layer velocities and 
coordinates. It is convenient to write the equations of motion 
of the layer in terms of the dimensionless variables P and G, 
which are integrals of motion for a single electron in an elec-
tromagnetic wave:
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potential of the incident wave; q = wt – kx; and  uy = uy /c and 
Ẋ = ux /c are the dimensionless components of the layer veloc-
ity along the polarisation direction ( y) and the wave vector 
direction (x), respectively.

In these variables the equations of motion for a thin elec-
tron layer have the form
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where t = wt and X = wx/c are, respectively, the dimensionless 
time and layer coordinate and the dimensionless parameter 
e0 = pne lf /(ncr  lL) is determined by the target thickness lf and 

the electron concentration ne in it (ncr is the critical concentra-
tion). Equations of motion (2) correspond to the equations of 
motion of an extended electron layer [8] when performing the 
transition lf ® 0 in the latter and considering the motion of 
the central part of the layer.

Let the electron layer be immobile at the initial instant:  
P(0) = 0, G (0) = 1, ay

ext(0) = 0, X(0) = 0, and t(0) = 0. Then a 
finite pulse (ay

ext(q) = a0 sin q, q Î [0; 2pN]) acts on the layer 
and switches off after N periods. We will determine the final 
energy of the layer at q = 2pN, i.e., at the switch-off instant. 
This energy (the layer Lorentz factor) is expressed in terms of 
the variables P and G :
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Note that the layer energy determined by formula (3) coin-
cides with the energy of an individual electron in a layer, 
because all electrons move identically in a thin layer.

For the case e0 = 0, where P = 0 and G = 1, formulas (3) 
yield the energy of an individual electron in a linearly polar-
ised wave [9]:
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After the end of the pulse (q = 2pN ), a single electron, accord-
ing to these formulas, retains its initial energy, and there is no 
energy exchange between the electron and the pulse. We will 
search for a solution to system (2) by increasing gradually the 
number of electrons in the layer (i.e., increasing the parameter 
e0, beginning with e0 = 0) and take values of laser parameters 
that can easily be implemented experimentally: a0 = 10 and 
N = 10. The dependence of the layer energy at the end of the 
pulse on the layer thickness is shown in Fig. 2. At e0 = 0, the 
layer energy is determined by formulas (4). While e0 increases, 
the layer is accelerated, and its energy increases in compari-
son with the energy of an individual electron (4). At e0 = 0.02, 
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Figure 1.  ( 1 ) Electron density and ( 2 ) laser field in the instants t = (a) 17 and (b) 33 fs for an ion concentration ni = 6 ´ 1022 cm–3 in the carbon 
target at the target thickness 0.6 nm, laser pulse intensity 5 ´ 1019 W cm–2 (a0 > e0), pulse duration 45 fs, laser-beam diameter 5 mm, and 10th-
power transverse super-Gaussian profile. The calculation step is 0.05 nm at 40 particles per cell.
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at the end of the pulse, the target is accelerated to energies 
greatly exceeding the individual-electron energy in a wave. 
The energy of a layer with a thickness e0 = 0.02 fluctuated 
during the pulse (see Fig. 3), and there was an instant when 
the Lorentz factor reached a value of 1600, which exceeded 
the finite value in Fig. 2. With an increase in the target thick-
ness, beginning with certain e0 values for each laser intensity I 
µ a0

2, the electron layer stops being accelerated, and its energy 
undergoes stationary oscillations. For a target with e0 = 0.03 
the pulse duration N = 10 is excessive, and the maximum 
energy can be gained using a shorter pulse. With a further 
increase in the layer thickness, stationary oscillations occur 
earlier, and the maximum layer energy decreases.

Thus, the equations of motion of the layer show that there 
is a layer thickness optimal for acceleration and that the 
instantaneous layer energy during the pulse may significantly 
exceed the energy at the pulse end. Therefore, when optimiz-
ing acceleration, it is expedient to interrupt somehow the 
pulse when the maximum energy is gained. As will be shown 
below (see Subsection 2.1), this can be done by fitting the 
pulse duration or installing a plasma mirror to cut off the 
laser field from electrons.

Note that the modulus of the exit angle (with respect to 
the x axis) of the electron layer from the laser field is described 
by the formula
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Despite the difference in the total and longitudinal Lorentz 
factors g and gx (i.e., nonzero angle j), formula (5) yields 
almost always (for relativistic electron layers) very small j 
values, because the numerator is linear in g, while the denom-
inator is quadratic in g. As a result, the electron layer moves 
virtually along the laser pulse propagation direction:
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2.1. Single target

Let us determine [using Eqns (2)] the optimal thickness of 
the electron layer for gaining a maximum energy. We will 
impose the following limitations on the laser pulse and target 
parameters: the laser radiation intensity does not exceed 2 ´ 

1021 W cm–2 (a0 = 30) (the value that has been experimentally 
obtained to date), the target thickness is obviously larger than 
0.1 nm (one-atom layer), and ne /ncr > 100 for almost any solid 
target. In this case, the lower boundary for the dimensionless 
thickness is e0 » 0.004. The results of calculations based on 
formulas (2), which are presented in Fig. 2, indicate that one 
should use small e0 values to obtain a maximum energy. To 
accelerate this target to an energy of 1 GeV, it is sufficient to 
use a pulse with a0 = 19 and duration N = 5. At a wavelength 
lL = 0.8 mm the pulse intensity is 8 ´ 1020 W cm–2. The energy 
dynamics of the electron layer accelerated by this pulse is 
shown in Fig. 3 as a function of the electromagnetic wave phase 
q. It can be seen that a local energy maximum (1116 MeV) is 
attained at q » 26. However, the energy after the end of the 
pulse (q = 10p » 31.4) is only 245 MeV. The electron energy 
peak can be aligned with the end of the pulse by fitting the 
pulse duration and varying slightly the e0 value. For example, 
for a pulse with an intensity of 2 ´ 1021 (а0 = 30) and duration 
N = 4, a target with e0 = 0.0422 has a maximum energy of 
2.06 GeV, while the energy after four periods is 1.8 GeV, i.e., 
is close to maximum. However, this tuning is very sensitive to 
the exact thickness value: if e0 = 0.005 is taken to be 0.005 
instead of 0.042, the output energy immediately drops to 306 
MeV. Thus, the peak of the electron layer energy, which is 
bound to the end of the laser pulse, has a resonant character 
and its fixation calls for exact tuning of all parameters.

Note that high electron energies at the output are obtained 
when the laser pulse is switched off sufficiently sharply. A 
consideration of a smooth (during two to four periods) switch 
off of the laser pulse yields only low output energies. For 
example, in the above example with e0 = 0.042, a replacement 
of a dramatically decreasing fragment of sinusoid 

( ) ( [0;2 4])sina aext
y 0 :!q q q p=

with the smoother envelope

( ) ( /8) ( [0;2 4])sin sina aext
y 0

2 :!q q q q p=

leads to a decrease in both the maximum possible energy and 
the output energy. The latter is only ~60 MeV instead of 
1.8 GeV. Real laser pulses, obtained without special technical 
tricks, are characterised by intensity rise and drop times on 
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Figure 2.  Layer energy at the end of the laser pulse as a function of its 
dimensionless thickness e0.
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Figure 3.  Electron layer energy e as a function of the laser pulse phase q.
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the order of few periods, and the error in determining these 
times is larger than few tenths of a period. It is also difficult to 
monitor the target thicknesses on the order of few atomic lay-
ers. Therefore, it is extremely difficult to ensure stable inten-
tional resonant tunings to the maximum layer energy after the 
end of interaction with a pulse in a real experiment. However, 
there is a possibility of preserving a local maximum value of 
the layer energy by installing a plasma screen (second target) 
at a certain point to cut off the laser field and retain the max-
imum layer energy [10, 11].

2.2. Double target

Let us now determine [based on Eqns (2)] the point of screen 
location and the laboratory time necessary to gain the maxi-
mum energy. The solution g(X) to system (2) is shown in 
Fig. 4. An energy of 1 GeV corresponds to the pulse phase 
q » 26 (see Fig. 3); in this case, the electron-layer coordinate 
is X » 5 ´ 104. It can be seen that the electron energy peak is 
extended in the real coordinate space; therefore, there is no 
need for ultraprecise positioning of the plasma screen at high 
laser intensities and large Lorentz factors of the layer. The 
dimensionless coordinate X » 5 ´ 104 corresponds to x/lL =  
7960 or x = 6.4 mm. The error in positioning the second target 
(plasma mirror) of few tenths of millimetre is sufficiently 
small. The layer exit angle (5) at the maximum energy is only 
0.1°. Thus, the plasma mirror allows one to fix a local time 
maximum for the layer energy.

Note that a target with optimal e0 for obtaining the maxi-
mum energy g of an electron in the layer is not optimal for gain-
ing the maximum energy of the entire layer, i.e., the  ge0 value. 
With an increase in e0 this value first increases, reaches a maxi-
mum at e0 » 0.1, and then begins to decrease. The energy of an 
individual electron, corresponding to the maximum energy of 
the entire layer, is 558 MeV instead of 1 GeV. Thus, the target 
that is optimal with respect to the layer energy is thicker by a fac-
tor of about two than the target optimal with respect to g, and 
the electron energy for this target is lower by a factor of about 
two. Note also that the maximum of the layer energy in e0 is suf-
ficiently smooth, while g depends more strongly on e0.

Analytical model (2) is valid for the one-dimensional case, 
ultrathin layer, and the absence of ions. Under experimental 

conditions, the electron layer is extracted from a target by a 
laser beam with a finite transverse size, as a result of which the 
model assumptions can be violated. Our two-dimensional 
simulation of the electron-layer generation (Fig. 1) and com-
parison of the layer energy with the theoretical predictions 
(Fig. 2) showed that the one-dimensional approximation ade-
quately describes the thin layer dynamics.

Let us now show that the generated electron layer passes 
through the plasma screen (that cuts off the laser field) with-
out significant energy loss and spatial-shape distortion.

3. Numerical simulation 
of the plasma-screen effect 

The passage of electron layer through the plasma screen will 
be numerically simulated under the assumption that a laser 
pulse with an intensity of 1020 W cm–2, duration 15 fs, and a 
sharp leading edge (with a laser beam diameter of 7 mm) inter-
acts with two successively located targets, composed of C 6+ 
ions with an initial concentration of 1023 cm–3. The theoretical 
approaches to formation of a sharp leading edge for high-
power pulses with durations of few periods were reported in 
[8] (see also references therein). Figures 5a and 5b show the 
initial arrangement of the targets. The first 5-nm-thick target 
is the source of electron layer and the second 1-mm target is a 
plasma screen, aimed at cutting off the laser pulse. The coor-
dinate calculation step was taken to be 1 nm for 40 particles 
per cell. Figure 5a shows the spatial distribution of fast (with 
energies above 10 MeV) electrons at the instant t = 35 fs 
(before they enter the second target). It can be seen that a 
relativistic electron layer had been generated by that time. 
The cross section of the electron bunch by a plane y = 9 mm 
showed that the electron concentration in it is supercritical 
and amounts to 0.06 of the initial value (1023 cm–3), while the 
bunch thickness is ~10 nm. The distribution function for all 
electrons in the calculation box is shown in Fig. 5c. The max-
imum energy for this distribution is determined by the for-
mula g1 = 1 + a0

2 /2 and amounts to 20 MeV at a0 = 8.5 ( g = 
38). It can be seen in Fig. 5c that the maximum electron 
energy is ~28 MeV. This difference is explained by the 
increase in the field as a result of passage through the target. 
When the laser pulse arrives at the second target (plasma 
screen), the characteristic electron energy ((g2 = (1 + a0

2 )1/2 » 
8.6) is 4.4 MeV; correspondingly, the distribution tail (Fig. 5c) 
should not change when passing through the second target, 
and the electrons with maximum energy should belong to the 
first target.

Figure 5b shows the electron density distribution (for elec-
trons with energies exceeding 15 MeV) at the instant t = 57 fs, 
when the electron layer had passed through the second target. 
It can be seen that this passage was not accompanied by loss 
in energy and number of electrons. The laser pulse is com-
pletely cut off by the layer of dense plasma 1 mm thick. We 
should note (see also Fig. 1) that the electron bunch fills 
approximately the first five periods of the laser pulse; there-
fore, the calculation results (at a given target arrangement 
geometry) are valid at pulse durations tL ³ 13 fs (the pulse is 
used only partially in this case). Longer pulses (for example, 
with   tL = 45 fs in Fig. 1) are called for at larger distances 
between the targets, when the light pulse leaves behind the 
electron bunch and the latter moves from the beginning to the 
end of the pulse. 

Thus, the plasma screen makes it possible to separate effi-
ciently a thin relativistic electron layer from a laser pulse with-
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Figure 4.  Dependence of the energy e of the electron layer on its dimen-
sionless longitudinal coordinate.
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out loss in energy and number of electrons. Note that the 
thickness of the thus formed relativistic electron layer depends 
on the time profile of the laser pulse. For a pulse with a 
smooth leading edge (for example, a Gaussian pulse), the 
electron dynamics is significantly affected by the target ioni-
sation. In the case of carbon atoms the first four levels become 
ionised when the laser intensity reaches ~5 ´ 1015 W cm–2 
(10–5 – 10–4 of the maximum value). Correspondingly, if a pulse 
has initially a sharp leading edge with this (or higher) inten-
sity, the tunnel ionisation time is ~0.03 fs. These ionisation 
times do not affect the electron bunch thickness (~10 nm). At 
the same time, if the intensity of a Gaussian pulse is initially 
lower than 1014 W cm–2 (10–6 of the maximum), its pedestal 
(see the aforementioned range of intensities) successively ion-
ises the electron shells of carbon, and ionisation lasts 5 – 10 fs. 
A spatially extended cloud of ionisation electrons is formed to 
be affected by the main part (peak) of the laser pulse.

A numerical simulation shows that the electron cloud is 
contracted to thicknesses of ~200 – 300 nm under these condi-
tions. This thickness values can be explained as follows: dur-
ing joint motion of electrons and a laser pulse (see Fig. 1) the 
electrons are concentrated near wave nodes (zero-field 
points), where the field energy density is minimum. The char-
acteristic size of the node vicinity is on the order of 1/4 wave-
length, a value determining the electron-layer thickness. Note 
that an electron bunch with a thickness smaller than the laser 
wavelength was observed at comparable parameters in exper-
imental study [12]. A PIC simulation of the interaction of a 
short laser pulse with a thin target with allowance for the ion-
isation dynamics was performed in [13, 14]; this simulation 
also yielded thin (in comparison with the laser wavelength) 
electron bunches. A one-dimensional analytical model of this 
interaction was also constructed in [13].

Let us now consider the reflection of a probe counter-
propagating laser pulse from electron mirrors of different 
thicknesses and densities and the generation of hard coherent 
electromagnetic radiation.

4. Reflection of a counterpropagating laser 
beam from a double relativistic electron mirror

The thus generated thin relativistic electron layer can be used 
as a source of coherent hard radiation, which arises as a result 
of scattering of a counterpropagating laser beam from this 
layer [15]. Simple estimates show the following: in the frame 

of reference where the layer is at rest (the rest frame), the 
frequency of the incident beam increases by a factor of 
[(1 ) /(1 )]X X /1 2

+ -o o  » 2gx and it is reflected without changing 
frequency. Subsequent recalculation of the reflected radiation 
frequency in the initial laboratory frame of reference yields 
again a factor of 2gx; hence, the photon energy in the reflected 
pulse is ћw = 4gx

2
 ћws, where ws is the photon frequency in the 

incident counterpropagating beam. To estimate the reflection 
coefficient of a relativistic thin layer, we will use the well-
known Fresnel reflection coefficient from a thin layer of 
immobile plasma 0 0/( 1)R 2 2e e= +l l l  [16]. The surface electron 
concentration ne’ lf’, which enters the expression for 0el , is inde-
pendent of the frame of reference; therefore, ne’ lf’ = ne lf.. Along 
with ne’ lf’ , the denominator of the expression for 0el  contains 
only the incident radiation frequency w'L, which is determined 
by the following relation in the rest frame:

L = [(1 ) /(1 )] (1 )X X X/
L x

1 2 2w w g+ - = +l o o o .

As a result, the reflection coefficient, expressed in terms of the 
laboratory system variables, has the following form in the rest 
frame:
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The number of scattered photons Nq (hard photons in the 
laboratory system) is expressed in terms of the number of 
incident laser photons Ns as Nq = R'Ns. Since the absolute 
numbers of photons are relativistic invariants, R' is also the 
reflection coefficient R in the number of photons (rather than 
in the pulse energy) in the laboratory system.

Note that the expression for the reflection coefficient R' 
implies the use of nonrelativistic (above 1018 W cm–2) inci-
dent-radiation intensity Is'  in the rest frame. In the opposite 
case, as was shown in our previous study [12], the reflection 
coefficient decreases by a factor of Is' /1018 W cm–2 (a detailed 
and more complex formula for , )0 I(R Lel l l was reported in 
[12]). This formula can be used for the reflection coefficient 
when the bunch thickness is smaller than the wavelength 

/(2 )s s sl l g=l  of the radiation scattered in the rest frame. This 
approximation holds true for bunches several tens of nano-
metres thick, generated by pulses with a sharp leading edge. 
For bunches 200 – 300 nm thick (generated by Gaussian 
pulses), the reflection coefficient depends (with allowance for 
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Figure 5.  (a, b) Spatial distributions of all electrons at t = 0 (bright-grey bands) and fast electrons (with energies above 10 MeV) at t = (a) 35 fs 
(before arriving at the second target) and (b) 57 fs (for the electron layer passed through the second target) and (c) electron spectrum at t = 35 fs.
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the time dynamics of ionisation) on the bunch density distri-
bution and is given by the formula

R R
m c

e n c
4

G G
e s

e
s

x
2 2 4 2

2 4 2

. p
g w

gw
= l l ,

where

( ) ( ) ( )exp i dn k n x kx xe e=l l l l ly
is the Fourier transform of the electron density of the bunch 
in its rest frame. The density distribution can be considered as 
Gaussian for estimates. The formulas used for the reflection 
coefficients imply also coherent character of reflection (this 
follows from the fact that R is proportional to ne2, i.e., the 
squared number of electrons in the layer). The condition for 
scattering coherence is given by the inequality

1n c
2

e
s x
2

3
2p

w gc m

for the thin-layer electron density at the instant of reflection. 
In the numerical simulation (the results of which are pre-
sented in Fig. 5), the electron density in the layer at t = 57 fs 
was 6 ´ 1021 cm–3, and the above inequality was fulfilled in the 
entire range of electron energies (see Fig. 5c). If the electron 
density in the layer is low for a particular reason, i.e.,

1n c
2

e
s x
2

3
1p

w gc m ,

coherent scattering will change to incoherent Thompson scat-
tering from individual electrons. In this case, it is obvious that 
Nq = Ns Ne sT /S = Ns sTne lf, where Ne = ne lf S; S is the scatter-
ing spot area, and sT = 6.6 ´ 10–25 cm2 is the Thompson scat-
tering cross section. The reflection coefficient in the case of 
incoherent scattering is RT = sTne lf, and its absolute values 
are smaller than those for coherent scattering. 

An important characteristic of a hard-radiation source is 
its brightness B (the number of photons emitted from a unit 
area into a unit solid angle per unit time). At a laser pulse 
repetition rate f ~ 10 Hz (which is typical of the lasers under 
consideration) the average hard-radiation flux (number of 
photons per unit time) is F = fRNs. The average radiation 
brightness B in the layer propagation direction is related to 
the flux F by the expression [17]
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f N R10
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x x

6 2 6 2

p p
g g

F= =
- -

,	 (6)

where B is in photons s–1 mm–2 mrad–2 per a spectral range 
with a width of 0.1% of the total spectrum width. In some 
studies [8] the peak brightness Bmax during the scattering time 
ts /(4gx

2) (the number of pulse periods is retained upon scatter-
ing) of a single laser pulse of duration ts was considered 
instead of the average brightness (6). The peak brightness 
uses another definition for the hard-photon flux (Fmax = 
4gx

2RNs /ts) and exceeds the average brightness (6) by a factor 
of 4gx

2( fts)–1. Below we present estimated values of the aver-
age brightness of a hard-radiation source, obtained by numer-
ical simulation using formula (6).

Simple estimates of the reflection coefficient of a relativis-
tic electron layer neglect some important physical effects aris-
ing during scattering, for example, deceleration of electrons 
by the counterpropagating beam. At low intensities and suf-
ficiently thick targets not all electrons are extracted from the 
target by the laser pulse, and the parameter e0, which is pro-
portional to the surface electron density in the moving elec-

tron bunch, depends on the laser intensity and the initial tar-
get thickness lf. To calculate more strictly the energy of 
reflected photon and the reflection coefficient, we performed 
one-dimensional LPIC simulation of the reflection of a probe 
laser pulse (1018 W cm–2, 16 fs) by a thin electron layer 
extracted from a 0.6-nm-thick C 6+ target irradiated with a 
16-fs laser pulse having an intensity of 5 ´  1019 W cm–2. When 
the electron layer moves in the summary field of two counter-
propagating laser pulses of different amplitudes, the electron 
density is intensively diffused. To determine the reflection 
coefficient R and the frequency W (in units of initial frequency 
ws) of reflected radiation and the dependences of these param-
eters on the initial-target thickness and the main-pulse inten-
sity, we performed similar calculations for intensities of 5 ´ 
1018, 1020, and 5 ´ 1020 W cm–2 and for target thicknesses of 
0.4, 1, 5, and 10 nm. The counterpropagating pulse had a con-
stant intensity: 1018 W cm–2.

The results of these calculations are shown in Fig. 6 in the 
form of dependences R(I, lf) and W (I, lf). These dependences 
indicate that thin (less than 1 nm) laser targets and high (more 
than 1020 W cm–2) intensities are optimal for generating hard 
(W > 100) photons. The reflection coefficient for the probe 
pulse is small in this case: few percent. Knowledge of the 
reflection coefficient R allows one to find the conversion coef-
ficient c of the energy eL of the main laser pulse into hard 
radiation energy: c = WRes /eL, where eS is the energy of the 
scattered (falling on the moving electron layer) probe pulse. 
The opposite behaviour of the dependences of the reflection 
coefficient and the hard-photon energy on the laser intensity 
and target thickness in Fig. 6 indicates existence of optimal 
values of thickness and intensity, at which the conversion fac-
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Figure 6.  Dependence of the frequency of reflected hard radiation (sol-
id lines) and reflection coefficient (dashed lines ) on the (a) intensity I of 
the main laser pulse at a target thickness of 0.6 nm and (b) the initial 
target thickness at a laser intensity of 5 ´ 1019 W cm–2.
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tor c reaches a maximum. Figure 7 shows a calculated (by 
means of LPIC simulation) dependence of the conversion fac-
tor on the laser intensity and theoretical estimates of c, made 
on the assumption that all target electrons, independent of the 
target thickness and laser intensity, are extracted by the laser 
pulse (e0 µ Zni lf, where Z is the ionisation multiplicity and ni 
is the ion concentration).

Comparison of this estimate with the results of LPIC sim-
ulation shows that the approximation considering all elec-
trons as detached from the target is correct at high intensities. 
With a decrease in intensity, the conversion factor, calculated 
on the assumption that e0 µ Zni lf, increases to the intensity 
corresponding to the cutoff frequency W and then becomes 
zero (at low intensities W  ® 1 and it is incorrect to speak 
about conversion of optical photons into hard ones). The 
LPIC simulation data demonstrate that the conversion effi-
ciency decreases at low intensities not only because of the fre-
quency cutoff but also due to the decrease in the surface elec-
tron density in the moving bunch. The calculation data in 
Figs 6 and 7 indicate that optimum conversion is obtained at 
relatively low energies of hard photons: 20 – 40 eV (W » 
10 – 20); therefore, photons with high energies (exceeding 1 
keV) are generated at a nonoptimal conversion factor in our 
case. The calculations for an intensity of 5 ´ 1019 W cm–2 and 
a 0.6-nm-thick carbon target yielded a conversion factor  c » 
0.1 %. This value exceeds, for example, the Ka-conversion fac-
tor in the same range of photon energies. Let us estimate the 
source brightness from formula (6) using the data in Fig. 6. 
The number of photons per unit area, Ns /S, at tL =16 fs, I = 
1018 W cm–2, and lL = 0.8 mm is 5.3 ´ 1020 photons mm–2. The 
reflection coefficient R » 0.05 and the frequency W = 4gx

2 » 
40. At a pulse repetition frequency f = 10 Hz the average 
brightness B = 1.3 ´ 1015 photons s–1 mm–2 mrad–2. This value 
is much larger than the brightness of modern X-ray tubes (108 
photons s–1 mm–2 mrad–2) and laser-electron generators based 
on accelerators (1012 photons s–1 mm–2 mrad–2) but smaller 
than the average brightness of modern synchrotrons (1021 
photons s–1 mm–2 mrad–2) in the same range of hard-photon 
energies. The reason for the loss in brightness in comparison 
with synchrotron sources is the small on – off time ratio of 
generated pulses. The peak brightness of the source reaches 
3 ´ 1029 photons s–1 mm–2 mrad–2, which is eight orders of 
magnitude higher than the synchrotron brightness. To 
increase the average brightness one can increase the interac-
tion frequency between the probe pulse and the bunch, for 

example, by implementing repeated passes through the bunch 
or forming many bunches using an emitter composed of ultra-
thin targets. Since the reflection coefficient of an individual 
layer is ~10–2, up to 100 layers can be used. The average 
brightness of this scheme is two orders of magnitude higher.

The above numerical estimates and simulation results are 
valid for a thin bunch (with a thickness smaller than the wave-
length of scattered radiation in the rest frame) generated by a 
laser pulse with a sharp leading edge. For a 300-nm-thick 
bunch generated by a Gaussian pulse, with regard to ionisa-
tion, the average brightness decreases to 1011 photons s–1 
mm–2 mrad–2 due to the reduction in the reflection coefficient 
(the electron bunch becomes transparent). The conversion 
factor c also decreases by three orders of magnitude. In this 
case, to preserve high values of brightness and conversion fac-
tor, it is expedient to reflect long-wavelength laser radiation 
(for example, CO2 laser radiation with a wavelength of 
10.6 mm) from a bunch, for which the thin-layer approxima-
tion and reflection coefficient values at a level of few percent 
are retained at scattering. Here, the source brightness reaches 
5 ´ 1015 photons s–1 mm–2 mrad–2 (due to the conservation of 
the reflection coefficient and the increase in the number of 
photons with lower energies) and the conversion factor 
remains at a level of several tenths of percent (0.3 %).

Thus, the interaction of an intense relativistic laser pulse 
with an ultrathin target leads to generation of a thin dense 
relativistic electron layer. Using a plasma screen, one can fix a 
maximum value of the layer energy and use this layer to scat-
ter a probe laser pulse and generate hard coherent electro-
magnetic radiation. The peak brightness of a source based on 
this scheme exceeds the brightness of existing hard-radiation 
sources by several orders of magnitude.

5. Conclusions

(1) To obtain maximum energy of thin electron layers, the 
optimal dimensionless thickness e0 of laser target should be 
much smaller than unity.

(2) The optimal target thickness e0 depends not only on 
the pulse intensity but also on the pulse duration. The optimal 
thicknesses for a pulse with a duration of 3 to 10 field periods 
are e0 ~ 0.06 – 0.02; the one-dimensional approximation 
remains valid in this case. 

(3) At the end of the pulse the electron energy in the thin 
layer is not recovered to the initial value in the optimal range 
of thicknesses, in contrast to the energy of an individual elec-
tron in a plane electromagnetic wave. At the same time, the 
final value of the layer energy can be below the maximum 
value obtained during the laser pulse. Using the second target 
(plasma screen), one can fix the maximum layer energy. The 
spatial region where the layer energy reaches a maximum is 
rather extended; therefore, it is not necessary to position 
screen with a high accuracy; an error of several tenths of a 
millimetre is quite acceptable.

(4) The electron-layer thickness depends on the steepness 
of the laser pulse leading edge. Pulses with a sharp leading 
edge generate electron layers several tens of nanometres thick, 
even with allowance for the ionisation dynamics of target 
atoms. Gaussian pulses form (with allowance for the ionisa-
tion times) layers several hundreds of nanometres thick.

(5) Scattering of a counterpropagating probe laser beam 
from a relativistic mirror formed by the main beam makes it 
possible to generate hard coherent electromagnetic radiation 
with photon energies of several hundreds of electronvolts and 
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Figure 7.  Dependence of the conversion coefficient of the main pulse 
energy into the energy of hard quanta on the laser intensity at a target 
thickness of 0.6 nm. Empty squares are the date of LPIC calculations, 
and dark squares are the estimates by the theoretical model.
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an efficiency of ~0.1 % of the energy of the initial laser pulse 
generating the electron bunch.

(6) The peak brightness of the hard-radiation source based 
on the double-target scheme, exceeds the brightness of all 
existing hard-radiation sources by several orders of magni-
tude and its average brightness is higher than the brightness 
of X-ray tubes and laser-electron generators but lower than 
the brightness of synchrotron sources.
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