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Abstract.  We consider different mechanisms of nonlinear frequency 
up-conversion of femtosecond pulses emitted by an erbium fibre sys-
tem ( l = 1.5 mm) to the range of 0.8 – 1.2 mm in nonlinear silica 
fibres. The generation efficiency and the centre frequencies of disper-
sive waves are found as functions of the parameters of the fibre and 
the input pulse. Simple analytical estimates are obtained for the spec-
tral distribution of the intensity and the frequency shift of a wave 
packet in the region of normal dispersion during the emission of a 
high-order soliton under phase matching conditions. In the geometri-
cal optics approximation the frequency shifts are estimated in the 
interaction of dispersive waves with solitons in various regimes. 

Keywords: wave dispersion, nonlinear fibre optics, seed pulses for 
parametric amplification, interaction of solitons and dispersive waves. 

1. Introduction 

One of the important methods for obtaining ultrahigh optical 
fields relies on the use of optical parametric chirped-pulse 
amplifiers based on large-aperture DKDP crystals [1]. These 
amplifiers pumped by the second harmonic of a neodymium 
laser produce pulses at the wavelength of a signal wave lsn » 
0.9 mm with an energy of 25 J and a duration of 45 fs, which cor-
responds to the 0.56-PW pulse power [2]. Because the required 
radiation source emitting at the wavelength of the signal wave 
is not available, in the first stage of parametric amplification 
noncollinear phase matching was used in the interaction of the 
second harmonic of neodymium radiation (0.515 mm) and the 
idler wave from the Cr : forsterite laser (wavelength of 1.25 mm). 

This paper deals with the possibility of direct ultrashort 
pulse generation at lsn » 0.9 mm. Such pulses can be generated 
in a nonlinear-optical converter, consisting of a segment of a 
highly nonlinear silica fibre. The possibility to produce ultra-
short pulses in the 1-mm range using femtosecond pulses gen-
erated by an erbium-doped fibre system at a wavelength of 
1.56 mm was previously shown in papers [3, 4] (see also [5]).

The most effective mechanism for producing such short-
wavelength radiation is the generation of linear dispersive waves 
in the region of normal dispersion of an optical fibre under 
compression during the propagation of a high-order soliton 
pulse whose wavelength lies in the region of anomalous disper-
sion [6 – 10]. In view of the need to observe phase-matching 

conditions for their generation, one can often find the term 
‘Cherenkov radiation’. Ability to generate dispersive waves was 
especially actively investigated in relation to photonic-crystal 
fibres, the manufacturing technology of which allows one to 
form the given profile of the dispersion curve in a very wide 
range of wavelengths [11]. From the fundamental and applied 
points of view, of interest is the interaction of dispersive waves 
with soliton pulses, which can lead to a further increase in the 
frequency and mastering of even a shorter wavelength range. 
To date, continuous frequency tuning of dispersive waves is 
well studied in the interaction with a potential of a frequency-
shifted Raman soliton [12 – 15]. In addition, using numerical 
simulations Liu et al. [16] found a stepwise frequency shift.

In this paper, we analyse in detail the mechanism of gen-
eration of dispersive waves by a high-order soliton and provide 
a simple analytical approach in the framework of geometrical 
optics to estimate the frequency shift of the wave packets in the 
region of normal dispersion during their interaction with soli-
tons. Numerical modelling confirms a rather high accuracy of 
the analytical estimates. As a real system, we consider the 
propagation of femtosecond pulses emitted by an erbium-
doped fibre laser system at a wavelength of 1.5 mm in highly 
nonlinear dispersion-shifted silica fibres.

It should be noted that these results can also be used to gener-
ate tunable pulses in the visible optical range in photonic crystal 
fibres pumped by a Ti : sapphire laser or a fibre laser near 1 mm. 

2. Generation of dispersive waves in Nthe-order 
soliton compression 

In the general case, the generation dynamics of the dispersive 
waves in the region of normal group velocity dispersion, and 
their interaction with frequency-shifted fundamental solitons 
or higher-order solitons in the region of anomalous dispersion 
can be considered within the framework of the generalised 
nonlinear Schrödinger equation [17]: 
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where A(z, t) is the slowly varying amplitude; z is the coordi-
nate along the fibre axis; t is the time in the retarded frame; b is 
the waveguide mode propagation constant; bm = ¶mb/¶wm; w 
= 2pf is the angular frequency; w0 is the carrier frequency; g is 
the nonlinearity coefficient; and R(t) is the delayed (Raman) 
nonlinear response [17, 18]. 
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Equation (1) can be numerically integrated by the pseudo-
spectral split-step Fourier method (SSFM) [17]; the results of 
the integration will be presented in Section 4. For qualitative 
understanding of the properties and analytical estimates we 
will consider first a simplified model that takes into account the 
Kerr nonlinearity as well as quadratic and cubic dispersions 
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where B2 = b2(w0), B3 = b3(w0). Equation (2) describes both 
the radiation of dispersive waves and their interaction with 
the soliton pulses. 

Consider the initial stage of the evolution of the Nth-order 
soliton pulse [ N = ( gP0t0

2/|b2|)1/2 ] [17], given in the region of 
anomalous dispersion of a nonlinear optical fibre. Due to 
self-phase modulation the spectrum is broadened. When the 
phase-matching point is reached by the high-frequency wing in 
the region of normal dispersion, radiation of dispersive waves 
starts [8 – 10]. 

Figure 1 shows the propagation of the pulse with the ini-
tial amplitude A(0, t) = P0 /cosh(t/t0), t0 = 20 fs (corre-
sponding to the full width half maximum duration TFWHM = 
35 fs), N = 2.5 and the initial spectrum (Fig. 1a) in a fibre 
with the propagation constant b, its first b1 = 1/Vgr and sec-
ond b2 derivatives presented in Figs 1b, c and a, respectively. 
The signal spectra for different z are shown in Fig. 1d. 
Figure 1e shows the time dependence of the femtosecond sig-
nal intensity for z = 6LNL, where the nonlinear length LNL = 
1/( gP0) and P0 is the peak power. At the trailing edge of the 
soliton (Fig. 1e), one can clearly see the short-wavelength 
(SW) pulse.

For applications, of interest is the generation of such SW 
pulses at some centre frequency. In order to optimise the 
process, by solving numerically equation (2), we studied the 
dependence of the output frequency and efficiency (the ratio 
of the energy in the first SW pulse to the energy of the input 
Nth-order soliton) on B3 and N for fixed B2, g and t0. Contour 
curves in Fig. 2a show the frequency shift, f, in the THz range, 
corresponding to a shift of the maximum of the SW pulse 
spectrum with respect to the input frequency of the Nth-
order soliton. Contour curves in Fig. 2b show the efficiency of 
generation at different N. Note that at N > 2 the soliton can 
emit several wave packets in the region of normal dispersion 
with some time delays [19]. We traced the first emitted wave 
packet (though its spectrum may overlap with the second and 
subsequent wave packets). The closer the zero-dispersion 
wavelength to the input wavelength of the initial soliton (the 
higher the value of B3 at a fixed B2), the lower the frequency 
of the wave packet in the region of normal dispersion and the 
higher the efficiency for fixed N. For large N with fixed B3, 
higher-frequency pulses can be generated. As follows from 
Fig. 2, for the erbium-doped laser system, emitting near 1.5 mm 
(200 THz), one can obtain pulses at wavelengths of less than 
0.9 mm (200 + 140 = 340 THz) to 1.2 mm (250 THz) with an 
efficiency of 10 % – 20 %.

It should be noted that the obtained efficiencies are gener-
ally consistent with the results of papers [20, 21]. However, 
Chang et al. [21] showed that under pumping by few-cycle 
pulses whose spectrum was originally part of the region of 
normal dispersion, it is possible to obtain dispersive waves 
with 35 % efficiency.

Let us now consider in more detail the initial stage of the 
process of dispersive wave emission by a high-order soliton 
within the framework of a simple model based on equation (2). 

We represent the solution in the form A = AS + ADW, 
where the small addition ADW corresponds to radiating dis-
persive waves, while AS is responsible for the soliton compo-
nent. In the first approximation in ADW the right-hand side of 
the equation takes the form |AS|2AS + 2|AS|2ADW + AS

2A*
DW. 

The term |AS|2AS describes the soliton source, generating a 
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Figure 1.  (a) Spectrum of the input pulse and model dispersion curve 
of  the fibre; (b) propagation constant of the waveguide mode b and 
(c) its derivative; (d) spectrum of the signal at various lengths of the fibre; 
and (e) temporal distribution of the signal intensity. Double arrow in 
Figs 1d and e shows the correspondence between the spectrum of the 
SW pulse and its location on the time axis.
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wace packet of dispersive waves, the other terms being respon-
sible for the dynamics of the wave packet of dispersive waves 
propagating in the potential of the soliton. 

We write the equation (2) in terms of the Fourier trans-
forms, taking into account only the soliton source in the 
right-hand side: 
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The initial stage of generation of a wave packet of disper-
sive waves can be investigated without taking into account 
the linear in ADW terms in right-hand side. Because the disper-
sive waves are generated in a fairly narrow frequency band, it 
is enough to know the Fourier spectrum of the source QS(w, z) 
only near  the phase-matching frequency. In addition, the 
numerical simulation shows that the dispersive waves are gen-

erated only in a sufficiently narrow interval of the propagation 
coordinate z: from zDW – dz to zDW + dz. 

A detailed study of the results of numerical simulations 
allows us to find a simple dependence, which can approximate 
the function QS(w, z) in the region near the point (wDW, zDW). 
It turns out that the modulus of this function has an exponen-
tial square-law frequency dependence varying along z and the 
phase of this function is determined by the phase of the soliton 
with its group velocity taken into account:

QS = q exp [ –aw(z – zDW)2 – bw + i bSz],	 (4)

where q, a and b are the constants.
The soliton propagation constant at a frequency wS can be 

approximately written as

bS = b0(wS) + b1(wS)(w – wS) + gP0 /2.	 (5) 

Then the solution of the linear equation (3) can be expressed as 
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A rather complicated solution makes it impossible to 
instantly identify its properties, but allows one to verify the 
adequacy of the approximations made in comparison with the 
numerical simulations. Figure 3 shows the results of numerical 
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Figure 2.  (a) Frequency difference f (in THz) of the first wave packet 
generated in the region of normal dispersion and the initial frequency of 
the Nth-order soliton and (b) generation efficiency of dispersive waves. 
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simulations and the analytical solution by formula (6). One 
can see that the analytical solution reproduces well the expo-
nential wing of the soliton pulse and the appearance of a 
nearly Gaussian spectral peak of dispersive waves, corre-
sponding to the phase-matching condition b(w) – bS = 0. 

Being interested only in the value of |F|2 at the phase-match-
ing frequency, we can use equation (6) to derive the expression: 
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which shows how the spectral peak intensity of the dispersive 
waves increases during emission. The position of the phase-
matching point, generally speaking, is displaced during emis-
sion by changing the centre frequency of the soliton and its 
peak intensity. Because these changes are much smaller than 
the value of wDW and occur gradually, the constructed solu-
tion remains approximately correct if wDW is considered to be 
a function, which is weakly dependent on z. It should be noted 
that in accordance with the approximations the constructed 
solution does not take into account the dynamics of the 
emerging dispersive wave packet in the soliton field, which 
leads to a shift of the maximum of the spectral peak in the 
output signal. The interaction of the dispersive waves with 
the  refractive index changes induced by the soliton will be 
investigated elsewhere. 

At this stage, by neglecting the above-mentioned correc-
tions, we can simplify the expression for |F|2 in the case of 
large z, where the radiation process has already terminated. 
Then, using the explicit form of the dispersion dependence 
and neglecting the correction to the phase-matching condi-
tion related to the pulse power, we can show that the emis-
sion spectrum of the dispersive waves is approximately 
Gaussian: 
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The width of the resulting peak of the dispersive waves is 
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As seen from expressions (6) – (9), an important feature of 
the dispersive wave generation by higher-order solitons is the 
dependence of the intensity and width of the emitted spectrum 
on the speed with which the soliton parameters change during 
its initial compression. Figure 4 shows the dependence of the 
width of the spectral peak of the dispersive waves on the order 
of the input soliton for fixed dispersion. 

We now consider the mechanism of interaction of the 
dispersion waves with the Nth-order soliton. As can be seen 
from Fig. 1d, in the course of radiation by solitons the centre 
frequency of the pulse rises smoothly in the region of normal 
dispersion. This phenomenon is due to two effects: first, the 
above-discussed change in the position of the phase-matching 
point, and second, the interaction with the soliton as a result 
of cross-phase modulation. 

To study analytically the interaction, the well-known 
geometrical optics approach can be well applied, naturally 
assuming that, first, the peak power of the SW pulse is much 
less than the power of the soliton, which allows one to neglect 
the reverse effect of the dispersive waves on the soliton itself, 
and second, the nonlinear length for the SW pulse is much 
larger than the interaction length with the soliton, which 
permits the use of a linear approximation for the dispersive 
waves. In this case, the Hamiltonian H of the SW pulse prop-
agating in a fibre with a refractive index induced by the soli-
ton can be written as [22]: 
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Here j is the phase; z is the coordinate along the fibre; neff 
is  the effective refractive index; k0 is the wave number in a 
vacuum; and 

| | ,k n Ueff0
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where U(t) is the known slow envelope of the soliton pulse 
field.

The eikonal equation (10), a nonlinear partial differential 
first-order equation, belongs to a class of Hamilton – Jacobi 
equations and can be solved by the method of characteris-
tics [22]. 

The equation of characteristics can be written in a canonical 
Hamiltonian form: 
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where k is the effective wave number; H = H(w, k, z) is the 
Hamiltonian given by expressions (10) and (11); and x is 
the parameter that varies along the characteristic.

40

30

20

10

0

F
re

q
u

en
cy

/T
H

z

0.8 1.2 1.6 2.0 2.4 2.8 3.2

Soliton order N

Figure 4.  Dependence of the spectral peak width of the dispersive waves 
on the order of the input soliton, obtained by numerical simulation of 
equation (2) (points) and constructed by formula (9) (solid line). 
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The solution {t(x),  z(x)} of Eqns (12) – (15) defines the 
space – time rays in the two-dimensional space {t, z}, which 
can be regarded as a projection of the four-phase trajectory 
{t(x), z(x), w(x), k(x)}, satisfying the system of equations 
(12) – (15), onto the two-dimensional space {t(x), z(x)}. 

The equations of space – time rays (12) – (15) can be repre-
sented [22] in the form:

¶
¶

¶ ¶
¶ ¶

/
/ ,

z
t

H k
H w

= 	 (16)

¶
¶

¶ ¶
¶ ¶
/
/ ,

z H k
H tw

= 	 (17)

¶
¶

¶ ¶
¶ ¶
/
/ ,

z
k

H k
H z

= 	 (18)

and then with (10) and (11) taken into account transformed 
to the form 
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It follows from equation (20) that the frequency of the SW 
pulse will decrease during its interaction at the rising edge of 
the Nth-order soliton, whereas during the interaction at the 
trailing edge – increase. Note the analogy of the ‘fibre’ prob-
lem with the famous ‘plasma’ problem in which a quasi-soli-
ton signal during the interaction with the wave of medium 
parameters, travelling at a constant speed, can be reflected 
with increasing frequency [23]. 

Since the group velocity of the generated dispersive waves in 
the optical fibre with a single point of zero dispersion is less than 
the velocity of the soliton (Figs 1b and c), we can propose the fol-
lowing scenario of the SW pulse formation: first, due to 
Cherenkov radiation it is generated in the region of soliton local-
isation, and second, during the interaction with the soliton ‘moves 
down’ from it with increasing frequency according to equation 
(20). We assume that during the interaction the centre frequency 
of the Nth-order soliton has no time to change, and the group 
velocity is constant. Then, integrating (20), (21) with the condition 
|U|2 = |U(z – Vgr t)|2 taken into account, we obtain 

w – kVgr = const.	 (22)

The Nth-order soliton begins to emit near the point of 
maximum compression, z, with a peak power Pmax, whose 
dependence on the distance along the fibre is shown in Fig. 5a. 
Figure 5b shows the frequency corresponding to the maxi-
mum of the wave packet spectrum in the region of normal 
dispersion. 

First let dispersive waves be emitted at the centre fre-
quency w1, and after the ‘recession’ of the waves over time due 
to the difference of the group velocities the frequency shifts to 
w2. We assume that the SW pulse begins to form in the time 
representation near the peak power of the soliton, Pmax. Then 
from (22) with (11) taken into account, we have 

w1 – Vgr [ b(w1) + gPmax ] = w2 – Vgr  b(w2).	 (23)

From whence we immediately obtain an estimate for the 
frequency shift (w2 – w1 << w1), which is valid for the dispersion 
curve of any profile: 
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If we take into account only the quadratic and cubic dis-
persions and neglect under phase-matching conditions the term 
gP0 /2 in the right-hand side of (5), it turns out that the initial 
frequency of the dispersive waves is w1 » 3B2 /B3. In this case, 
equation (24) takes a very simple form: 
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At not very large N (N < 2.5) to estimate the order of the 
spectral shift, use can be made of the expression 
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Figure 6 shows a good correlation between the depen-
dence of the frequency shift of the wave packet in the region 
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of normal dispersion on N2, found in the numerical solution 
of equation (2), and the dependence, constructed by formula 
(26), where the notation D f = (w2 – w1)/(2p) is introduced. 

3. ‘Collision’ of dispersive waves  
with a fundamental soliton 

It is interesting to note that the process of radiation and inter-
action of the dispersive waves can be repeated many times for 
the high-order soliton. As is known, the pump pulse demon-
strates fission into fundamental solitons and the same number 
of relevant SW pulses, which then propagate at a constant 
group velocity [19]. In this case, the velocity of the solitons in 
the fibre decreases due to a decrease in the carrier frequency 
as a result of the Raman scattering [17, 18].

We consider a low-frequency fundamental soliton and the 
first emitted SW pulse, which falls behind the soliton. When 
propagating in the fibre, the soliton can slow down so that 
SW pulse catches it up, and the interaction may occur at the 
trailing edge [21], which can be conveniently interpreted as a 
collision. From (22), assuming the group velocity of the soliton to 
be constant during the interaction with the SW pulse, follows 
the condition relating the centre frequencies of the latter before 
and after the collision: 

b(w1)Vgr – w1 = b(w2)Vgr – w2,	 (27)

whence at w2 – w1 << w1 we obtain that 
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If we take into account only the quadratic and cubic dis-
persions, expression (28) transforms to the form that does not 
depend on the slope of the dispersion curve: 
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where wZD is the wavelength of the zero group velocity dispersion. 
Figure 7a shows the numerical solution of equation (2) 

for the spectrum evolution as the pulse propagates along the 
fibre. At z < 6 cm the SW pulse ( 1 ) catches up with the soliton, 
and at 6 cm < z < 10 cm they start to interact. Then, part of the 
wave packet ( 2 ) is reflected with increasing frequency, and 
part of it ( 3 ) propagates without any change in its frequency. 
The temporal distribution of the pulse intensity at z = 0 and 
z = 20 cm for the same parameters is shown in Fig. 7b. 

After collision the SW pulse has a lower velocity than the 
soliton. If the fibre is sufficiently long, the soliton can slow 
down again due to the Raman frequency shift [neglected in 
equation ( 2 ), but described by equation ( 1 )], so that the SW 
pulse can catch up with it and collide again with increasing 
frequency. This process can occur more than once [16]. 

The collision regime can also be implemented if, immedi-
ately after the formation of the SW pulse and the fundamen-
tal soliton, the first nonlinear optical fibre is connected to the 
second nonlinear optical fibre, in which the soliton propa-
gates with a slower group velocity than the pulse in the region 
of normal dispersion. This regime can be used in applications, 
requiring optically synchronised pulses at different frequen-
cies, and to expand the boundaries of the supercontinuum. 

It should be noted that in the geometrical optics model it 
is impossible to calculate the reflectivity of the SW signal; 

however, one can estimate the frequency shift with good accu-
racy. Calculations show that at the same soliton frequency and 
the same initial pulse frequency the shift in the region of nor-
mal dispersion is independent of B3, which is consistent with 
(29). If we introduce the notations x = (wS – wZD)/(w1 – wZD), 
y = (w2 – w1)/(w1 – wZD), then (29) takes the form 

y = x2 – 1.	 (30)

Figure 8 shows the graph of the function y(x), given by 
(30), and the estimated value of the function y(x), found in 
the numerical integration of equation (2). By w1,2 are meant 
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the frequencies corresponding to the maxima of the spectra 
of the corresponding wave packets. At relatively small values of 
x the spectra of the wave packets are overlapped, and at rela-
tively large x the assumption w2 – w1 << w1 is violated; there-
fore, the calculated and theoretical values differ slightly. At 
intermediate values of x, formula (30) and numerical simula-
tions coincide with a good degree of accuracy. 

4. Quasi-continuous interaction of dispersive 
waves with a Raman soliton 

We have considered above the interaction of SW pulses with 
a soliton in the form of a collision, which can be repeated 
many times in sufficiently long fibres. However, it is clear that 
at certain velocities of the Raman frequency shift of the soli-
ton, the frequency of the SW pulse can increase continuously. 
In this case, the latter is captured by a decelerating soliton, 
thereby increasing its frequency in accordance with the rate of 
deceleration [12 – 15], so that the group velocity of the SW 
pulse and the velocity of the soliton remain locally identical. 
This case of group phase-matching can also be easily analysed 
in the framework of the geometrical optics. 

For maximum frequency tuning of the SW pulse it is 
desirable to make use of a fibre with the most flat spectral 
dependence of normal dispersion. Then, while maintaining the 
group phase-matching conditions, the rate of the SW signal 
shift is higher than the rate of the frequency shift of the soli-
ton. The limiting frequency w1

max, to which the SW pulse can 
be tuned, is estimated from the condition b1(w1

max ) = b1(wS
min ), 

where wS
min  is the minimum achievable frequency of the Raman 

soliton during its propagation in a nonlinear fibre. This fre-
quency is mainly determined by the loss of the fibre and to a 
lesser degree by the soliton energy. For example, in germano-
silicate fibres solitons can be produced at wavelengths of up to 
2.5 mm [24], which theoretically allows one to estimate the 
minimum wavelength of the SW pulses in these fibres to be 
less than 0.8 mm. 

A situation is also possible, in which the chirped SW pulse 
in a collision with a soliton begins to increase abruptly the 
frequency at the leading edge, but the ‘new’ frequency is already 
present in its spectrum, i.e., a continuous frequency shift can 

occur as a result of extended collisions of the SW pulse lead-
ing edge with the soliton trailing edge. 

For a quantitative analysis we will use equation (1). To 
analyse the position of different spectral components on the 
time axis we construct a spectrogram 

S(w, t) = ( ) ( ) ( ) ,exp i dA t w t t tt w- -y 	 (31)

where w(t) = exp[ – (t/T )2 ] is the window function (T = 20 fs). 
Figure 9 demonstrates the function S(w, t) [calculated by (31)], 
constructed at various points in the fibre. Figure 9a shows a 
situation when the SW pulse ( 1 ) is behind the soliton. Figure 9b 
shows a situation when part of the wave packet ( 3 ) has passed 
through the soliton without changing the frequency, part ( 2 ) 
has been reflected with increasing frequency, and part ( 1 ) has 
not yet interacted. Figure 9c shows a case when almost the 
entire original wave packet has already interacted. It should 
be noted that the figure similar to Fig. 9b has been published 
previously [25]; however, the authors presented the results 
without comments. 

5. Conclusions 

We have considered the radiation of the dispersion waves by 
high-order soliton pulses in nonlinear silica fibres. It is shown 
that when the generation efficiency of the pulses in the region 
of normal dispersion is 10 % – 20 %, wavelength tuning range 
of 0.8 – 1.2 mm becomes available. We have considered the 
following regimes of increasing the dispersive wave frequency 
in the interaction with optical solitons in nonlinear optical 
fibres: ‘sliding down’ from the trailing edge of the soliton, 
reflection and quasi-synchronous interaction with the Raman 
soliton. As a part of the geometrical optics approach, we have 
obtained simple estimates of changes in the frequency, which 
are in good agreement with numerical simulations. 
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