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Abstract.  Based on the analytical solution of Maxwell’s equations, 
we have studied the angular structure of the luminance factor of 
light reflected by the rough skin surface with large-scale relief ele-
ments, illuminated by a directed radiation beam incident at an arbi-
trary angle inside or outside the medium. The parameters of the 
surface inhomogeneities are typical of human skin. The calculated 
angular dependences are interpreted from the point of view of the 
angular distribution function of micro areas. The results obtained 
can be used for solving direct and inverse problems in biomedical 
optics, in particular for determining the depth of light penetration 
into a biological tissue, for studying the light action spectra on 
tissue chromophores under the in vivo conditions, for developing 
diagnostic methods of structural and biophysical parameters of 
a medium, and for optimising the mechanisms of interaction of 
light with biological tissues under their noninvasive irradiation 
through skin. 

Keywords: rough surface, skin, light reflection, reflectance factor, 
probability density. 

1. Introduction 

The study of the radiation fields inside and outside a tissue is 
the key issue in solving a wide range of biomedical optics 
problems, such as optimisation of light therapy techniques, 
laser hyperthermia and optical diagnostics. In the case of 
noninvasive irradiation of a tissue, light passes through the 
rough interface between skin and the medium and to some 
extent changes its angular and energy characteristics. This has 
an impact on the depth of light penetration, the spatial distri-
bution of the absorbed and scattered radiation power, light 
action spectra on tissue chromophores, and therefore of inter-
est is to evaluate the influence of the skin surface roughness 
on the light fields in a biological tissue. The first step in such 
an evaluation would be to study the properties of radiation 
reflection and transmission by the surface itself. In addition, 
the radiation scattered at the medium interface carries infor-
mation about the parameters of roughness, which enables the 

development of new approaches to solving the inverse prob-
lem – reconstruction of the surface characteristics by optical 
methods. This is important for cosmetology and dermatol-
ogy, in particular for assessment of efficacy of various skin 
care products. 

In most papers when the light transfer in a biological tis-
sue is considered theoretically, the tissue surface is assumed 
smooth. This assumption is due to several factors. First, the 
solution to the problem of radiation transport in a medium is 
greatly simplified. Meanwhile, from general physical consid-
erations it is clear that such an assumption may lead to errors 
in the characteristics of the light fields in a medium. For 
example, Ivanov and Barun [1] assessed the influence of the 
surface roughness at the interface between two media on the 
characteristics of the scattered radiation under different irra-
diation conditions. The coefficients of reflection and trans-
mission of light by smooth and rough surfaces were shown to 
differ by 1.5 – 2 times or more. It is clear that for many optical 
problems, these differences are very significant. Second, there 
is clearly a lack of experimental data on the characteristics of 
the surface roughness of the skin, which could be the basis for 
a statistical description of its structure. In other words, the 
corresponding initial physical data are virtually absent at 
present. This is due to a strong variation of the surface prop-
erties caused by the change in the skin type, external condi-
tions, age of the person, physical and physiological condition 
and many other factors. Third, to study the properties of light 
scattering (reflection and transmission) by a statistically 
rough surface of the medium requires special techniques and 
algorithms. 

Light fields in biological tissue with the skin roughness 
taken into account were studied in [2 – 5] by the Monte Carlo 
method. Given were specific statistical characteristics of the 
surface, which was considered as a Fresnel boundary with the 
reflection and transmission coefficients, defined by well-
known formulas. The properties of the interface were 
accounted for numerically by imitating refraction and reflec-
tion on it in the simulations of the trajectories of the photons. 
It follows from the general theory of radiation scattering by a 
statistically rough surface [6, 7] that such a description of the 
light field is valid for surfaces with large-scale inhomogene-
ities whose dimensions are much larger than the wavelength 
(the geometrical optics approximation). The authors of 
papers [6, 7], based on Maxwell’s equations, derived an ana-
lytical solution for the luminous intensity of the reflected 
light. By averaging over an ensemble of roughnesses and cal-
culating asymptotically the integral by the stationary phase 
method [8], it was shown [6, 7] that electromagnetic waves dif-
fracted by large-scale relief elements over directions other 
than the specular one experience destructive interference and 
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quench each other. The scattered light field is different from 
zero only in the specular reflection directions, determined by 
the local angle of incidence of radiation on the surface rough-
ness. Only after such a rigorous justification based on the 
most common physical principles, Fresnel’s formulas can be 
applied (see, e.g. [2 – 5]). 

Among the publications on the scattering of electromag-
netic waves by randomly inhomogeneous surfaces of biologi-
cal tissues, of interest is paper [9]. On the basis of Maxwell’s 
equations with the Leontovich boundary conditions [10], 
Rogatkin [9] obtained an analytical solution to the problem 
of the angular intensity distribution of light reflected from the 
rough skin surface. However, the conditions [10] are generally 
applicable only to metal surfaces and for biological tissues 
they permit estimating the angular structure rather than the 
absolute values of the reflected light intensity at normal inci-
dence radiation on a macro surface [9, 11]. Furthermore, for-
mulas in [9] follow directly from the general solution [6, 7] for 
large-scale roughness without additional assumptions. 

The aim of this paper is to study the polar and azimuthal 
structure of the luminance factor (i.e., the characteristics of 
the light field in absolute units) of a randomly inhomoge-
neous surface of the skin irradiated by a beam at an arbitrary 
angle. 

2. Statistical characteristics of the skin surface 

It is generally assumed in theoretical work that the surface 
height profiles can be specified by using a random stationary 
differentiable function z = z(x, y) with a mean value ázñ = 0 
with respect to the macro surface plane z = 0. We assume that 
the surface characteristics are not dependent on the azimuth, 
so that z = z(r), where r = |r|, r = {x, y}. When considering 
the passage of light through the skin surface, z(r) is some
times expressed by the Gaussian height distribution 
function [2, 6, 7, 9] 

( )
2

exp
D D
1

2

2

p
v z z

= -
z z

e o	 (1)

and the correlation function of type 

( ) expK D
T 2

2
t t

= -z c m,	 (2) 

where T is the correlation length. It follows from (1) and (2) 
that the two-dimensional vector of random surface slopes, g = 
{gx, gy} = {tan ax, tan ay} = Ñz(t), is also distributed by the 
normal law
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where g = | g| = dz/dr is the slope of the tangent to the plane z 
= 0; and Dg = 2Dz /T 2. Below, the surfaces characterised by 
functions (1) – (3) are called Gaussian. 

In some papers [3 – 5, 7], the surface profile is given in the 
form of a quasi-periodic random function 

z = z(r) = zmsin(wt + q),	 (4)

where zm and w take on fixed values; and q is a random phase 
uniformly distributed on the segment [0, 2p]. It is easy to show 
that for this function, the probability densities of heights and 
slopes, as well as the correlation function have, respectively, 
the form: 
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where gm = wzm is the maximum slope of (4) to the plane z = 0. 
For distributions (5) and (6) it is easy to find the variance 
values for the heights Dzs = zm

2  /2 and slopes Dgs = gm
2  /2 of the 

sinusoidal profile that can be used for quantitative compari-
son of the corresponding distributions (1), (3) and (5), (6) by 
their integral parameters. For example, it is known [7] that 
when light is reflected from a rough surface with large-scale 
inhomogeneities, the surface characteristics are included in 
the expression for the intensity through the probability den-
sity of slopes. Then, for the equality Dg = Dgs to hold, it is 
needed that / /2D T mwz=z . In addition, for the relation 
similar to that for the Gaussian surface to hold between the 
variances Dzs and Dgs, by the correlation length Ts for surface 
(4) is meant the value /2 w. 

An overview of the statistical characteristics (1) – (7) in 
theoretical and experimental works is presented in [12]. 
Below, we will consider only the Gaussian surfaces (1) – (3) 
with the interval 0 < Dg < 0.45, covering the interval of 
changes in the variance Dg of human skin [12]. 

3. Calculation formulas 

The geometry of the problem is shown in Fig. 1. Let the radi-
ation beam ensuring illuminance Е0 be incident at the angle y 
on a macro surface, located in the plane xy. The azimuth 
angle j0 of the incident beam, measured from the y axis in the 
direction of the x axis, is set equal to zero. Bass and Fuks [7] 
showed that for a statistically rough surface with large-scale 
inhomogeneities, the angular structure of the reflected light 
intensity without account for the shadowing of the relief ele-
ments has the form: 
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where I ( c, y, j) is the luminous intensity of light from the illu-
minated macro surface of area S0 as a function of polar ( c)
and azimuth (j) observation angles (Fig. 1); rF(h) is the 
Fresnel reflection coefficient depending on the local angle h of 
incidence of light on micro areas; q = |q| = |k – k0|; k and k0 are 
the unit vectors along the propagation direction of reflected 
and incident waves, respectively; and qz and q^ are the projec-
tion of the vector q on the z axis and the xy plane. It is easy to 
make certain that the vector q is always directed along the 
local normal to the rough surface. Formula (8) is obtained by 
the tangential plane method [13, 14] that holds [2, 7] at 

(kRc)1/3cosy >> 1,	 (9) 

where k = 2p/l; l is the wavelength; and Rc is the local radius 
of curvature of the surface. Condition (9) indicates that the 
rough surface is sufficiently smooth so that the wave field at 
each point can be expressed as the sum of the incident field 
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and the field reflected by the laws of geometrical optics from 
the plane tangent to the surface at the point of incidence. This 
approach is very similar to the Kirchhoff method when con-
sidering the diffraction of light by an obstacle [7]. Furthermore, 
in deriving (8) several terms were omitted, which are small 
under the following conditions [7]: 

(ksz qz)2 >> 1 at q•g/qz £ 1,	 (10)

(ksz qz)2 >> (q•g/qz)4 at q•g/qz > 1,	 (11)

where sz = (Dz)0.5 is the standard deviation of the height of 
inhomogeneities and the dot is the scalar product. In the case 
of a Gaussian surface (1) – (3), the neglected terms can be 
quite easily [7, 15] introduced into (8), but in order to simplify 
the calculation formulas, we assume below that conditions 
(10) and (11) are met. 

The argument of the probability density W in (8) shows 
that the light from the large-scale inhomogeneities is reflected 
in the specular direction with respect to the plane tangent to 
the surface at the point of incidence, i.e., according to the laws 
of geometrical optics. By means of simple geometric construc-
tions it is easy to see that 
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arccos q

0:
h

k k
=

- .	 (12) 

In illuminating a rough surface, shadow regions are 
formed that are not involved in the reflection of the incident 
radiation flux. Moreover, even if a relief element is illumi-
nated, the light reflected from it towards the observer may be 
blocked by another element. Below we consider the problem 
of the shadowing effect in the single scattering approxima-
tion, i.e., without taking into account multiple reflections 
between the elements of the surface relief. Bass and Fuks [7] 
showed that for the electromagnetic-field-quadratic quanti-
ties (brightness, luminous intensity and flux) commonly used 
in optics, the shadowing effect is determined by the parame-
ters a = сot y/ágñ and b = сot c/ágñ, where ágñ = (Dg)0.5. The 
asymptotic behaviour of the weak and strong shadowing was 
analytically described in [7]. In the first of them, a, b >> 1, so 
that this correction is close to unity, and essentially has no 
effect on the reflection characteristics. In the opposite case, 
where a, b << 1, the shadowing effect is the strongest. The 

review of the works on the account for rough-surface shad-
owing is given in [12]. 

Mathematically, the shadowing effect is described by the 
correction factor by which it is needed to multiply the reflec-
tion characteristics (8) obtained without the shadow regions 
taken into account: 

Q(a, b) = [1 + L(a) + L(b)]–1,	 (13)

where for the Gaussian surface [16] 
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In the case of weak shadowing (a, b >> 1) we find from (14) 
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so that Q(a, b) @ 1. 
We will characterise the angular structure of the reflected 

light intensity by the luminance factor. This dimensionless 
characteristic is widely used in photometry [17]. By definition, 
the luminance factor r( c, j, y) is the ratio of the luminance 
(intensity) in a given direction ( c, j) to that of a perfect white 
Lambertian reflector under the same conditions of illumina-
tion. It is easy to show that, given this definition and shadow-
ing effect, the expression for r( c, j, y) is represented by 
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In the limiting case of a smooth surface, when Dg ® 0 and 
Q(a, b) ® 1, based on the approximation of the Dirac delta 
function [18] we have 

W( g = – q^ /qz) ® d(qx /qz)d(qy /qz) ®

	 (qz)2d( c – y)d(j – j0)/(sin c cos c),

so that we obtain from (16) 

r( c, j, y) ® prF(y)d( c – y)d(j – j0)/(sin c cos c), 

i.e., the luminance factor of a smooth Fresnel interface. It is 
easy to see that the reflection coefficient R of the surface with 
this luminance factor is rF(y). Indeed, for a smooth surface, 
using the definition of R [17] under directional illumination, 
we have 

/22 pp
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4. The angular distribution function of micro 
areas 

It follows from (8) and (16) that the surface structure defines 
the final formula for the luminance factor through the prob-
ability density of slopes W(g)) or Ws(g). The function Ws(g) 
has a special feature at g = gm. The reasons are discussed in 
[7]. This feature creates an inconvenience in calculating the 
characteristics of light reflection from a quasi-periodic sur-
face. Such difficulties can be avoided if we calculate for 
boundary (4) the luminance factors based on the angular dis-
tribution function f of micro areas [17, 19, 20]. Furthermore, 
the interpretation of the results for the Gaussian surface will  
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Figure 1.  Geometry of the problem. 
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be more physically illustrative in this case. Below, we will use 
this approach. The relation between the model [17, 19, 20] 
and the statistical characteristics (1) – (3) is discussed in [12]. 
By the definition, the specified function is 
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where S0 is the macro surface area; ds( b, e) is the area of 
micro areas, the normals to which lie in the solid angle dw 
around the direction defined by the polar ( b ) and azimuth ( e) 
angles (Fig. 1). In the case of the azimuthal symmetry of 
micro-area distribution, the distribution function depends 
only on the polar angle  b. Let us find the expression for the 
luminance factor. We consider the light flux reflected from 
the micro areas ds( b) in the direction OG: dF = E0coshds( b) 
´ rF(h)/cosy. The normal OD to the micro areas is in the 
reflection plane OBG. The reflected flux is distributed in the 
solid angle dws. Naturally, the angle h of incidence on the 
micro areas equals the angle of reflection from them. At con-
stant c and j, and at the zero angle of incidence, the plane 
CBA of light reflection from micro areas intersects the macro 
surface along the line С'А' and at an angle of 90° – along the 
line С''А''. Obviously, the luminance of light reflected from a 
rough surface in the direction (c, j) is 
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and the luminance of a perfect Lambertian reflector is Е0 /p. 
Hence it follows that 
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It can be shown (see Appendix 1) that, at given angles c, j and 
y, the azimuth (e) and polar (b) angles of the normal to the 
micro areas are determined from the equations: 

tane = sinj sin c(cosy cos c – siny sin c cosj – 1)/A,	 (20)

where

A = sin2j sin2 csin2y 

	 + [sin c cosy cosj + cosc siny] [cosc – cosy],	 (21)

tan b = sinj siny sinc [sine sinc cosj cosy

	 + sine siny cosc – sinj sinc cose cosy] –1.	 (22) 

The angle h of incidence (reflection) of radiation on a micro 
area is found from (12) or its equivalent expression 

cos2h = cosy cosc – sinc siny cosj,	 (23) 

and the ratio of solid angles (see Appendix 2) is 

cosd
d

4
1

sw
w

h= .	 (24) 

As can be seen from (24), this ratio is in the range 0.25 to  ∞. 
For example, at large angles y of incidence of light on a macro 
surface and large observation angles c, when the micro areas, 
the normals to which are close to the z axis (the angle b is 

small), are involved in reflection, the angle h is also large. If h 
varies from 75° to 90°, the ratio of the solid angles ranges 
from unity to infinity. Large ratios (24) correspond to the 
cases when at a finite change of the solid angle dw of the micro 
areas, the angle dws remains almost constant, which is just the 
case when h is close to 90°. However, one can see from (19) 
that this feature of ratio (24) does not affect the integrability 
of the luminance factor. Indeed, substituting (24) into (19), we 
obtain 
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This formula, similarly to relation (8), with (21) – (23) taken 
into account, gives the angular structure of light reflected by 
the rough surface in the direction (c, j), based on the concept 
of the angular distribution function of micro areas. Obviously, 
in the limiting case of a smooth surface, when f ( b ) ~ d( b ), 
both formulas (8) and (25) should yield the same result, pre-
sented at the end of Section 3. This can be shown using defini-
tion (17) and relations (20) – (23). Let us write the relation for 
r( c, j, y) of a smooth surface in an illustrative manner. It 
directly follows from the definition of the luminance factor 
that 

( , )
( )
cos

rF
0
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p
r c y j

w y
y
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Here Dw0 is the solid angle in which the incident flux is con-
centrated. Substituting (26) in the definition of the reflection 
coefficient from the surface with a particular luminance fac-
tor, given in Section 3, we obtain R(y) º rF(y), because in this 
case the solid angle, in which the reflected radiation is trapped, 
is of the form 

/22 pp
sind ds 0

00
/w j c c wD D= yy . 

From (26), in particular, follows that when c » y and j » 0, 
regardless of the degree of surface roughness, the luminance 
factor is proportional to rF(y)/cosy, since reflection involves 
only horizontal micro areas that are parallel of the macro sur-
face. 

The effect of the shadowing of relief elements can be intro-
duced in (25) similarly to (16). The question of which formula, 
(8) or (25), should be used in calculations depends on the pres-
ence of experimental or other initial data on the probability 
densities (1), (3) or function (17). Note that the measurement 
of   f ( b) by a standard optical technique [17, 20] is difficult 
because the radiation reflected by the skin surface, is over-
lapped by the light scattered deep in the tissue. Therefore, 
below we use in the calculations relations (8) and (16), for 
which there are, although to a limited extent, experimental 
data [12] obtained by the profilemeter, and formula (25) is 
convenient for the interpretation of the results. 

One more remark concerning relations (8) and (25). By 
equating their right-hand sides, we can see that the formal 
relationship of  f ( b) with the characteristic of a rough surface 
– probability density of slopes W( g) – includes angles of 
observation and illumination c, j and y. In other words, 
probabilistic description of the surface properties (1) – (3) and 
the angular function distribution  f ( b) of micro areas are two 
different representations of the statistical properties of the 
surface. In general, they do not follow from each other. This 
fact is discussed in detail in [12]. 
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5. Results and discussion 

Under external irradiation of the skin its outer surface is illu-
minated by the radiation source, and the inner surface – by 
the light scattered deep in the tissue. Therefore, below we con-
sider the luminance factors for the two cases of illumination 
by a directed beam of light, i.e., when radiation is incident 
from inside and outside the tissue. The refractive index of the 
tissue is selected equal to 1.55, which corresponds to the 
uppermost stratum corneum of the skin in the visible spectral 
region [21]. First of all, we find out how partial shadowing 
(shielding) of the surface by the elements of its relief affects 
the recorded signal. The calculations show that for angles of 
incidence and reflection of less than 70°, this effect is not 
observed. However, if one of the angles is greater than 70°, at 
any other angle this effect to some extent always manifests 
itself. We also note that in passing to a smoother skin surface, 
the shielding effect of light on the luminance factor, of course, 
weakens. All the results below will be presented with the shad-
owing taken into account, because it does not cause any dif-
ficulties. 

It was mentioned earlier that the analysis of the results 
will be more illustrative if use is made of formula (25), which 
contains three factors depending on the angles f ( b), rF(h) and 
1/(cosccosy). The last of the factors is called trigonometric. 
Typically, the function f ( b) is maximal at  b = 0 and decreases 
with increasing h. For unpolarised light, the reflection coeffi-
cient rF(h) continuously increases with increasing h. In the 
case of the total internal reflection (TIR), it assumes a maxi-
mum value equal to unity and does not change with a further 
growth in h. These obvious features of the angular behaviour 
of the factors (25) are sufficient for a qualitative explanation 
of the results given below. 

Consider the effect of the skin surface roughness (variance 
Dg) on the angular distribution of the reflected light. Figure 2 
illustrates this distribution at the azimuth angle j = 0 and dif-
ferent angles of incidence inside the skin and outside the tissue 
depth. For brevity, the luminance factors in the two cases are 
denoted by r̄  (dashed curves) and r− (solid curves), respec-
tively. Note here that, for incidence angles 0, 30°, 60° and 80°, 
the TIR occurs at c » 80°, 50°, 20° and 0.4°, respectively. 
These TIR angles will, of course, manifest themselves in the 
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angular structure of the luminance factor r−, as will be dis-
cussed below. 

We start by analysing the reflection from the surface with 
Dg = 0.2 (Fig. 2a). One can see that in most cases r− is greater 
than r̄ , which is due to the value of the Fresnel reflection 
coefficient from the surface micro areas. At y = 0 and small c 
the solid and dashed curves ( 1 ) coincide, because reflection 
occurs from nearly horizontal micro areas and their coeffi-
cients rF are the same. With increasing c, more inclined areas 
make contribution to the luminance factors, so that the 
impact of increased rF and the decrease in the relative number 
of such areas begin to manifest themselves. The first factor 
contributes to the increase in the observed signal, and the sec-
ond – to the reduction. The influence of the second factor is 
stronger, and as a result r decreases. Only at the beginning of 
the TIR zone ( c » 80°) an increase in the signal is observed. 
One can see from Fig. 2a that with increasing y the range of 
angles of a sharp increase in the luminance factor is shifted to 
lower values of c at which TIR takes place. With increasing 
angle of observation, r does not decrease, as in the case to 
which curve ( 1 ) corresponds; in this case, we deal with an 
increase in the luminance factor [curves ( 3 ) and ( 4 )]. This is 
explained by the fact that on the initial segment c, the micro 
areas reflecting light in this direction have the azimuth e = p, 
i.e., they face the direction of the incident radiation flux. As a 
result, with increasing c, the number of such micro areas 
increases, because their orientation becomes close to horizon-
tal. Furthermore, the Fresnel reflection coefficient grows. 
With a further increase in c, when the azimuth e abruptly 
changes from p to 0, the three factors in (25) make multidirec-
tional contribution to the luminance factor. Thus, the decrease 
in the function f ( b) leads to its reduction, but it is more than 
compensated by the increase in rF(h) and trigonometric fac-
tor. As a result, the luminance factor increases. 

The detailed consideration of Fig. 2a and detailed qualita-
tive explanation of the angular dependence of the luminance 
factors are, naturally, applicable to the cases illustrated in 
Figs 2b – d. Therefore, we will pay below the main attention to 
the quantitative relationships and differences of the depen-
dences from those shown in Fig. 2a. 

Consider a smoother surface corresponding to Dg = 0.05 
in Fig. 2b. In this case, at y = 0, the values of r at small obser-
vation angles c are naturally larger than in Fig. 2a. Obviously, 
this is due to a greater number of the micro areas oriented 
nearly horizontally. For the same reason, the decrease in the 
luminance factors [curve ( 1 )] with the growth of c is more 
noticeable. In the range of the values on the ordinate axis 
(Fig. 2b) the values of r−and r̄  are the same, and the TIR 
takes place outside this range. For y = 30° [curves ( 2 )] there 
is a rapid decrease in the luminance factors at c > 50°. This is 
due to the strong decrease in the number of inclined micro 
areas responsible for light reflection. For oblique angles of 
incidence [curves ( 3 ) and ( 4 )] there is a sharp increase in light 
when approaching the angle of specular reflection, whereas at 
small c the luminance factors are negligible. 

When the variance Dg (Figs 2c and 2d) is further increased, 
there appear clear maxima of specular reflection correspond-
ing to different angles of incidence of light. It is obvious that 
the angular width of the maxima depends on the degree of the 
surface roughness. The smaller the value of Dg, the narrower 
the luminance factor maximum. It should be noted that with 
decreasing Dg the luminous intensity concentrated in the 
reflection maxima remains constant, but falls in a smaller 
range of angles. Therefore, the maximum values of the lumi-

nance factor for the smoothest of the surfaces in question 
(Dg = 0.0013) are the highest. 

Consider the effect of the angles of incidence and observa-
tion at different azimuths on the luminance factor. The rele-
vant data are presented in Fig. 3 for the variance Dg = 0.44. At 
lower values of Dg similar results are not as illustrative, 
because in a wide range of the angles j the luminance factor 
is very small, but the general laws governing the formation of 
the reflected light field, of course, remain at any Dg. Let us 
first compare the data in Fig. 3a (j = 0) and Fig. 3b (j = 30°). 
It is seen that at a fixed angle of incidence y, the correspond-
ing curves are similar to each other. This is due to the fact that 
the degree of the surface roughness is large enough so that the 
observation azimuth up to 30° weakly affects the angular dis-
tribution of the reflected light. With increasing j the lumi-
nance factors transform (Fig. 3c, j = 90°). The interpretation 
of the results is very illustrative at j = 180°, shown in Fig. 3d, 
because here we have simple relationship between the angles 
that appear in (8) and (25). Indeed, in this case, as seen from 
Fig. 1, h = 0.5|y – c| and b = 0.5|y + c|. One can see from 
Fig. 3d that at low angles of incidence y [curves ( 1 ) and ( 2 )] 
the luminance factors r−and r̄  are the same in the region of 
small observation angles c, while with increasing y [curves 
( 3 ) and ( 4 )] they are the same in the region of large c. The 
coincidence of the curves is due to the fact that in both cases, 
the light is reflected from the micro areas oriented almost 
horizontally to the incident beam when the Fresnel reflection 
coefficients for the light incident on the surface from inside 
and outside the medium are the same. At small angles y the 
angular dependences of r−and r̄  diverge; the actual values of 
r−and r̄  grow in the area of large c, while at large y they 
grow in the region of small c. In the first of these cases, the 
reflection coefficient rF(h) and trigonometric factor increase 
with increasing c and the decreasing function f ( b) does not 
compensate for this growth. As a result, the luminance factors 
r−and r̄  are increased. In the second case, rF(h) and f ( b) 
increase with decreasing c, whereby r−and r̄  take on large 
values. Note also that curves ( 1 ), corresponding to c = 0, are 
identical for all azimuths j, because the angular structure of 
reflected light is symmetric with respect to the beam incident 
along the normal to the surface. 

To give a complete picture, Fig. 4 shows examples of the 
azimuthal structure of the luminance factors r−and r̄  for 
two polar angles of observation, c = 60° and 80°, and some 
angles of incidence, y. Obviously, due to symmetry of the 
problem at c = 0 or y = 0 [curves ( 1 ) in Figs 4a and b] the 
values of r−and r̄  are independent of j. With the growth of 
c the azimuthal structure of the reflected light is dramatically 
transformed. The larger the values of c and y, the stronger the 
transformation. There is a general trend – the luminance fac-
tors decrease with increasing j. The qualitative analysis of the 
azimuthal dependences is possible with the help of (25), but it 
is similar to that presented above, and therefore we will not 
give it here. 

6. Conclusions 

In analysing the angular structure of the luminance factors of 
light reflected from the rough surface of the skin, we have 
used the asymptotic solution to Maxwell’s equations in the 
geometrical optics approximation [6, 7]. Its applicability to 
the optics of the skin is due to the characteristics of its micro-
relief. A similar analysis based on recalculation of the corre-
sponding angles by Snell’s law can be applied to the intensity 



	 V.V. Barun, A.P. Ivanov774

of light transmitted by the rough skin surface. We note here 
that for the radiation beam transmitted through the interface, 
the argument b of the factor Q (a, b) (13), taking shadowing 
into account, will contain the angle of refraction instead of 
the angle c. The derived formulas can be also used to calculate 
the luminance factors of the reflected and transmitted polar-
ised radiation under illumination by natural or polarised 
light. To do this, we should only substitute in the correspond-
ing expressions the required Fresnel coefficient of reflection 
or transmission of the micro areas. The polarisation state can 
be arbitrary. The knowledge of the luminance factors in abso-
lute units for the reflected and transmitted light allows one 
through simple integration to calculate the reflection and 
transmission coefficients of radiation by the skin surface at an 
arbitrary angular structure of illumination. These integral 
characteristics are often used to describe a light field inside 
and outside the biological tissues, to study the radiation – tis-
sue interaction, to determine the depth of penetration of light 
in the medium and to solve many other problems of biomedi-
cal optics. 

Appendix 1

Relationship between the angles b, e and c, j, y 
As can be seen from Fig. 1, the direction cosines of the vectors 
k0, k and the unit vector n of the outer normal to the micro 
area with respect to the axes x, y and z are equal to (0, siny, 
–cosy), (sinj sinc, cosjsinc, cosc) and (sine sin b, cose sin b, 
cos b), respectively. Then, the angle h of incidence, i.e., the 
angle between the vectors – k0 and n, is determined from the 
equation 

cosh = cosc cosy – sinj cose sin b.	 (A1.1)

Similarly, the angle h¢ of reflection, i.e. the angle between k 
and n, is 

cosh = sinj sinc sine sin b – cosj sinc cose sin b + cosc cos b.

						      (A1.2)
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Figure 3.  Polar structure of the luminance factors of reflected light upon illumination of the medium from outside (dashed curves) and inside (solid 
curves); j = (a) 0, (b) 30°, (c) 90° and (d) 180°, c = ( 1 ) 0, ( 2 ) 30°, ( 3 ) 60° and ( 4 ) 80°, Dg = 0.44. 
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From the law of geometrical optics (angle of incidence equals 
the angle of reflection), equating the right-hand sides of 
(A1.1) and (A1.2), we obtain the first equation for the 
unknown b and e. 

The equation for the plane of incidence passing through k0 
and n has the form 

0
sin sin

sin
cos sin

cos
cos

x y z
0

e b
y

e b
y

b
- = .	 (A1.3) 

The equation for the plane of reflection passing through k 
and n has the form 

0sin sin
sin sin

cos sin
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x y z
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e b
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e b

c
b

= .	 (A1.4)

From another law of geometrical optics [the incident and 
reflected beams as well as the normal to the micro surface lie 
in the plane defined by (A1.3) and (A1.4)] we have the second 
equation for b and e. Solving the system of two equations 
with two unknowns, we obtain relations (20) – (22). 

Appendix 2

Relationship between solid angles Dws and Dw 
Let the reflected light flux be recorded in a small solid angle. 
We find the solid angle Dw, within which there are normals to 
the micro areas reflecting light in the angle Dws. To this end, 
we turn the reference coordinate system xyz (see Fig. 1) so 
that the z¢ axis of the new coordinate system, x¢y¢z¢, be ori-
ented along the axis of the solid angle dws, and the incident 
light beam have, as before, the azimuth j

0
¢ = 0. Let us denote 

the corresponding angles in the rotated coordinate system,  
y¢, c¢, j¢, b¢ and e¢, and because of the smallness of Dws we 
will have c¢ << 1. The magnitude of the solid angle is obvi-
ously independent of the coordinate system, and therefore 

sin sind d d dw b b e b b eD = =

S S

l l lyy yy ,	 (A2.1)

where integration is performed over the angles corresponding 
to the area S of the segment cut by the solid angle Dw on the 
sphere, shown in Fig. 1. We will change the variables b¢ = 
b¢( c¢, j¢), e¢ = e¢( c¢, j¢) in the second integral of (A2.1). In 
other words, we pass from integration over b¢ and e¢ to inte-
gration over c¢ and j¢. Then, (not to load the text with details, 
we omit the primes in the angles, meaning that all the angles 
below refer the rotated coordinate system x¢y¢z¢ ) 
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where integration is performed over the angles corresponding 
to the area Ss of the segment cut by the solid angle Dws on the 
sphere, shown in Fig. 1, 
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We now use relations (20) – (22) and take into account that 
c << 1. Then after neglecting the terms with a higher order 
smallness that c, these formulas take the form 
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Using (A2.4) and (A2.5) we compute the partial derivatives
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substitute them in (A2.3) and, as a result, obtain 
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Figure 4.  Azimuth structure of the luminance factors of reflected light upon illumination of the medium from outside (dashed curves) and inside 
(solid curves); y =  (a) 60° and (b) 80°, c = ( 1 ) 0, ( 2 ) 30°, ( 3 ) 60° and ( 4 ) 80°.
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In addition, with accuracy up to terms of order c, we have 
sinb = siny/2. Substituting this equality and (A2.7) into 
(A2.2) we finally obtain 

( / )
( / )

sin
sin
sin

cos
d d2

2 4 2
s

s

w y
y
c

c j
y

wD D
= =

S

yy .	 (A2.8)

It follows from (23) that at c << 1 the angle h of incidence, 
independent of the choice of the coordinate system, is equal to 
y/2. Finally, we obtain the desired relation between the solid 
angles Dw and Dws in the form of (24). 

References 
  1.	 Ivanov A.P., Barun V.V. Inzh.-Fiz. Zh., 84 (1), 22 (2011) [ J. Eng. 

Phys. Thermophys., 84 (1), 23 (2011)].
  2.	 Lu J.O., Hu X.-H., Dong K. Appl. Opt., 39 (31), 5890 (2000).
  3.	 Meglinski I.V., Matcher S.J. Opt. Spektrosk., 91 (4), 692 (1998) 

[ Opt. Spectrosc., 91 (4), 654 (1998)]. 
  4.	 Meglinski I.V. Kvantovaya Elektron., 31 (12) (2001) [ Quantum 

Electron., 31 (12) 1101 (2001)].
  5.	 Meglinski I.V., Matcher S.J. Physiol. Measurem., 23 (4), 741 

(2002).
  6.	 Isakovich M.A. Zh. Eksp. Teor. Fiz., 23 (3), 305 (1952). 
  7.	 Bass F.G., Fuks I.M. Wave Scattering From Statistically Rough 

Surfaces (Oxford: Pergamon Press, 1979; Moscow: Nauka, 1972).
  8.	 Fedoryuk M.V. Asimptotika: integraly i ryady (Asymptotics: 

Integrals and Series) (Moscow: Nauka, 1987). 
  9.	 Rogatkin D.A. Opt. Spektrosk., 97 (3), 484 (2004).
10.	 Leontovich M.A. Issledovaniya po rasprostraneniyu radiovoln 

(Investigations of Propagation of Radio-Waves). Ed. by 	
B.A. Vvedenskii (Moscow: Izd. Akad. Nauk SSSR, 1948) 	
Pt. 2, p. 5. 

11.	 Maradudin A.A., Mendez E.R. Opt. Spektrosk., 80 (3), 459 (1996) 
[ Opt. Spectrosc., 80 (3), 409 (1996)]. 

12.	 Barun V.V., Ivanov A.P. Inzh.-Fiz. Zh., 85 (5), 1117 (2012) [ J. 
Eng. Phys. Thermophys., 85 (5), 1215 (2012)].

13.	 Brekhovskikh L.M. Dokl. Akad. Nauk SSSR, 79 (4), 585 (1951); 
Zh. Eksp. Teor. Fiz., 23 (3), 275 (1952). 

14.	 Varanovich A.G. Akust. Zh., 53 (3), 346 (2007). 
15.	 Chaevskii E.V. Izv. Vyssh. Uchebn. Zaved., Ser. Radiofiz., 8 (6), 

1128 (1965).
16.	 Smith B.G. IEEE Trans. Antennas Propag., 15 (5), 668 (1967).
17.	 Ivanov A.P. Optika rasseivayushchikh sred (Optics of Scattering 

Media) (Minsk: Nauka i Tekhnika, 1969). 
18.	 Korn G., Korn T. Mathematical Handbook for Scientists and 

Engineers (New York: McGraw-Hill, 1961; Moscow: Nauka, 
1977). 

19.	 Mullamaa Yu.-A.R. Atlas opticheskikh kharakteristik 
vzvolnovannoi poverkhnosti morya (Atlas of the Optical 
Characteristics of the Rough Sea Surface) (Tartu: Izd. Akad Nauk 
ESSR, 1964). 

20.	 Toporets A.S. Optika sherokhovatoi poverkhnosti (Optics of a 
Rough Surface) (Leningrad: Mashinostroenie, 1988). 

21.	 Tuchin V.V. Lazery i volokonnaya optika v biomeditsinskikh 
issledovaniyakh (Lasers and Fibre Optics in Biomedical Research) 
(Saratov: Izd. Saratov. Univer., 1998). 


