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Abstract.  A comparative analysis is performed of the electron 
emission characteristics as the electrons move in laser fields with 
ultra-relativistic intensity and different configurations correspond-
ing to a plane or tightly focused wave. For a plane travelling wave, 
analytical expressions are derived for the emission characteristics, 
and it is shown that the angular distribution of the radiation intensity 
changes qualitatively even when the wave intensity is much less than 
that in the case of the radiation-dominated regime. An important 
conclusion is drawn that the electrons in a travelling wave tend to 
synchronised motion under the radiation reaction force. The charac-
teristic features of the motion of electrons are found in a converging 
dipole wave, associated with the curvature of the phase front and 
nonuniformity of the field distribution. The values of the maximum 
achievable longitudinal momenta of electrons accelerated to the 
centre, as well as their distribution function are determined. The 
existence of quasi-periodic trajectories near the focal region of the 
dipole wave is shown, and the characteristics of the emission of both 
accelerated and oscillating electrons are analysed. 

Keywords: ultra-high-power laser radiation, radiation reaction force, 
dynamics and emission of an electron, dipole wave. 

1. Introduction 

Progress in the field of laser technology in recent years has 
made it possible to offer a number of large-scale projects to 
design ultra-high-power (at a level of 10 PW and higher) laser 
systems [1 – 3]. The interaction of optical fields produced by 
radiation from these systems with matter has a number of 
new fundamental features, including the important radiation 
reaction force [4, 5].

This article analyses the characteristics of acceleration 
and emission of charged particles (electrons) in the field of 
a  plane linearly polarised wave and an incident dipole 
wave,  when the influence of the radiation reaction force 
leads to qualitatively new effects in the interaction dynamics. 
In the case of a plane wave, which is in a sense a reference, 

we consider the formally negelcted emission, which quali-
tatively depend on the presence of reaction forces. We also 
analyse in detail the processes of acceleration and emission 
in a converging dipole wave [6], which allows one to reach 
the  maximum possible amplitude of the field at a given 
laser radiation power. In this more complicated case, it is 
found that the curvature of the wavefront affects the 
motion of charged particles, which leads to significant 
quantitative changes in the characteristics of the acceler-
ated particles in comparison with the case of a plane wave. 
In addition, the characteristics of the electron emission, 
which strongly depend on the type of the realised trajecto-
ries, are described. 

2. Electron motion and emission in the field  
of a plane linearly polarised wave 

As is known, the relativistic equation of motion with the 
radiation reaction force for a charged particle taken into 
account in a plane travelling wave has an exact analytical 
solution [7]. Nevertheless, a strict analysis of the emission 
characteristics of the particle can be made only in some extreme 
cases. The parameter is known [8, 9], which determines the 
relative importance of the effects of radiation reaction and 
equal to the ratio of the radiation reaction force on the period 
of the wave to the initial energy of the particle, 
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where e, m are the charge and mass of the particle, respec-
tively; c is the speed of light; w0 is the angular frequency of 
the wave; r0 = g0(1 ± b0) (plus or minus correspond to coun-
terpropagating and copropagating direction of the particle 
motion to a wave); g0 is the initial relativistic factor; b0 = u0 /c; 
u0 is the initial velocity of the particle;  and a = |e|A0 /(mc2) 
is  the amplitude of the vector potential A0 in relativistic 
units. According to (1) the dynamics of the electron in the 
radiation-dominated regime, when Rr ³ 1 and, therefore, the 
energy loss by emission of hard photons is large, strongly 
depends on the mutual direction of propagation of the wave 
and the particle. If the wave is incident on an initially resting 
electron, then the radiation reaction for the particle accelerated 
by the wave along its propagation direction will play an 
important role only for the amplitudes of the field that are 
comparable to the amplitude of the field 
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where Es = m2c3/('e); ' = h/2p; h is Planck’s constant; a is 
the  fine-structure constant; and the field Ecr is equal to 
~0.01Es » 1014 V cm–1 at a wavelength l = 0.8 mm. The fields 
of this magnitude may be produced in the foreseeable future 
due to the implementation of the projects [1 – 3]. On the other 
hand, when an optical wave interacts with an electron moving 
towards this wave, the situation may change qualitatively. 
Thus, Rr = 1 is reached for an electron with an energy of 
1 GeV in the laser field with a = 130 at a wavelength l = 
0.8 mm, which corresponds to the intensity of 3 ́  1022 W cm–2 
achievable today. This case is most often considered in the 
literature [8, 9], because it is of practical importance for gen-
eration of X-ray and gamma-rays. 

However, in this section we consider the situation when 
the radiation parameter Rr is small, but, nevertheless, its 
account can be crucial for finding the trajectories of the par-
ticle and the properties of its emission. This situation can 
emerge as a result of a relatively long interaction between the 
particle and the wave, when the effect of the weak radiation 
reaction builds up over time, and eventually the particle tra-
jectory, and hence its emission characteristics depend strongly 
on the radiation reaction. In Section 2.1 we consider the emis-
sion of initially resting electrons accelerated by the incident 
wave, for which, when the reaction force is neglected, we can 
determine the characteristics of the emission by the given tra-
jectory. In this case, the emission characteristics can be repre-
sented in an analytical form and amenable to complete analy-
sis. In section 2.2 we consider the case when the account for 
even a small radiation reaction force can qualitatively change 
the emission characteristics, namely, for a particle created at 
a zero electric field the angular distribution of the radiation 
intensity can be changed qualitatively. Finally, in Section 2.3, 
an important conclusion is made about the asymptotic behav-
iour of the electrons, which actually tend to synchronised 
movement under the action of the radiation reaction force. 

2.1. Emission of an electron accelerated by a plane  
incident wave 

Let us analyse first the acceleration by the incident semi-
bounded plane wave 
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of an initially resting electron ( y = 0), for which we can obtain 
exhaustive characteristics of emission.

With the amplitude of the field, much less than Ecr, we can 
ignore the effect of radiation reaction and write the corre-
sponding solution of the equation of motion in the parametric 
form: 
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where j = w0t – ky; k = w0 /c; py and pz are the projections of 
the particle’s momentum in relativistic units. 

In order to characterise the emission of a particle, we use 
the expressions for the radiation power P, the radiation power 
per unit solid angle PW and characteristic radiation frequency 
wc [4]: 
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where u and w are the velocity and acceleration of a particle; 
n  is the unit vector specifying the direction of the radiation. 
Equation (6) determines the centre frequency of the radiation 
when the particle moves along a curved trajectory. Using (3), 
we can find an expression for P, PW and wc: 

P = P0 a2 cos2j,	 (7)
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where P0 = 2e2 w0
2 /3c and q is the angle between the vector n 

and the propagation direction of the incident wave in the 
plane yz.

Let us determine the direction and the corresponding 
moments of time, at which the electron radiates most, as well 
as the characteristic radiation frequency. 

The function P(j) is maximal when j = kp, where k is an 
integer. Then, at a >> 1 

, 2 ,cosP
P a P

P a
0

2 2 2

0

q= =
W

W 	 (10)

where PΩ0
 = e2 w0

2 /(8pс).
In this case, the direction of the radiation does not depend 

on the intensity, the electron, because at the moments of time 
j – kp << 1 its acceleration and velocity are directed almost 
along the electric field, radiates as a dipole with a characteristic 
frequency 
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The function wc(j) is maximum when 
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Then, at a >> 1, we have 
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the width of the directivity pattern being equal to 3/a2, and 
the direction along which PW is maximum corresponding to 
q = 6 /a (the angle is defined as the ratio of the transverse 
and longitudinal momenta of the particle, because in the 
ultrarelativistic case the particles radiate in the direction of 
their motion in a narrow range of angles around the velocity 
vector, and the width of the directivity pattern behaves as an 
inverse function of the gamma factor of the particle). 

The function PW(q, j) is maximal (a >> 1), when q = 
2/(a sin j), j = arccos (1/ 3 ) + kp and j = –arccos (1/ 3 ) + kp; 
this follows from the decomposition of PW(q, j) in a series in 
a small angle q due to the ultrarelativistic character of motion. 
In this case, the expression for the power and the characteristic 
frequency of the radiation coincide with (12), the maximum 
output power per unit solid angle is given by 
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the characteristic width of the directivity pattern is 3/a2, and the 
direction in which PW is maximum corresponds to q = 6 /a. 

Now, using relation (3) for j and t, the character of accel-
eration and emission can be described as follows. Initially, the 
particle is accelerated by the incident wave and emits into a 
fairly large solid angle, having the maximum output power 
(10) at the initial moment of time. Then, on the time interval 
0 <  t K 0.12a2/w0, the particle moves at relativistic speeds, 
the directivity pattern gradually narrows down and is directed 
along its velocity of motion. The radiation power decreases to 
a value determined by (12), and the radiation frequency 
increases to the value of wc from (12). At a time t = a2 p /(8w0) 
(j = p/2), the output power is zero because the particle is not 
subjected to any force. Then, by virtue of the periodic nature 
of the interaction, the particle starts to slow down, the directiv-
ity pattern broadens, and the radiation power increases again to 
a level (10), corresponding to the stopping time of the parti-
cle. Below, the above process of particle acceleration and 
emission within the approximation neglecting the radiation 
reaction force is repeated periodically. 

2.2. A special case of the influence of the radiation  
reaction force 

Consider now the case when, despite the smallness of the 
parameter Rr, the influence of the reaction force can qualita-
tively change the character of motion and characteristics of 
radiation, respectively. For example, Di Piazza et al. [9] pre-
sented an example of interaction of an incident wave with a 
counterpropagating electron and showed that by selecting the 
wave and the particle parameters, one can change the sign of 

the longitudinal velocity by taking into account only the radi-
ation reaction force. This is due to the fact that the wave itself 
under the action of ponderomotive forces can greatly reduce 
the longitudinal velocity of the electron, and therefore even 
account for a small radiation reaction force can turn the 
electron, i.e., make it move in the opposite direction. We show 
that this situation can be realised for the transverse projection 
of the velocity; however, in this case the electron at the initial 
moment shoudl be in the correct phase of the field. This con-
dition can be achieved, for example, during ionisation of atoms 
by hard photons. 

Let the electron be produced with a zero transverse 
momentum at a time when the field of a plane linearly polar-
ised wave is zero. We use the general solution of the relativis-
tic motion equation, which can be written as [7] 
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As is known, in the absence of the radiation reaction force 
such an electron obtains a maximum constant component of 
the transverse momentum, so that the transverse momentum 
is always negative (p  ̂< 0). Account for the radiation reaction 
will lead to the fact that at some point in time, the projection 
of the transverse momentum changes the sign, i.e., the elec-
tron will turn around and move in the opposite direction. 
Assuming j0 = 0, one can easily see this from the solution of 
(14), taking into account that p^ ® a cos j at j ® ¥. 

We use expression (5) and construct the angular distribu-
tion of the radiation power of the electron produced at a zero 
field. The azimuthal angle is measured from the direction of 
the electric field at the initial time. As follows from the com-
parison of the curves in Fig. 1, the effect of the radiation reac-
tion force leads to a qualitative change in the angular distri-
bution of the radiation intensity, which is due to differences in 
the behaviour of the electron motion. 

2.3. Synchronisation of electron motion by the radiation  
reaction force 

Here, we pay particular attention to the fact that the general 
form of the solution of the relativistic motion equations (14) 
in the field of a plane travelling wave with the radiation reac-
tion force in the Landau – Lifshitz form allows one to make a 
fundamentally important conclusion. Indeed, it is easy to see 
that in the general solution all the trajectories tend to a limit, 
which corresponds to the trajectory of an electron produced 
at the zero vector potential of the wave or at the maximum of 
the electric field. This conclusion not only confirms the theo-
rem on the phase space compressibility of particles interacting 



	 A.V. Bashinov, A.A. Gonoskov, A.V. Kim, M. Marklund, et al.294

with the laser field, taking into account the radiation reaction 
force [10, 11], but also leads to an even more important state-
ment about the asymptotic synchronisation of the motion of 
all particles. The trajectory of this limiting motion has an 
average value of the transverse momentum, equal to zero 
[T(j)/h(j) ® cos j at j ® ¥), and, in particular, can be 
obtained from equation (14). Assuming j >> Rr

–1, we obtain 
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As is easily seen, the electron in the field of the incident linearly 
polarised wave is accelerated in the direction of its propaga-
tion and its average energy is proportional to t1/3, because t = 
w0–1ò0

j
h(x) g(x) dx ~ j3 and g(x) ~ j at j ® ¥. Note for 

comparison that in a circularly polarised wave the energy is 
proportional to t2/3 [12]. 

3. Electron motion and radiation in a converging 
dipole wave 

Consider the case of tightly focused laser radiation in the 
form of an optical wave of dipole configuration. This configu-
ration is of interest because it allows one, at a given power of 
the laser radiation source in the focal region of size ~0.032 l3, 
to create a field with the highest intensity in comparison with 
other focusing geometries. As will be shown below, the rela-
tivistic dynamics of an electron in the field of a converging 
dipole wave has a number of interesting and important applied 
properties. Unlike the case of a plane wave, the motion of the 
electron carried away by the dipole wave will depend on its 
initial position with respect to the centre of the converging 
wave. The question arises: When is the emission of electron 
radiation most effective and, therefore, the effect of the radia-
tion reaction force maximal? According to equation (1) and 

the previous arguments, it is natural to expect that the maxi-
mum radiation burst will occur in the central region for those 
electrons that have acquired the largest longitudinal momen-
tum in the converging wave and met the diverging wave 
reflected from the centre. For the analysis of the acquired lon-
gitudinal momentum we first consider a model problem with 
a sharp switching on of the field, which can have a relatively 
simple physical interpretation. Then, we turn our attention to 
a realistic pulse with a smooth envelope. 

3.1. Incident pulse with a sharp switching on of the field 

Let the centre of the converging dipole wave be located at the 
origin of the Cartesian coordinate system. Then, the expres-
sions for the electric and magnetic fields of the dipole wave 
can be given in the form [6] 
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where R is the radius vector from the focusing point to the 
observation point with |R| = R and n = R/R; g±(t, R) = 
g(t – R/c) ± g(t + R/c); d0 is an arbitrary constant vector, the 
modulus of which is related to the dipole wave power P; and 
d0 = (3Pс3/2)1/2. Consider the trajectory of the particles and 
compare them with the trajectories in the case of a plane wave. 
It is useful to bear in mind that the amplitude of the incident 
dipole wave along its propagation axis is related to the power 
as follows: 
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As in Section 2, we assume that the electrons are initially at 
rest and a semibounded radiation pulse with a sharp switching 
on of the field is incident on them, so that 
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where j = w0t – w0 R/c. For the analysis it is sufficient to con-
sider the behaviour of electrons within the half-cycle of the 
wave, during which they must lag behind by half of the wave-
length from the leading edge of the pulse. 

As is known, in the field of a plane wave an initially rest-
ing electron acquires a longitudinal momentum p|| = A2/2 
along the propagation direction of the wave and shifts in the 
transverse direction with a transverse momentum p̂  = A [4], 
where A is the dimensionless vector potential at a point where 
the particle is located. We take as the amplitude of the vector 
potential of a plane wave ap its value corresponding to the 
amplitude of the incident dipole wave at a point of the initial 
location of the electron Rc: ap = ad(R = Rc). Figure 2 shows 
the electron trajectories for two different wave powers, 10 and 
100 PW; one can see that they are qualitatively similar, and 
this is an evidence of the role of small radiation reaction force 
for the electrons accelerated to the centre. However, the accel-
erations of the electrons in the propagation directions of 
the dipole and the plane waves are qualitatively different: the 

1.00

W (rel. units)

0.75

0.50

0.25

0
–p/2 p/2 p j/rad0

Figure 1.  Azimuthal angle j as a function of the energy W radiated 
by an electron produced at a zero field during its lag behind the wave 
by 20 field cycles with (solid line) and without (dashed line) radiation 
reaction taken into account. Dimensionless vector potential amplitude 
is a = 100, g0 = 1, l = 0.8 mm and Rr = 1.6 ́  10–4. 
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rate of acceleration and achievable values of the longitudinal 
momentum in a converging dipole wave are much lower than 
in the plane wave, despite the fact that the converging wave 
amplitude increases rapidly to the centre. This is due, primarily, 
to the curvature of the phase front of the dipole wave, and to 
the transverse nonuniformity of the field distribution. In the 
converging wave the electron initially located in the azimuthal 
plane wave (z = 0) first acquires a (transverse) momentum, 

perpendicular to it, but, deviating from this plane, it also 
acquires longitudinal acceleration (along the y axis). However, 
moving in the transverse direction, the electron is affected by 
the converging wave, the heterogeneous nature of which 
leads to additional forces, which return it to the side of the 
azimuthal plane. This limits the motion of the electron in 
the transverse direction (as seen from Fig. 2, it is pressed to 
the plane z = 0 stronger than in the case of motion in the 
plane wave), and consequently, the corresponding rate of 
longitudinal acceleration, typical case of a plane wave, is 
not achieved. Figure 3 shows the gamma factor of the elec-
tron along the trajectory and the vector potential of the 
converging wave at the point of the electron location; one 
can see that the acquired longitudinal momentum is much 
smaller than the corresponding value in the field of a plane 
wave (1 + A2/2). 

To determine the number of the electrons accelerated to 
the centre and the values of the longitudinal momenta 
acquired by the electrons, we calculate the corresponding dis-
tribution of the particles, if they were initially uniformly dis-
tributed along the y axis. Figure 4 shows the distribution of 
the particles inside a sphere of radius 3l/2 as a function of the 
longitudinal momentum. One can see that there is a maxi-
mum in the vicinity of the highest attainable longitudinal 
momenta that are about 2.3 times higher than the correspond-
ing values of the vector potential, i.e., ad(R = 3l/2) » 440 at 
100 PW and ad(R = 3l/2) » 140 at 10 PW. This maximum in 
the distribution is due to the large time of the interaction of 
these particles with the wave. Figure 5a shows the dependence 
of the maximum longitudinal momentum on the power P, 
which agrees with the above assessment, and a longitudinal 
momentum, acquired in a plane wave with the amplitude cor-
responding to the field amplitude of the dipole wave at a point 
of the electron trapping (inset in Fig. 5a). These values are, of 
course, less than those in the plane of the dipole wave, which 
is associated with an increase in the amplitude of the dipole 
wave as it approaches the focus and, consequently, with a 
large longitudinal momentum acquired. However, it should 
be noted that in the field of the plane wave the maximum lon-
gitudinal momentum (ap2/2) achieved at a distance ap2l/16 
from the point of initial location of the electron, and it is 
higher than the maximum value (~2.3ad) in the dipole con-
figuration (Fig. 5b). Thus, at a power of 200 PW we have ap2 /2 
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Figure 2.  Electron trajectories in the converging dipole wave with a 
power of (a) 10 and (b) 100 PW and a duration equal to half the period 
of the field as well as in the field of a plane wave (dashed curves) with 
an amplitude equal to the field amplitude of the dipole wave at a point 
of the electron trapping. Solid curves correspond to the electron trajec-
tories with a maximum longitudinal momentum in the observation point 
y = l/2. For comparison, on each panel the dash-and-dot line shows one 
of possible electron trajectories with a nonmaximal longitudinal mo-
mentum in the observation point y = l/2. The transverse field distribu-
tions in planes y = (c) 6l and (d) 7.5l.

1 2 3 4 y/l0
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Figure 3.  Dimensionless vector potential (solid line) and gamma factor 
(dashed line) along the trajectory shown in Fig. 2a by a solid curve. 
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= 2665 and ad = 620. Since the distance ap2l/16, corresponding 
to the electron trajectories in the field of the dipole wave, is 
much greater than the distance to the focal point, we can say 
that the rate of the delay of the electron from the leading edge 
of the wave is higher in the dipole wave (Fig. 2).

3.2. Incident pulses with a smooth envelope 

For the analysis of realistic scenarios of interaction we con-
sider the incident pulse with a smooth envelope, which may 
be important for the electrons accelerated to the centre and 
able to experience the impact of both the incident wave and 
the wave passed through the centre. First, consider the dis-
tribution of electrons over the longitudinal momenta, simi-
lar to that shown in Fig. 4. Figure 6 shows the correspond-
ing distribution for a pulse with the envelope sin2 t, includ-
ing 3 and 10 cycles of the field. For a short pulse (Fig. 6a), 
together with the maximum achievable longitudinal momen-
tum of the order of the maximum field amplitude, additional 
peaks appear, which correspond to the local maximum in 
the distribution of the instantaneous pulse intensity. 
Interesting enough is the fact that for long pulses (Fig. 6b) 
high-energy peaks are suppressed due to the interaction of 
electrons with the counter (passed through the centre) wave, 
which can dramatically reduce the longitudinal momentum 
due to radiation reaction, as well as complicate the structure 
of the distribution function due to electron scattering by the 
counterpropagating wave. 

For more detailed analysis we consider the trajectories of 
the electrons trapped at the periphery and accelerated toward 
the centre. Figure 7 shows the trajectories of the electrons 
moving in the field at two different pulse durations and a 
power of 200 PW both including and neglecting the radiation 
reaction. Each vertex of the trajectories corresponds to the 
electron delay in the reference frame of the incident wave by 
l/2. One can see that in the field of the plane wave the delay 
occurs later than in the field of the dipole wave; in addition, in 
the field of the dipole wave the electron moves along a loop 
trajectory, which is qualitatively different from the case of the 
plane wave trajectory. In the field of the plane wave the loop 
motion is possible when the electron initially moves towards 
the laser pulse. This fact reduces the maximum attainable 
Lorentz factor of the accelerated electrons by r0 = g0(1 + u0 /c) 
times, where g0 and u0 are initial values of the gamma factor 
and the electron velocity. The loop motion in the dipole wave, 
corresponding to the motion towards the pulse, can be seen in 
the electron trajectory, shown in Fig. 7b and in Fig. 7d, which 
shows the function cos a (a is the angle between the electron 
velocity vector and electron direction to the centre of the dipole 
wave). One can see that the angle a in the case of loop motion 
may be higher than p/2 and even up to ~p. 
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Figure 4.  Longitudinal momentum distribution functions of the electrons trapped inside a sphere of radius 3l/2 as they interact with the dipole wave 
with a power of (a) 10 and (b) 100 PW and a duration equal to half the period of the field. 
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Thus, the dipole wave due to the phase front curvature 
turns the particle and makes it move towards the wave. By 
analogy with the interaction of an electron with a plane wave, 
which initially moves towards a wave with the same gamma 

factor, we can conclude that the effect of the front curvature 
slows down the acceleration. An important feature of the tra-
jectories shown in Fig. 7 is also their qualitative dependence 
on the radiation reaction force. As noted above, it can be 
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Figure 6.  Longitudinal momentum distribution functions of the electrons trapped inside a sphere of radius 3l/2 as they interact with the dipole wave 
with a total duration of (a) 3 and (b) 10 periods of the field and a power of 10 PW. 
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ignored as long as the particle interacts predominantly with 
the copropagating wave (corresponding to y L l in Fig. 7). 
Then, the particle is accelerated to the centre, begins to interact 
with the counterpropagating wave, and the role of the radia-
tion reaction increases significantly; thus, according to (1), 
the regime of this interaction may become radiation-domi-
nated. For the parameters, corresponding to trajectory ( 1 ) in 
Fig. 7b, y ~ l, gm ~ 400, ad ~ 700, r0 ~ 2gm, where gm is the 
gamma factor of the particles at the initial moment of interac-
tion with the counterpropagating wave Rr L 2. One can see 
that the radiation reaction can confine the particle in the 
region of the strong field, while without taking it into account 
the particle quickly leaves the focal region. From a compari-
son of the trajectories in Fig. 7b and the field distribution in 
Fig. 7c one can see that a trajectory can be realised when the 
electron oscillates around a local maximum of the field for a 
long time (for a few oscillations of the field) before the pon-
deromotive force expels it in the transverse direction. 

3.3. Characteristic features of the electron radiation 

Characteristic features of the electron emission for two pulse 
durations can be easily obtained through a comparative anal-
ysis of the spectral output powers in different parts of the tra-
jectories. For a short pulse the trajectory of motion ( 1 ) in 
Fig. 7a clearly shows that the qualitative change in the radia-
tion behaviour stems from the collision of an electron with the 
wave passing through the centre (solid curve in Fig. 8a); in 
this case, the emission occurs mainly in the region y = l/2, 
and its power greatly increases compared to the power at the 
initial points of the trajectory (in particular, at point y = l 
shown by the dashed line). Note that the radiation in the 
region y = l/2 occurs at much higher frequencies, which 
actually corresponds to the emission of a relativistic electron 
in a counterpropagating wave. In the case of a long pulse the 
main contribution to the radiation whose spectrum is shown 
in Fig. 8b, is made by the electrons oscillating in the region of 
the strong total field of the incident wave and the wave passed 
through the centre with the gamma-factor corresponding to 
the local value of the vector potential. The typical trajectory 
of the electron in the field of the long pulse is shown in Fig. 

7b, from which it can be clearly seen that before reaching the 
centre the electron initially accelerated by the field of the inci-
dent wave is sitting in the antinodes of the field at a distance 
of 3l/4 from the centre. In this phase of the motion its quasi-
periodic trajectory corresponds to a purely oscillatory motion 
of the electron in the field of the standing wave, which is con-
sistent with the relevant characteristics of the radiated power. 
For comparison, the dashed lines show the spectral powers 
emitted by the electron at a previous moment of time, corre-
sponding to the acceleration stage, and therefore interaction 
only with a copropagating wave, i.e., when it is at point y = 
3l/2. These curves are an indicative of a much smaller radia-
tive power of the electron before they start interacting with 
the counterpropagating wave. We also note that the spectral 
powers represented by the solid curves in Fig. 8 are almost 
identical, and this, despite the different nature of radiation, is 
due to the fact that the characteristic values of the longitudi-
nal and transverse momenta in both cases have the same 
order and are determined by the local values of the vector 
potential. 

4. Conclusions 

We have analysed the ultrarelativistic motion of the electron 
and the characteristics of their radiation in the field of two 
waves: a plane linearly polarised wave and a converging 
dipole wave. 

In the case of a plane wave we have derived the expres-
sions for the radiation characteristics of the accelerated elec-
trons (total power, power emitted per unit solid angle, and 
characteristic frequency), and have shown that the account 
for the radiation reaction force can qualitatively change the 
character of the motion and characteristics of radiation, 
respectively. 

Analysis of the electron motion in the field of the converg-
ing dipole wave shows that it depends strongly on the pulse 
shape and is determined to a large extent by the front curva-
ture. In particular, for pulses with a sharp switching on of the 
field, the maximum attainable (in the acceleration) longitudi-
nal momenta are close to the values of the vector potential a 
at the point of the particle location, which is much smaller 
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Figure 8.  Power emission spectra of an electron in the field of the dipole wave with a duration of (a) 3 and (b) 10 periods of the field and a power of 
200 PW. The solid curve in panel (a) corresponds to an instant of time p/(2w0) from the beginning of the interaction with the counterpropagating 
wave ( y ~ l/2), and in panel (b) – a characteristic power emission spectrum of an electron oscillating near the field maximum; dashed lines show 
a characteristic spectrum before the interaction with the counterpropagating wave.
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than the corresponding values (a2/2) in the field of the plane 
wave. We have determined the distribution function of the 
electrons accelerated to the centre due to the longitudinal 
momentum, the function being maximal in the region of the 
maximum achievable pulses because of the long times of 
interaction between electrons with the pulses and the wave. 
For relatively long pulses with a smooth switching on of the 
field it is shown that the main contribution to the emission is 
made by electrons oscillating in the central region near the 
field maximum, the relativistic factor of which is approxi-
mately equal to the vector potential. The formation of such 
trajectories is due to the transition of the particle – field inter-
action to the radiation-dominated regime. 
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