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Abstract.  A model of an array of globally coupled fibre lasers, with 
the same fraction of the total output beam power injected into each 
laser, is considered. Phase self-locking of the laser array makes it 
possible to increase the brightness of the total output beam without 
any devices for controlling the phases of output beams, which sig-
nificantly complicate the laser system. The spread of the laser opti-
cal lengths is several hundreds of wavelengths (or even more); 
within the theory of hollow cavities, this spread should lead to a fast 
decrease in the total power with an increase in the number of lasers. 
The presence of the active medium may reduce this drop to a great 
extent due to the self-tuning of the laser array radiation wavelength 
to a value providing a maximum gain for the array lasing mode. 
The optical length of each element is assumed to be random. The 
increase in the phase-locking efficiency due to the gain saturation is 
explained based on the probabilistic approach. An iterative proce-
dure is developed to find the array output power in the presence of 
steady-state phase locking. Calculations for different values of 
small-signal gain and the output-power fraction spent on global 
coupling are performed. It is shown that, when this fraction amounts 
to ~20 % – 30 %, phase locking of up to 20 fibre lasers can be imple-
mented with an efficiency as high as 70 %.
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1. Introduction

Currently the output power of fibre lasers with a beam quality 
close to the diffraction one reaches 10 kW due to the use of 
multistage amplifiers and a tandem pump circuit [1, 2]. The 
necessity of maintaining single-mode lasing limits the lasing-
mode area. Such nonlinear processes as stimulated Brillouin 
scattering, stimulated Raman scattering, and self-focusing [3] 
restrict the maximum intensity. A further increase in the total 
power of an output beam with diffraction divergence can be 
implemented by designing arrays of amplifiers or lasers with 
subsequent beam addition on a common output aperture.

To date, a number of architectures for adding beams 
emitted by array elements have been investigated. We should 
note as an individual class systems with spectral beam addi-
tion [4], in which each element generates at its intrinsic fre-
quency and the beams from individual elements are added on 
a common diffraction grating to form a single output beam.

Phase locking of laser sources at the single frequency of the 
array collective mode makes it possible to obtain lasing at a 
single wavelength; it is believed to fit better for phase locking 
of two-dimensional arrays. There are two main approaches to 
beam addition in an array: (i) active control of the parameters 
of each laser beam and (ii) phase self-locking of the entire 
array. The phase-locking methods based on active control are 
compatible with output-beam control systems and are conve-
nient in use. However, the additional optical equipment and 
electronic control blocks make the system more complicated 
and expensive [5]. Currently, passive phase locking, which is 
based on the internal properties of system, is being actively 
investigated as one of alternative ways for developing high-
power laser systems.

Passive phase locking is implemented either due to the 
diffraction coupling in multicore fibres or by coupling fields 
in an external spatial device (see reviews [6, 7]). In multicore 
lasers [8, 9], an increase in the multicore diameter gives rise to 
a spectrum of competing supermodes that are retained in the 
multimode fibre. As a result, the optical quality of the total 
beam deteriorates. The question about the main factors limit-
ing the size of a laser array with a supermode selected by an 
external filter remains open to a certain extent.

To implement stable phase locking, one must, on the one 
hand, exclude independent lasing of individual lasers and, on 
the other hand, suppress the competition between the array 
supermodes. It was shown in [6] for a small spread of optical 
lengths of individual cavities that, when lasing occurs at the 
fundamental in-phase supermode, global coupling [10] sup-
presses other supermodes to a great extent. Global coupling 
can be implemented in different ways. One of them is coupling 
through fibre X couplers (2 ́  2 coupler) [11 – 13], in which one 
of the outputs is used to organise feedback, while the other 
provides out-of-phase field loss. The drawbacks of this archi-
tecture are the extraction of radiation from the entire array 
into a single-mode fibre and instability of lasing in time [14]. 
Fourier coupling [15], which is based on the diffraction of 
output laser beams in a semiconfocal cavity composed of a 
reflecting mirror and end faces of emitters forming a periodic 
grating, is characterised by a degree of supermode selection 
close to that provide by global coupling. It appears realistic to 
use adders and couplers for a fibre laser array to add N beams 
in the coupling system with their subsequent distribution over 
the laser array [16].
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The main factor impeding passive phase locking of active 
elements is the spread of the optical lengths of elements 
(OLEs), which leads to a difference in the phase shifts of the 
propagating radiation and to destructive interference of fields 
(Vernier effect [13]). Nevertheless, a high degree of phase 
locking was obtained at a random OLE spread of few centi-
metres in a number of experiments [12, 13, 17]. The efficiency 
of field locking in an array composed of nonidentical elements 
is provided by several factors, the main of which is the self-
tuning of the supermode wavelength within the gain band to 
the value corresponding to the maximum difference between the 
gain and loss [18 – 20]. The selection of lasing modes from the 
spectrum of amplified spontaneous radiation was numerically 
investigated for arrays composed of two and four fibre ampli-
fiers, coupled through X couplers [21]. Kouznetsov et al. [22] 
predicted that stable phase locking can be performed for no 
more than eight elements. The average locking efficiency 
reduced to ~50 % in an experiment with a 16-channel fibre 
array [23]. Numerical calculation of the beam-addition efficiency 
with application of a multipath interferometer [24] showed 
that the average addition efficiency for eight channels is 75 % 
at a spread of 25 % – 30 %; this result is in agreement with 
experiment [14].

In contrast to the studies on phase locking of gas lasers, 
each having an intrinsic cavity [6, 7], the analysis of a fibre 
laser array was performed with consideration of a system of 
single- or double-pass amplifiers in a common cavity. It was 
shown in [25, 26] that, in the case of an injection-locked laser 
array, the nonlinear dependences of the output radiation 
power and phase on the external signal frequency allow one 
to improve the locking efficiency and increase the number of 
locked elements.

The dependences of the gain and refractive index of laser 
media on the field intensity give rise to correlations between 
the phases and power distribution over the array elements. 
It  was shown for the first time in [27] (within a simplified 
model of a laser array with nearest neighbours coupled) that 
the Kerr nonlinearity of the refractive index may provide sta-
ble phase locking. Cheo et al. [9] reported spontaneous selec-
tion of an in-phase supermode in a fibre laser with seven 
active cores. In [28] this effect was ascribed to the influence of 
the resonant part of the nonlinear refractive index, related to 
the polarisability of excited ions [29]. Later on, detailed 
numerical calculations [30, 31] showed that the refractive-
index nonlinearity plays a less important role in the selection 
of the in-phase supermode than the gain saturation. Previously, 
our theoretical analysis [25] revealed that, even in the absence 
of refractive-index nonlinearity, the gain saturation signifi-
cantly increases the efficiency of coherent beam addition in a 
fibre laser array with a random OLE spread, with the same 
signal injected into each laser.

In this paper, we report the results of studying the joint 
influence of gain saturation and resonant nonlinearity of refrac-
tive index on the efficiency of laser beam addition. A calcula-
tion based on a closed model through numerical iterations for 
an array composed of 20 fibre lasers showed that, when the 
laser-medium nonlinearity is completely taken into account, 
the phase-locking efficiency may reach 70 %. Section 2 con-
tains the main equations describing a fibre laser array with 
global external coupling. In Section 3 we report the results of 
numerical simulation of a laser array with the same signal 
injected into each laser. The role played by the gain saturation 
and resonant refractive-index nonlinearity in the phase locking 

is discussed. The results of calculating the laser array power 
within the closed model are presented in Section 4.

2. Numerical model of an array of globally 
coupled fibre lasers 

The model design under consideration is an array of single-
mode fibre laser elements (Fig. 1). Each element is an active 
fibre, the length of which is a random value. It is assumed that 
one of the fibre end faces is an ideal reflector. The second end 
face plays the role of a semitransparent mirror. Most of the 
radiation emitted within each element is extracted outside, 
while the remaining part is directed to the device implement-
ing global coupling between the elements. It is assumed that 
this device performs coherent addition of all beams, after 
which the total beam is split into N identical beams to be 
injected into the array elements through the fibre end faces. 
There is a certain relationship between the injected signal 
power and the frequency detuning from the resonance, which 
ensures stable controlled lasing [32]. If there is a radiation 
wavelength at which the ranges of injection locking for all 
lasers are overlapped, one would expect stable phase-locked 
lasing at this wavelength for all array elements.

Let us consider the gain saturation in the medium within 
a very simple model. The dependence of the local gain on 
intensity is given by the expression

g(x, y, z) = g0/[1 + I(x, y, z)], 

where I is the field intensity normalised to the saturation 
intensity and g0 is the local small-signal gain, which (for 
simplicity) is assumed to be constant within the active core. 
Separate calculations showed that the saturation of the mode 
gain (i.e., the gain averaged over the transverse profile of 
mode intensity) for a single-mode fibre is described with a high 
accuracy by the formula g(z) = g0 /(1 + P), where P = Pf + Pb 
is the power of single-mode radiation normalised to the satu-
ration power obtained in separate calculations. The total beam 
power in a fibre, with interference of counterpropagating waves 
neglected, is the sum of their powers Pf(b) = |Ef(b)|2, where 
Ef(b) are the amplitudes of the waves propagating in the for-
ward (f) or backward (b) directions along the fibre. The effects 
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Figure 1.  Schematic of an array of globally coupled fibre lasers: 	
( 1 ) highly reflecting mirror, ( 2 ) active fibres, ( 3 ) output mirror with 
reflectance r, and ( 4 ) system for feedback and radiation extraction.
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related to the change in the field polarisation are neglected 
within this model.

Generally, the fibre refractive index depends on the radia-
tion intensity. In the majority of fibre lasers the phase shift 
caused by the Kerr effect is small (n2 » 3 ́  10–20 m2 W–1). The 
resonant nonlinearity of the refractive index may play a more 
important role. This component, expressed in terms of the 
gain through the Kramers – Kronig relation, is proportional 
to the population inversion [28, 29]. The corresponding phase 
shift can approximately be written as

dg z
L

0
a y , 

where L is the fibre length; the optical nonlinearity coefficient 
a depends weakly on the wavelength within the spectral gain 
band.

Within the above assumptions the amplitudes of the 
waves propagating along a single-mode fibre are determined 
by the equations
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where b is the mode propagation constant for radiation with 
a wave vector modulus k; the plus and minus signs refer, 
respectively, to the forward and backward directions. Having 
separated the real and imaginary parts, one can obtain the 
equations for the powers of counterpropagating waves, 
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and the expression for the phase delay per run due to the non-
linear part of the refractive index [33],
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In the absence of loss in the fibre, the powers of the injected 
(Pinj) and output (Pout) beams are related by the expression 

Pout = |Eout|2 = Pinj + G0 – G.	 (4)

The total gain G in a laser controlled by an external signal 
should be below the threshold, i.e., r exp G < 1, where r is the 
amplitude reflectance from the output fibre end face. In the 
opposite case the laser can generate not only at the external-
signal frequency but also at the cavity eigenfrequencies, which 
will lead to a complex lasing dynamics of the entire array. We 
will restrict ourselves to establishment of the conditions under 
which steady-state generation of a phase-matched field can be 
implemented with some probability. The critical power of the 
external signal, with excess of which the lasing of a controlled 
laser is stably injection-locked, is determined by the expres-
sion [32]
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t
r G G4
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2
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where t = r1 2
- , and Gth = ln (1/r) is the total threshold 

gain. For a typical value of reflectance from the fibre end face, r 
= 0.2, Gth ~ 1.61. In the mode of stable injection locking of a 
laser by external signal, the output field amplitude can be 
written as
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where j = bL + jnl . We should note that the spectrum of 
output radiation contains resonant peaks at the cavity eigen-
frequencies ( j = lp, where l is an integer). Note also that 
the refractive-index nonlinearity may lead to ambiguity of the 
solutions to Eqn (5) (see, for example, [34]).

Expressions (3) – (5) allow one to calculate the output 
field amplitude for each element with the following specified 
parameters: radiation wavelength, OLE, injected-signal power, 
small-signal gain, and coefficients of the refractive-index non-
linearity. For a laser array with a fixed random sample of 
OLE values, the fields of the output beams are determined 
from formulas (3) – (5). The total field at the coupling-device 
output is found from the formula
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where m is the laser number.
The power of the signal formed in the global-coupling sys-

tem and injected into each element is given by the expression 
Pinj = |kES|2/N, where k is the feedback coefficient. Thus, the 
coupling between the injected-field amplitudes after the nth 
circular roundabout of the entire system can be described by 
the expression
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If Eqn (7) has a solution, the stable radiation power can 
be  found using iterations. For a random OLE sample, the 
parameters of array elements are fixed. The additional common 
parameters are the small-signal gain G0 and the fraction k2 of 
the total output power spent to implement feedback. Before 
finding a self-consistent solution to the system of equations 
(3) – (7), it is reasonable to study the properties of the sum in 
the right-hand side of Eqn (7). The radiation wavelength, 
which enters the propagation constant, significantly affects the 
result of addition of the output beams of the elements. As was 
shown in a number of studies [13, 17, 18, 21, 22], devoted to 
the properties of the total field of coherent beams transmitted 
through media with different optical lengths, the total field of 
the beams summed on the common aperture depends strongly 
on the wavelength.

3. Influence of the refractive-index nonlinearity 
on the field-addition efficiency

The possibility of phase locking of an array of globally coupled 
lasers is primarily determined by the efficiency of field addition 
in the feedback circuit. It was suggested by some researchers 
[12, 17, 35] that the resonant nonlinearity of refractive index 
may be the main factor positively affecting the phase locking 
of array lasers. We showed in [25] that the gain saturation, 
with refractive-index nonlinearity neglected, improves signifi-
cantly the phase-locking efficiency for a globally coupled array. 
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To reveal the peculiar role of the refractive-index nonlinearity, 
we will consider the same system of single-mode fibre lasers as 
that analysed in [25]. The lengths of amplifying fibres are set 
by the expression Lm = 10 + 0.1m + dlm (in m), where dlm is a 
random detuning of the fibre length for an mth laser. The 
refractive index of the medium is 1.5. 

We took the value Pcr /2 to be the characteristic power of 
the injected signal. At this power lasers are injection-locked 
by an external signal at a phase-delay detuning from the reso-
nance by |jm| < p/4. If phase detunings do not fall in this 
range, the gain remains higher than the threshold value, and a 
laser can generate independently.

Numerical calculations were performed in the following 
order. First, the amplitude and phase of the output field were 
determined numerically for each element from the system of 
transcendental equations (3) – (5) at a specified injected-radia-
tion wavelength from the range [ l0 – d lmax, l0 + d lmax] ( l0 = 
1.05 mm and d lmax = 2 nm). The output field ES of the entire 
array was found from formula (6). The spectrum of this field 
has a complicated structure [25] with three different scales, 
related to the following factors: (i) random spread of fibre 
lengths on the order of few millimetres; (ii) a regular increment 
in the fibre length, multiple of 10 cm; and (iii) beatings of 
modes with different longitudinal numbers. The relative dif-
ference in the longitudinal-mode frequencies changes by few 
tenths of percent from laser to laser.

We found the wavelength within the gain band (4 nm) 
at which the efficiency of addition of output laser field, h = 
|ES(d l)|2/P0  (P0 is the total power in the absence of random 
spread of laser lengths), was maximum for each random sample 
of fibre lengths {Lm}. The number of injection-locked lasers, 
i.e., the lasers satisfying the condition G < Gth, was determined 
for this wavelength. The calculation results for 200 samples of 
laser lengths at a fixed rms spread of fibre lengths ád lmñ were 
averaged. 

The results of sample averaging are presented in Fig. 2 
for a small-signal gain G0 = 3.7. In the absence of refractive-
index nonlinearity, the mean efficiency monotonically decreases 
with an increase in the array size and the number of injection-
locked lasers first reaches a maximum (~6) and then decreases 
to 2 – 4. Thus, the maximum size of array in which phase locking 
can be implemented is on the order of ~7 – 8 lasers in this case. 
The resonant refractive-index nonlinearity at any sign of coef-
ficient a leads to some increase in the phase-locking efficiency 
of fields and radically changes the behaviour of the number 
of  injection-locked lasers (NL). This number monotonically 
increases with an increase in the array size up to N = 20.

To reveal the role of refractive-index nonlinearity, we will 
first analyse the effect of the decrease in the number of injec-
tion-locked lasers with an increase in the array size in the 
model disregarding the refractive-index nonlinearity. Since this 
effect arises at averaging over random samples, it is natural to 
apply the probability theory. In the asymptotic limit of a large 
array, the single-pass phase shift in a separate laser can be 
equated to lp, with a random detuning uniformly distributed 
over the interval (0, p). A variation in wavelength in the spec-
tral gain band leads to a change in random combinations jm 
(note that the integer l does not affect the total field). The 
field-addition efficiency is high only when the phase detun-
ings in most of lasers have close values. Generally, the central 
phase detuning is nonzero. Thus, we are interested in the 
probability of the situation where the phase detunings in all 
lasers fall in the interval ( jc – d j, jc + d j) ( jc is the midpoint 
of the interval and 2dj is its width). In the limit of a large-size 

array [33], the summation of laser fields can be replaced by 
integration and the addition efficiency can be defined as h = 
|Eav(jc, dj)|2/P0, where

Eav(jc, dj) = 2 ( , ) .dE Gout
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Figure 2.  Dependences of (a) the phase-locking efficiency h and (b) the 
number of injection-locked lasers NL, averaged over 200 random reali-
sations, on the number of lasers in the array, N. The rms spread of fibre 
lengths ádlm ñ = 1 mm; G0 = 3.7; Pinj = Pcr /2; the spectral gain bandwidth 
is 4 nm; a = (solid lines) 0, (dashed lines) 1, and (dotted lines) –1.

dj/rad

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.25 0.50 0.75 1.00 1.25 jc /rad

0.9

0.8

0.7

h = 0.6
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coupled lasers at G0 = 3.7 and Pinj = Pcr /2. The condition for frequency 
locking of lasing for each laser is fulfilled under the straight line.
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Here, Eout(G0, j) is found by solving Eqns (3) – (5). At an injec-
tion power below critical, it is also necessary to take into account 
the limitation on the phase detunings jm, which is related to 
the stability of lasing controlled by external signal [36].

Figure 3 shows isolines of the field-addition efficiency h 
in the jc, dj plane at an injected-signal power equal to half of 
critical power in the absence of refractive-index nonlinearity 
(a = 0). A segment of a straight line described by the equa-
tion dj = p/4 – jc limits from above the region of states in 
the jc, dj plane that corresponds to the frequency locking 
by external signal. The ratio of the area between the two h 
isolines to the total area in Fig. 3 (equal to p2/4) determines 
the probability for the field-addition efficiency to lie in the 
range of its values for the two corresponding isolines.

The plots in Fig. 3 indicate that, at a field-addition effi-
ciency h ³ 0.8, the lasing in all lasers is controlled by external 
signal. When h decreases to values smaller than 0.8, the area 
of the region of possible states of phases jm in which lasing 
stops being injection-locked begins to rapidly increase, while 
the midpoint of the averaging interval in which the locking 
width d j is maximum significantly deviates from zero. The 
reason is that the decrease in the field-addition efficiency is 
caused by the increase in the phase detunings of the output 
laser fields. At a low addition efficiency the probability for the 
lasers only slightly detuned from resonance to make the main 
contribution to the total field decreases, while the probability of 
forming a group of lasers with similar frequencies at detunings 
j from exact resonance increases.

A part of the region in Fig. 3 under the isoline of specified 
efficiency is below the straight line dj = p/4 – jc. The area of 
this part determines the fraction of array lasers that are in the 
mode of stable injection-locked lasing, NL /N, provided that 
the field-addition efficiency exceeds the specified value. The 
thus found fraction of injection-locked lasers as a function of 
efficiency is shown by squares in Fig. 4, which also presents 
the results of direct statistical calculation for arrays with the 
same parameters as in Fig. 2, with averaging over 200 random 
realisations. It can be seen that the predictions of the asymp-
totic theory are in good agreement with the results of direct 
calculation.

The consideration of the resonant nonlinear phase shift 
D jm = aGm in the model leads to a small increase (by less than 
15 %) in the phase-locking efficiency at any sign of nonlin

earity and to a significant increase in the fraction of injection-
locked lasers. The number of such lasers continues to grow 
even in a large array (Fig. 2b). It can be seen in Fig. 4 (dashed 
line) that, at a fixed efficiency, an increase in the fraction of 
injection-locked lasers due to the resonant nonlinearity of the 
refractive index is within the statistical error. Thus, specifi-
cally the increase in the field-addition efficiency at the output 
of the laser array, with allowance for the resonant refractive-
index nonlinearity in the model, plays a key role in the enlarge-
ment of phase-locked array.

Until now, we studied the addition efficiency for the fields 
emitted by an array of fibre lasers, with an external signal of 
specified power at a specified wavelength, fed into each laser. 
In a globally coupled array, this signal is formed by splitting 
off a fraction kES of the total output field. In the next section, 
we will analyse a closed model for a system with a specified 
feedback coefficient k.

4. Model of phase locking of an array  
with a specified feedback

Let us now consider a globally coupled system, in which the 
power injected into each laser is determined from the formula 
Pinj = |kES|2/N. It is natural to begin with the array radiation 
wavelength equal to the wavelength at which the field-addi-
tion efficiency at specified parameters of array elements is 
maximum within the gain band. The next step is the iterative 
calculation of the output power of a phase-locked laser array. 
As an example (which is of independent interest), we took an 
array of 20 globally coupled fibre lasers. The spectral response 
and the total power of an array with a fixed random OLE 
sample in the vicinity of the maximum spectral response are 
compared in Fig. 5. Both values are normalised to the maxi-
mum in the resonance. The asterisks denote the boundaries of 
the locking spectral range (i.e., the range beyond which some 
part of array lasers generate independently). It can be seen 
that the positions of the maxima of both values coincide. The 
resonant curve for the power is narrower than for the spectral 
response. The consideration of the refractive-index nonlinear-
ity at a small excess of the lasing threshold (G0 = 2) makes the 
spectral response slightly asymmetric and significantly dis-
torts the spectral dependence of the output power (Fig. 5b). 
At large values of the small-signal gain, iterations cease to 
converge, because the dependence of the eigenfrequencies of 
cavities on the power circulating in them becomes multival-
ued.

Note that the fraction of the output power spent on cou-
pling between elements is an important parameter. An increase 
in this fraction makes coupling stronger and thus increases 
the probability of implementing phase locking for all lasers. 
The increase in this parameter is limited by two factors: non-
linear effects in adder and the decrease in the output power. 
The nonlinear effects in the adder are not analysed here, 
because its design must be specified to this end.

Figure 6 shows the power of a 20-laser array before the 
global-coupling system (PS = |ES|2) and the output power 
(Ptot = 1 – k2PS) for different values of the parameter k2, at 
a = 0, G0 = 3.7, and a random sample of laser lengths, as for 
Fig. 5. The histogram shows the fraction of injection-locked 
lasers. The output power at specified array parameters and 
a fixed random sample is maximum at the fraction of power 
fed to the global-coupling device k2 ~ 0.2 – 0.3. At smaller k 
values some lasers begin to generate independently, while 
at  larger k the output power decreases. Note that the value 

NL/N

0.8

0.6

0.4

0.2

0
0.5 0.6 0.7 0.8 0.9 h

Figure 4.  Dependence of the fraction of injection-locked lasers on the 
phase-locking efficiency for an array with the same parameters as in 
Fig. 2. The solid and dashed lines correspond to a = 0 and 1, respec-
tively; black squares show the result of calculation within the semi-
analytical model.
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k2 = 0.2 corresponds to the power Pinj = 0.42 injected into 
each element, which exceeds the critical power for the specified 
parameters (Pcr = 0.362). The consideration of the refractive-

index nonlinearity with a = 1 at G0 = 3.7 and k2 = 0.2 in the 
model leads to an increase in the beam-addition efficiency 
from 0.53 at a = 0 to 0.64 at a = 1. An increase in the effi-
ciency leads also to a growth of the power injected into each 
laser; therefore, the output power increases by approximately 
20 % due to the refractive-index nonlinearity. 

Figure 7 shows the dependence of the output power on the 
integral small-signal gain G0 for the same array realisation as 
in Figs 5 and 6 (20 lasers, a = 0), at two values of the feedback 
coefficient. The cost of phase locking can be understood by 
comparing the output powers of systems with specified and 
zero OLE spreads. The efficiency of a system, i.e., the ratio of 
the output power of a laser array to the power of the same 
array but in the absence of the OLE spread, increases with an 
increase in the small-signal gain and reaches 59 % at G0 = 5.2.

The consideration of the refractive-index nonlinearity 
with a = 1 in the model discussed here increases the efficiency 
to 70 %, a value much higher than the predicted and observed 
phase-locking efficiency (54 %) for a system composed of fibre 
amplifiers with X couplers [23]. The result of a further increase 
in the small-signal gain is that the consideration of optical 
nonlinearity leads to the absence of convergence of iterations 
in solution of Eqn (6), which may indicate unstable steady-
state array lasing. It should be emphasised that the calcula-
tion results in Figs 5 – 7 correspond to some fixed OLE sample 
with an rms spread of 1 mm. Figures 2 and 4 give some idea 
of variations in the output characteristics due to a change in 
the sample of random OLE values.

5. Conclusions

The development of a self-consistent model of a fibre laser 
array with an external global-coupling system made it possible 
to calculate the attainable output power of the array in the 
regime of phase self-locking. This model takes into account 
the presence of many longitudinal modes in the cavity of an 
individual laser, refractive-index nonlinearity, and nonuni-
form field distribution over the cavity length. Each array ele-
ment is considered as a laser controlled by injection of a signal 
from the global-coupling system. The range of values of the 
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Figure 5.  Dependences of the total power (solid line, k = 0.45) and the 
spectral response at a fixed injection power (dashed line, Pinj = Pcr /2) for 
a 20-laser array on the frequency detuning at G0 = 2, ádlm ñ = 1 mm, 
2dlmax = 4 nm, and a = (a) 0 and (b) 1.
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Figure 6.  Dependences of (solid line) the power PS of a 20-laser array 
before the feedback system, (dashed line) the total output power Ptot, 
and (histogram) the number of injection-locked lasers NL on the frac-
tion of the power spent on feedback at G0 = 3.7 and a = 0. 
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Figure 7.  Dependence of the output power of a 20-laser array on the 
total small-signal gain at k2 = (solid line) 0.2 and (dashed line) 0.3. The 
dotted line shows the output power in the absence of OLE spread at 
k2 = 0.2.
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squared feedback coefficient k2 in which stable phase locking 
of an array of globally coupled fibre lasers can be imple-
mented was found to be ~0.2 – 0.3. The possibility of attain-
ing a phase-locking efficiency of 70 % for a 20-laser array was 
predicted; this efficiency significantly exceeds the previously 
reported values. We explain this difference by the fact that 
our model considers an array of lasers, each of which has an 
intrinsic cavity, rather than a system of amplifiers in a com-
mon cavity. The approach implemented here can be used 
(with insignificant modifications) to describe laser arrays with 
coupling via X couplers [12, 13] or with Fourier coupling [15]. 
The subject of further study is the analysis of the dynamic 
stability of phase locking, especially in the presence of refrac-
tive-index nonlinearity, as well as the analysis of regimes with 
partial phase locking of a laser array.
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