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Abstract.  The concept of constructing precision laser goniometer 
systems, based on integrating a ring laser and an optical angle sensor 
with the holographic principle of angular scale recording is consid-
ered. The concept implies the application of the cross-calibration 
procedure, aimed at determination of systematic components of the 
errors of angle sensors, used in the system. The results of the pre-
sented system studies demonstrate the error of angular measure-
ments amounting to ~0.01''. The results of implementing the pro-
posed concept in the creation of a standard system of the plane 
angle unit of rigid rotation and the measuring and computing com-
plex for automated control of digital angle transducers with high 
digit capacity are briefly presented. 

Keywords: ring laser, angle measurements, cross-calibration, angle 
transducer, optical angle sensor. 

1. Introduction

The analysis of development of precision systems for angular 
measurements shows that, alongside with the accuracy of the 
measurements, the resolving power becomes a characteristic 
of primary importance [1]. While at the previous stage of 
development in a majority of angle-reproduction systems use 
was made of rotary tables with two autocollimators and a 
polyhedral prism, or a Moore table with an autocollimator 
and a polyhedral prism, at present one can observe conver-
sion to tables with optical angle sensors (OASs) with typical 
division value of the order of 30'' (without interpolation of the 
output signal phase). Application of the interpolation tech-
nique reduces the division value to a few hundredths of arc 
second. In many cases (e.g., in the angular comparator, devel-
oped at Physikalisch-Technische Bundesanstalt (PTB), 
Braunschweig, Germany [2]) they use OASs, specially designed 
for these systems and having the division value of the order 
of  a few arc seconds. Designing OAS-based systems allows 
complete automation of the angle reproduction process and 
achievement of the setup resolving power at the level of hun-
dredths and thousandths of arc second by using the interpola-
tion of the OAS output signal.

The systems of such type essentially better satisfy the 
requirements of unifying the measurement process, since 
high-accuracy and high-sensitivity OASs find more and more 
applications in industry and enginery. It is important that a 
number of angle transducers operate both in static regime (for 
measuring the constant angle values) and in dynamic regime 
(for measuring the time-dependent angle values), and some of 
the transducers are intended for operation in the dynamic 
regime only. This gives rise to the necessity of extending the 
functional capabilities of measuring systems, namely, they 
should provide angle measurements both in static and dynamic 
regimes. 

The use of the dynamic laser goniometric method [3, 4] 
allows both the calibration of plane-angle measuring instru-
ments, operating in the dynamic regime, and highly produc-
tive, economically efficient calibration of some instruments 
for constant plane angle measurements.

The principle of laser goniometer operation is based on the 
use of a ring laser (RL), rotating with a quasi-constant velocity 
and playing the role of an etalon angular limb with extremely 
high resolution and uniformity of the sequence of scale marks. 
The use of this method provides the most favourable condi-
tions for attaining extreme accuracy characteristics. The mea-
surement technologies, used in the modern laser dynamic 
goniometry, allow estimation of its potential accuracy, deter-
mined by quantum fluctuations of the RL output signal**, at 
the level of a few thousandths of arc second [4].

The results of the studies have shown that the major sources 
of random errors are quantum and broadband technical fluc-
tuations of the RL output signal. Usually, the maximal value of 
the dispersion of these errors does not exceed (0.0025'' )2, i.e., 
the root-mean-square deviation s < 0.05''. It is worth noting 
that the presented value corresponds to the error of a single 
measurement, i.e., the measurement, performed during one 
revolution of the base, the period of which usually falls within 
the range from 1 to 3 s. Further reduction of the random error 
in the laser goniometer is possible at the expense of acquisition 
and statistical processing of large arrays of measurement 
results, which is easily implemented in the dynamic regime. 
Hence, the random measurement error amounts to a few 
thousandths of arc second, provided that the measurement 
data array is large enough.

The systematic error of the angle measurement, using the 
RL calibration within the angle 2p, is caused, first of all, by 
the periodic variation of the RL parameters under the action 
of a certain factor. One of the most essential sources of the 
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RL systematic error is the action of a permanent external 
magnetic field (e.g., the magnetic field of the Earth). The RL 
possesses a certain axis of sensitivity to the magnetic field, 
lying in its cavity plane [5]. In the course of rotation, the sen-
sitivity axis changes its orientation with respect to the force 
lines of the magnetic field, which leads to a systematic error at 
the first harmonic (provided that the magnetic field is uni-
form) of the rotation frequency. This component of the error 
can be taken into account and compensated algorithmically. 

Another source of the RL systematic error is the instability 
of its angular velocity. In this case equal angular intervals are 
passed during unequal time intervals. Since the RL is an inertial 
sensor, i.e., it is sensitive to angular displacements with respect 
to an inertial frame, the rotation of the Earth creates an addi-
tive contribution to the frequency of its output signal. Being 
integrated over time intervals that are larger or smaller due 
to unstable rotation velocity, this contribution produces sys-
tematic distortions of the angular scale of the RL. The use 
of  the algorithms of the phase-temporal method [6] allows 
practical elimination of the systematic RL error, caused by 
the instability of rotation velocity and the shift of zero of the 
output RL characteristic. 

2. The concept of constructing precision laser 
goniometer systems

The obtained results demonstrate that the dynamic gonio
meter based on the RL is a measuring system of extremely 
high accuracy. The RL implements the angular scale based on 
the harmonic structure of the electromagnetic field in the 
closed optical resonator. Due to this fact, the RL as an angle 
transducer is characterised by super-high resolution and 
unprecedented scale uniformity. At the same time, the scale 
factor of the RL and, therefore, the division value of its angular 
scale are subject to some temporal variations, which makes it 
necessary to perform current calibration of the RL within the 
angle 2p or other angles, known in advance. These specific 
features of the RL determine the reasonability of its integra-
tion with angle transducers on the base of essentially different 
physical effects, when constructing high-accuracy laser gonio-
metric systems.

As a transducer of such kind one can use OASs, providing 
essentially less uniform, but, nevertheless, temporarily more 
stable scale. OASs find wide applications in precise mechanical 
engineering, measurement technology, and metrology. Modern 
technologies allow manufacturing of angular scales with non-
uniformity of the order of a fraction of arc second. The appli-
cation of interpolators of the signal, reducing the discreteness 
of readings, and the use of the methods, compensating the 
OAS systematic error, allow creation of OAS-based angle-
measuring systems with the error of the order of hundredths 
of arc second. In this case, specially designed angular scales 
having large diameter and, therefore, large number of gradu-
ation marks, are used. Thus, the angular scale, used in the 
angular comparator in PTB, has the diameter 40 cm and the 

number of graduation marks 262144 [2]. Among OASs a spe-
cial place is occupied by the devices with the angular scale, 
produced on the base of holography principles [7]. Such scales 
are characterised by high uniformity, small dimensions and 
high resolution. Its use allowed creation of a number of high-
accuracy angle-measuring systems.

In Table 1 the basic characteristics of RLs and OASs are 
presented for comparison. Different character of the random 
component of the error and the spectral composition of sys-
tematic errors, as well as different physical principles of the 
angle scale formation, give rise to new possibilities for com-
bining RLs and OASs and creating high-accuracy angle-mea-
suring systems on their base. 

Besides the advantages, mentioned above, the presence 
of  two angle transducers in one measuring system allows 
implementation of the cross-calibration procedure, providing 
determination of systematic components of the errors from 
both transducers. The cross-calibration procedure [8] consists 
in performing step-by-step calibration of one transducer using 
the other one (usually this is a transducer with a higher resolv-
ing power). After each step of the calibration procedure, the 
frame (stator) of one transducer is rotated through the angle 
360°/n with respect to the other one, where n is the number of 
the cross-calibration steps. As a result, one gets an n ́  n data 
array, the processing of which allows obtaining systematic 
components of the errors of both transducers. The number of 
revolutions n (or the minimal angle of rotation 360°/n) is an 
important factor in performing the cross-calibration proce-
dure. The maximal-order harmonic of the systematic error, 
which can be determined by means of cross-calibration, is the 
harmonic with the number n/2.

At large n the classical method of cross-calibration becomes 
very laborious. At present the methods for analysing the sys-
tematic error in angle sensors using the Fourier transform 
are developed [9 – 12]. All these methods imply exploitation of 
two or more similar sensors, except the method of self-cali-
bration [13, 14], used for error analysis in the PTB angular 
comparator. However, the self-calibration method requires 
mounting multiple recording heads, distributed around the 
circle with angle separation, multiple of 2n. Due to the spe-
cific features of the OAS angular scale, the integration of 
RLs with OASs offers the possibility of using the modified 
method of cross-calibration [15].

Using these considerations, we developed the concept of 
constructing a high-accuracy laser goniometer system, imply-
ing the use of the following measuring angle transducers:

1. The single-block ring He-Ne laser GL-1 having the 
perimeter 0.4 m, which corresponds to the scale factor ~106 
or the resolution 1.3'' pulse–1. 

2. An OAS, represented by the holographic photoelectric 
angle transducer PKG-105M. Its scale is produced using 
holographic methods and contains 324 000 scale labels per 
complete revolution (the resolution of 4'' pulse–1).

3. The polyhedral prism (PP) in combination with the optical 
null indicator (NI).

Table  1.  Basic characteristics of ring lasers and OASs.

Device
Characteristic

Uniformity of angular scale Random error Systematic error

RL Super-high Depends on the velocity of  
rotation and the measured angle

Low-frequency components dominate in the spectrum  
(no special requirements to the rotation axis mounting)

OAS Moderately high Independent of the rotation 
velocity and the angle measured

Presence of high-order harmonics in the spectrum  
(high requirements to the rotation axis mounting)



	 M.N. Burnashev, P.A. Pavlov, Yu.V. Filatov132

The block diagram of the precision laser goniometer sys-
tem is presented in Fig. 1. The RL, the OAS rotor and the 
polyhedral prism are mounted on the spindle of the aerostatic 
bearing. The OAS stator and the null indicator, optically con-
nected with the polyhedral prism, are mounted on the immov-
able housing of the system. The drive implements the rotation 
of the spindle with quasi-constant velocity. The output sig-
nals of the RL, the OAS and the null indicator are passed 
through appropriate signal shapers, SRL, SOAS, and SNI, 
and arrive at the interface I that carries out the preliminary 
data processing and transfer to the personal computer PC.

In the present scheme the main angle transducers are the 
RL and the OAS. The polyhedral prism and the null indicator 
perform the secondary function and are intended for transfer-
ring the angle unit to the reference devices.

3. Study of systematic error components

As known [6], the angle, measured with the RL, is given by 
the expression
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where Nj and N2p are the numbers of periods (pulses) of the 
RL output signal in the measurement interval of the angle j 
and in the interval 2p, respectively; T is the revolution period; 
F' is the RL generalised null shift; ti is the time of the angle 
measurement; i is the number of the measured angle; k is the 
number of the RL angular position with respect to the spindle; 
and j is the revolution number.

The result of measuring the ith angle in the system under 
consideration is calculated as the value of the measurement 
results, averaged over 16 revolutions of the shaft, when the 
RL is in one of the positions, fixed with respect to the shaft 
(k = const), after subtraction of the RL systematic error si
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The measuring scheme, presented in Fig. 1, was experi-
mentally studied using a test mock-up of the precision laser 
goniometer system.

Figure 2 shows the results of OAS calibration (the first 
part of the cross-calibration procedure), implemented by means 
of the RL. In the process of calibration the output signal from 
the OAS (342 000 scale labels per revolution) was passed 

through the counting frequency divider with the division coef-
ficient 900. The division resulted in the reduction of the 
number of output pulses to 360 per a complete revolution, 
i.e., the nominal angle between the pulses after the divider 
was 1°. The data were obtained for different positions of the 
RL with respect to the rotor of the measuring setup, i.e., the 
operations, necessary for implementation of cross-calibration, 
were carried out. The angles of sequential turns of the RL with 
respect to the rotor amounted to 60° (six different positions of 
the RL).

Figure 2 presents the results for three (of six) angles of the 
RL turn, namely, 0, 120°, and 240°. As mentioned above, the 
appropriate processing of data allows determination of sys-
tematic errors, introduced by the RL and OAS. The OAS sys-
tematic error di

OE is found by simple averaging of the six 
obtained dependences di

OE(j) and subtracting the nominal 
values of the angles ji

nom:
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The result of such averaging is presented in Fig. 3. It is 
seen that the systematic error of the OAS is concentrated in 
the second harmonic of the rotation frequency, and the ampli-
tude of this harmonic amounts to ~0.12''.

The RL systematic error was determined by subtracting 
the averaged systematic error of the OAS from the systematic 
errors of the OAS for each position of the RL. Each of the six 
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Figure 1.  Functional diagram of the precision laser goniometer system.
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Figure 2.  The results of OAS calibration at different angular positions 
of the RL with respect to the rotor of the system.
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Figure 3.  Systematic OAS error.
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curves, obtained after such subtraction, represents the sys-
tematic error of the RL and has its own phase, determined by 
the position of the RL with respect to the rotor of the measur-
ing setup in the current measurement. Averaging over all six 
curves was performed after the appropriate phase shift of each 
curve. This procedure is described by the expression
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The result of such data processing is presented in Fig. 4. 
It  is seen, that the RL systematic error with the amplitude 
~0.016'' is concentrated in the first harmonic of the rotation 
frequency.

The dependence of the first harmonic amplitude of the 
RL systematic error upon the velocity of rotation is presented 
in Fig. 5. It is seen that the amplitude linearly grows with 
increasing the revolution time. The proportionality coefficient 
is equal to 0.0064 ± 0.0003'' s–1. The observed dependence is 
determined by the influence of the external magnetic field on 
the RL particular type GL-1 [5]. In the stationary condi-

tions,  under which the precision laser goniometer system 
should operate, the compensation of the RL systematic error 
is possible. 

Thus, it is possible to conclude, that under the conditions 
of sufficient magnetic insulation of the setup the residual sys-
tematic error of the angle measurement does not exceed 0.01''.

4. Study of the random error of angle  
measurements

4.1. Statistical distribution of the results of measurements

Consider the determination of the random component of the 
error. The random error is defined by the value of the sample 
root mean square deviation
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and the fractile of distribution of the sample mean of the mea-
surement results.

To estimate the confidence intervals, in which the results 
of the angle measurements lie, one should know the distribu-
tion function of their random errors, as well as the confidence 
intervals, in which the systematic errors lie. The solution of 
this problem may be found by means of statistical and corre-
lation analysis of the conditions, under which the measure-
ments are performed.

To carry out the statistical analysis, let us write the for-
mula for the measured angle j in the form:
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2
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The readout of the number N of the output signal periods by 
the counter begins at the moment t = 0 of starting the mea-
surement, at the moment t = tj we get the value Nj , and at 
the moment t = T of completing the rotor revolution we get 
the value N2p . Fixing of these time moments is locked to the 
fronts of the OAS output signal. 

The information about the angular position of the OAS 
rotor and the RL base is contained in the current values of the 
phases of output signals from the angle sensors, included in 
the measuring system. Therefore, the main sources of a ran-
dom error are random processes, describing phase noises of 
the signals, output from the RL and OAS and having differ-
ent statistical characteristics.

The fluctuations of the RL output signal phase are caused, 
first, by random fluctuations of the signal frequency (which 
may be presented as a stationary broad-band random process), 
due to spontaneous radiation of the active medium. Since 
during a complete revolution of the platform a large enough 
number of spontaneous emission events occurs, each of them 
equally affecting the number of periods of the RL output sig-
nal, in correspondence with the central limit theorem of the 
probability theory [16] the law of distribution of the number of 
periods of this signal may be considered normal. The Wiener 
process is usually chosen as a model of the random process, 
describing the random deviations of the number of periods of 
the RL output signal. The numbers of periods of the output 
signal Nj and N2p in the intervals [0, tj] and [tj, T ] are not cor-
related. The random error of formation of the measured angle 
boundary is caused by the shot noises of the photodetector 
and the thermal noises of the OAS output signal formation 
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Figure 4.  Systematic error of RL.
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tematic error on the velocity of RL rotation.
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tract. The white Gaussian noise may be used as a model of 
this error.

Based on these considerations, the 2D distribution f2(Nj, N2p) 
of the number of periods Nj and N2p may be assumed normal 
and presented in the form
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where a1 and a2 are the mean values of Nj and N2p , respec-
tively; s1 and s2 are their root mean square deviations; and r 
is the correlation coefficient for Nj and N2p .

Consider the distribution function of the result of a single 
angle measurement f(j). The analysis of Eqn (1) shows that 
f(j) can be expressed in terms of the 2D distribution function 
f2(Nj, N2p ) in a following way:
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where s = j/2p = Nj /N2p (the result of measurement expressed 
in complete revolutions of the shaft);

1 2
;z

r r s s

a ra a s ra s

1 2
2

1
2

1 2 2
2 2

2 1
2

1 1 2 1 2
2

2 1 2

s s s s s s

s s s s s s
=

- - +

- + -

^ ^h h

F0 (x) being the Laplace function. For the case of the shaft 
uniform rotation in the approximation of white Gaussian 
noise for the fluctuations of the RL output signal frequency, 
the distribution parameters are expressed as [4]:
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where Rdr is the coefficient of random drift of the RL; K = 
N2p /2p is the scale factor of the RL; DOE is the random vari-
ance of the OAS error for one limit of the angular interval.

Practically we deal with the limit case of small fluctuations, 
i.e., s1, s2 << Nj, N2p . In this case from the initial equation (1) 
we get the relation
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The random variable ds is presented in the form of algebraic sum 
of two random quantities dNj / Nj  and dN2p / N2p , distributed 
according to the normal law. From here it follows that the 
quantity s is also distributed according to the normal law:
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where the variance of the measured angle is
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Based on the results of the analysis, one can draw a conclu-
sion that in order to estimate the mean values of measurement 
results and to construct the appropriate confidence intervals it 
is necessary to use the Student distribution and c2 distribution. 

It is worth noting that the distributions over the unlimited 
rotation angle, presented above, are a mathematical abstrac-
tion, since in the laser goniometer the application of the self-
calibration algorithm restricts the operation range of the mea-
surements to the values within the interval [0, 2p]. Commonly, 
the calibration of the digital angle transducers is also performed 
within the same range of angles. In these cases the so called 
wrapped distributions [17] are used.

In the case of small fluctuations the distribution is reduced 
to the wrapped normal one, which can be calculated using 
z-functions:

f (j) = (2p)–1 z3 ,j j r-^ h,

where r = exp(–Dj), and the values of z3 are tabulated in [18]. 
In the limit case Dj /j << 1 it is still possible to use the stan-
dard normal distribution.

The parametric dependence of the probability density dis-
tribution on the measured angle is presented in Fig. 6. When the 
value of the measured angle approaches the edges of the self-
calibration interval (0, 2p) the variance decreases in corre-
spondence with Eqn (8) and the maximal probability density 
increases. At the edges of the self-calibration interval the prob-
ability density distribution degenerates into a delta-function.

0

5´106

360

180
0.10

0.050

P
ro

b
ab

ili
ty

 d
en

si
ty

Angle deviation/arc sec.Measured angle/deg

107

–0.10
–0.05

Figure 6.  Parametric dependence of the probability density distribution 
on the measured angle.



135Development of precision laser goniometer systems

The sample distributions, obtained using the measuring 
setup in the dynamic regime, are presented in Fig. 7 (the his-
togram and the approximation by a Gaussian curve). Figure 8 
shows the histogram of the distribution of RL scale factors, 
obtained using the interference null indicator, which charac-
terises the RL as an angle sensor with the extremely uniform 
scale. 

4.2. The technique of separate estimation of random errors, 
introduced by the rind laser and the OAS

In the process of measurements the data that serve for esti-
mating the result are integer values, read from the counters of 
complete periods of the RL output signal. The value and the 
statistical properties of the random error of measuring a certain 
angle j are determined by the measurement time tj, the statis-
tical characteristics of the RL output signal frequency and phase, 
and the statistical characteristics of the angle sensor signal.

To separate the components of the random error, intro-
duced by the RL and the OAS, the parametric dependence (8) 
is used. The typical plot of this dependence is presented in 
Fig. 9. 

Let us write the expression (8) in the form of decomposi-
tion in terms of two functions, F1(s) and F2(s):

Dj(s) = b1F1(s) + b2F1(s),	 (9)

where F1(s) = s (1 – s) and F2(s) = s2 – s + 1 are two indepen-
dent, but not orthogonal polynomials of the same power, 

which will represent two independent variables in the linear 
regression procedure;  b1 = R

2
drT and b2 = 2DOE are the linear 

regression coefficients (the time dependence of DOE is not 
considered here); s = j/2p.

As a result of calculating the dependence of variance upon 
the rotation angle for the values si, we get the sample Dji (i = 
1, …, m, where m is the sample volume). According to [19], we 
assume Dji = Dj(si ) + ni º yi, where the random variable ni 
is centred and obeys a normal distribution. The equations of 
linear regression of the random variables yi (i.e., Dji ) with 
respect to independent variables z1i = F1(si ) and z2i = F2(si ) in 
vector form are presented as

Myi = b tZi ,

where

Zi = 
z
z
i

i

1

2
e o 

is the vector of independent variables;

b = 1

2

b
b

e o 

is the vector of regression coefficients; M is the operator of 
calculating the mathematical expectation of a random variable; 
the superscript t denotes the transpose of a matrix or a vector.

As a result of performing the regression, we get the estimate

b = 1

2

b
b

e o

of the vector b, which is a solution of the normal equations 
Ab = c, where

A Z Z t
i i

i

m

1

=
=

/
is the non-degenerate matrix of the system of normal equa-
tions and

.yc Zi i
i

m

1

=
=

/

The vector b = A–1c minimises the sum

( )y b Zti i
i

m
2

1

-
=
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Figure 7.  Error histogram of the angular measurements and its approxi
mation by a Gaussian curve. 
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on the set of all p-dimensional vectors bu  and represents an 
estimate within the least-squares procedure. For independent 
and normally distributed variables y1, ..., ym the estimate b is 
distributed according to the multidimensional normal law 
F(b, s2A–1), and the estimate of (m – p) 2su /s2 has the distribu-
tion c2 with the number of degrees of freedom m – p, where 
p = 2 is the number of regression coefficients. The unbiased 
estimate su  of the root-mean-square error s can be found from 
the relation

( ) ( ) .m y b Z2 t
i i

i

m
2 2

1

s- = -
=

u /

Based on the mentioned distribution laws, one can obtain 
the confidence intervals for individual components of the vec-
tor b. Thus, if we are interested in the component bl (l = 1, 2), 
then the quantity (bl – bl )( allsu )–1 has a t-distribution with 
m – p degrees of freedom. Specifying the value of the confidence 
probability P, we arrive, according to [19, 20], at the following 
expression of the confidence interval for the regression coef-
ficient bl :

bl – allsu t(1 – P)/2 £ bl £ bl + allsu t(1 – P)/2 ,	 (10)

where a ll = (A–1)ll are the diagonal elements of the normalised 
correlation matrix of the estimate vector b.

Let us obtain the confidence interval bounds for the regres-
sion coefficients b1 and b2, as well as for the root-mean-square 
random error of the OAS, sOE = 2b , and the coefficient of 
random drift of the RL, Rdr = /T1b :

b a t( )/
/

P2
22

1 2
1 2

s- -u8 B  £ sOE £ b a t( )/
/

P2
22

1 2
1 2

s+ -u8 B ,	
(11)

T
b a t1

( )/
/

P2
11

1 2
1 2

s- -u8 B  £ Rdr £  T
b a t1

( )/
/

P2
11

1 2
1 2

s+ -u8 B ,

where
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1 2
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2
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Using the data, presented in Fig. 9 for P = 0.95 (t0.025 = 
1.96), we get, according to (10, (11), the numerical estimates 
for root-mean-square random error of the OAS, sOE, and the 
random drift coefficient of the RL, Rdr :

0.034'' £ sOE £ 0.036'',

0.042'' / c  £ Rdr £ 0.044'' / c .

Based on the results of the performed analysis, one can 
estimate the unrecorded systematic error q and the random 
error of the angle measurement. As an estimate of one of the 
components of unrecorded systematic error we take the half-
width of the confidence interval for the estimation of the sys-
tematic OAS error, which is determined by the maximal value 
of the variance of the random measurement error (8) with the 
number of revolutions mrev = 16 and the number of repeated 
measurements npos = 6 at different positions of the RL: qOE = 

( ) /( )D m n t .rev pos 0 025pj  = 0.01''. The systematic error compo-

nent, caused by the influence of the Earth’s magnetic field on 
the RL, is estimated as qRL = 0.016'' ± 0.001''.

As an estimate of the root-mean-square random error we 
assume s = ( ) /D mrevpj  = 0.013'' ± 0.001'' at T = 2 s, which 
corresponds to the maximal random error of the RL.

5. Implementation of precision laser  
goniometer schemes

The considered concept of constructing high-accuracy laser 
goniometer systems was implemented in a number of setups, 
among which one should mention the standard system of the 
plane angle unit for rigid rotations and the measuring and 
computing complex for automated control of high-capacity dig-
ital angle transducers.

5.1. The standard system of the plane angle unit  
for rigid rotations

The system enters the State Primary Standard GET 94-01, 
intended for reproduction, storage and transfer of the unit of 
rigid body linear acceleration and the unit of plane angle for 
rigid angular motion. The standard comprises a number of 
standard systems, including the standard rotation system 
NTS-3, implementing the method of turning a rotary plat-
form in the gravitational field of the Earth and the gonio
metric method. The rotational system NTS-3 reproduces the 
unit of linear acceleration in the frequency range 0.05 – 30 Hz 
and the amplitude range 10–4 – 10 m s–2 and the unit of plane 
angle for the angular displacement of a rigid body within the 
range 0.2'' – 360°.

Figure 10 presents a simplified block diagram of the NTS-3 
setup. The system operates in two regimes, the regime of 
reproducing variable low-frequency accelerations and the 
regime of reproducing variable plane angles.

The reproduction of an angle at the base velocity (0.5 revolu-
tions per second) was implemented using the rotating RL, in 
which the phase of the output signal is proportional to the 
angle of rotation. The use of a holographic angle sensor in the 
setup allows implementation of angle transfer in the extended 
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range of rotation velocities and determination of errors, intro-
duced by both sensors. The polyhedral prism and the null 
indicator play the secondary role and are intended for trans-
ferring the value of the angle unit to the standards of the next 
rank and working measuring instruments, as well as for com-
parison with the State Primary Standard of the unit of plane 
angle GET 22-80.

The results of comparison of the standard GET 94-01 of 
the plane angle unit for angular displacement of a rigid body 
with the standard of the plane angle unit GET 22-80 using the 
12-face prism are presented in Table 2. It is seen that the dif-
ference in results, obtained with the use of two angle standards, 
does not exceed 0.03'', except for the central angle between the 
sixth and the seventh face.

Thus, the intercomparison of standards has proved reli-
ability of the results of the study of the NTS-3 standard sys-
tem, as well as the fact that this system allows transfer of the 
size of angle unit with the use of a RL or OAS. It is worth 
noting that the OAS possesses greater long-term stability, as 
compared with the RL. The systematic error of the OAS 
essentially depends on the mutual localisation of reading 
heads and the scale and is subject to the influence of thermo-
dynamic factors and deformation processes. For RLs the sys-
tematic error is smaller, and its sources are external magnetic 
fields. Therefore, for high-accuracy measurements it is prefer-
able to use RLs. At the same time, for RLs the range of mea-
sured angular velocities is limited (usually p/6 – 2p rad s–1 ), 
while for OAS it is wider. For RL the lower bound of the 
range is determined by physical processes in the laser (capture 
of contradirectional mode frequencies), while for the OAS the 
range is determined by the parameters of the used optoelec-
tronic components. To provide the maximal accuracy it is 
reasonable to perform the cross-calibration procedure directly 
before the measurements. 

5.2. Measuring and computing complex for automated 
control of high-capacity digital angle transducers

The measuring and computing complex (MCC) is intended 
for automated control of high-capacity digital angle trans-
ducers (DATs). The MCC provides the measurement of the 
basic characteristics of DATs within the angle range 0 – 360°, 

angular velocities ±(30 – 720)° s–1, and angular accelerations 
±(0 – 20)° s–2 with the error not exceeding 0.05''.

According to its metrological characteristics, the MCC 
can be rated among the standards of the first class [21], which 
makes great demands of the operation conditions, as well as 
the choice of the methods and means of testing the complex, 
aimed at confirmation of its metrological characteristics.

To obtain the characteristics mentioned above, in the MCC 
they use the principle, accepted in the standard of the angle unit 
for angular displacement of a rigid body, i.e., integration of the 
RL and OAS. In contrast to GET 94-01, in the MCC the role 
of the main angle sensor, which is used to measure the angular 
parameters of the DAT code change, is played by the OAS. 
The RL serves to keep the plane angle unit and to determine 
the systematic error of the OAS at the base velocity.

Figure 11 presents the functional diagram of the MCC. 
The complex consists of the electromechanical system, the 
controlling system, the optoelectronic measuring system and 
the system of displaying the information.

The MCC operation principle consists in comparing the 
values of rotation angle of the rotary platform obtained using 
the OAS and the studied DAT at the same moment of time. 
The signals from DAT pass through the interface device and 
arrive at the electronic unit of the MCC. Simultaneously, the 
signals from the OAS arrive at this unit. On request signals, 
produced by the studied DAT or the null indicator, the infor-
mation about the rotation angle of the OAS and DAT is 
recorded by the board of information processing and transfer 
[22] and then passed to the computer for further processing 
and output of the result to monitor, printer, or hard disc. 

The error of the MCC at the base velocity is defined as the 
difference between the results of measuring the characteristics 
of OAS by the RLs, that enter into the composition of the 
MCC, and the master setup HTS-3 (as a part of the standard 
GET 94-01). We should note that the present work is the first 

Table  2.  The results of intercomparison of standards GET 94-01 and 
GET 22-80.

Face  
number

Measured  
deviation from  
the nominal  
value ('' ) 
(GET 94-01)

Root-mean-
square devia
tion of the 
measurement 
results ('' )

Actual devia
tion from  
the nominal  
value ('' ) 
(GET 22-80)

  1-2 –1.63 0.01 –1.60

  2-3   1.58 0.01   1.56

  3-4 –0.89 0.03 –0.89

  4-5 –0.56 0.01 –0.54

  5-6 –0.13 0.02 –0.12

  6-7   0.37 0.02   0.26

  7-8 –1.34 0.03 –1.32

  8-9   1.79 0.03   1.76

  9-10 –0.03 0.01   0.04

10-11   0.46 0.02   0.49

11-12   0.29 0.02   0.31

12-1   0.08 0.01   0.05
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Figure 11.  Functional diagram of MCC for control of high-capacity 
digital angle transducers. 
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one in which the transfer of the plane angle unit from the 
GET 94-01 standard to the measuring instrument was imple-
mented using RL.

The result of the MCC error determination at the base 
velocity is presented in Fig. 12. The harmonic analysis has 
shown that the resulting error involves second, third and fourth 
‘revolution’ harmonics that characterise the uneliminated sys-
tematic error. The uneliminated systematic component of the 
error does not exceed 0.03'', and the random components have 
the root-mean square value of 0.008''.

6. Conclusions

The obtained results demonstrate high potentialities of using 
the systems, based on integrating RLs with high-accuracy 
angle sensors, especially those, in which the holographic method 
of angle scale recording is implemented. Precision laser goni-
ometer systems, based on the concept considered here, pro-
vide the performance of angular measurements with the sys-
tematic component of the error less than 0.01'' and nearly the 
same random component. Naturally, the presented estimates do 
not include the additive errors of the means, intended for the 
angle unit size transfer, such as the optical null indicator, the 
muff, etc. Further enhancement of angular measurement 
accuracy implies, on the one hand, increasing the resolving 
power and long-term stability of the RL and OAS character-
istics and, on the other hand, improvement of the auxiliary 
means of transferring the size of the angular unit. 
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Figure 12.  MCC error at the base velocity.


