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Abstract.  The spectrum of whispering gallery modes for resonators 
with a small deformation of the boundary is calculated analytically. 
Cylindrical resonators with two different cross sections (segment 
close to a circle and segment close to a semicircle) are considered. 
The calculation is performed for resonators with metal boundaries, 
but the obtained result is a good approximation for dielectric reso-
nators as well. The applicability limits of the found expressions for 
the spectra are analysed. It is shown that the spectra calculated 
using the obtained expressions coincide well with computer-calcu-
lated spectra. The perturbation-induces changes in the field distri-
bution are qualitatively studied using numerical simulation.

Keywords: whispering gallery modes, cylindrical resonator, pertur-
bation theory.

1. Introduction

Whispering gallery mode (WGM) resonators have been exten-
sively studied during the last two decades [1 – 3]. Recently [4], 
half-disk WGM lasers emitting in the mid-IR region were 
developed. The WGM resonators are characterised by a much 
higher Q factor than the resonators of other types. It is known 
[5], that the Q-factor in dielectric samples can exceed 108. In 
the case of semiconductor materials, it is possible to achieve 
a Q-factor of 104 [6]. Lasers based on WGM resonators are 
distinguished by a specific dynamic behaviour due to the 
geometry of mode fields and by positions of frequencies in 
the spectrum [7]. Semiconductor lasers also exhibit nontrivial 
optomechanical effects [8].

Deviations of disk and half-disk resonators from the ideal 
shape frequently occur upon fabrication. In particular, the 
cleavage of a half-disk resonator, as a rule, does not pass 
through the disk centre. Small chips can be formed on the side 
surfaces of disk resonators (Fig. 1). The aim of this work is to 
study the effect of small (a » DR/R << 1) defects on the mode 
structure of these resonators.

2. Statement of the problem

For simplicity, we will consider a resonator with perfectly 
conducting walls because it is known [9] that the solution for 

whispering gallery modes in a dielectric resonator with a 
high refractive index (the case of semiconductor lasers) only 
slightly differs from the solution for modes in a metal resona-
tor filled with dielectric. This approximation well describes 
the mode structure, but, if it is necessary to take into account 
loss for radiation, the resonator boundaries must be taken as 
dielectric.

As is know [10], the solution of Maxwell’s equations in a 
cylindrical region of the general form (not only in a circular 
cylinder) with perfectly conducting walls is reduced to the 
solution of the two-dimensional equation for the projection of 
the electric (TM mode) or magnetic (TE mode) field strength 
vectors on the cylinder axis. The corresponding component is 
described by the equation

D f + k2f =0 	 (1)

with the boundary conditions f = 0 for the TM mode and 
¶f/¶n = 0 for the TE mode. In the general case, the equation 
includes the refractive index of the material nm ¹ 1 and k2 
must be replaced by n2m k2, but we choose the speed of light 
such that c/nm = 1.

Note that the parameters k and l = 2p/k relate to the two-
dimensional problem. At the same time, the total squared 
wavenumber in the three-dimensional space consists of two 
terms, kt2 = kz

2 + k2, where kz and k are values of the same 
order.

As will be shown below, k for WGMs of imperfect resona-
tors have the form

k = k0 (1 + d),	 (2)

where k0 is the dimensionless unperturbed transverse wave-
number and d is a dimensionless small parameter weakly 
depending on the mode number. Therefore, the perturbed 
total wavenumber k’t should be determined by the formula 
k’t  = kt0 [1 + (k0

2/k2t0)d], where kt0 is the unperturbed total 
wavenumber.

3. Calculation of modes in the case  
of a half-disk resonator

Let us consider the case of a half-disk resonator (Fig. 1a). It is 
always possible to choose a system of units in which the disk 
radius is R = 1. Let us introduce cylindrical coordinates (r, j) 
so that the straight part of the half-disk boundary corresponds 
the angles j = 0 and j = p. Then, the solution of Eqn (1) for 
a half-disk with a unit radius will be

fm n = Am n Jm ( pm n r) sin (mj),  km n = pm n .	 (3)
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Here, Jm is the Bessel function of the mth order and pmn is the 
nth zero of the Bessel function of the mth order (m is a natural 
number). The Amn coefficient is chosen so that òA|fm n|2 dS = 1 
(integration is performed over the entire half-disk). From this, 
we obtain
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At m >> 1 and n << m, the Bessel function considerably dif-
fers from zero only at r » 1, i.e., solution (3) is concentrated 
near the half-disk boundary. These modes are the whispering 
gallery modes for the given resonator.

The solution of (1) for the region shown in Fig. 1a can be 
found by conformal mapping of this region onto a semicircle. 
If the function w (z), where z = x + iy, performs this transfor-
mation, then Eqn (1) can be written in the form

Dy = –k2 y|dw/dz|2.	 (4)

Here, the operator D and the functions |dw/dz|2 and y are 
considered in the coordinates for the half-disk region. If the 
region in Fig. 1a is close to a half-disk, then there exists a 
near-trivial transformation w (z) » z + ag(z) with a constant 
small parameter a. Then, |dw/dz|2 » 1 + af (z). Thus, with 
an accuracy to the terms of first-order smallness in a, Eqn (4) 
takes the form

Dy + k2 y = –ak2 yf.	 (5)

This is the equation with a small right-hand side for the simple 
half-disk region with the above boundary conditions y = 0. If 
a = 0, then the solutions fmn are known. For (5), one can use 
the standard perturbation theory [11], which, with an accu-
racy to the terms of the first-order smallness in a, leads to

f .dk k S1mn mn mn
A

2 2 a f f= - *c my  	 (6)

In our case, mapping of the half-disk (Fig. 1a) to a semicircle 
can be performed using the function
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where d = 2 arctan [(1 + sin a)/b] and b = cos a. Expanding 
function (7) in series with an accuracy to the terms of first-
order smallness in a, we find
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Then, f (r, j) in expression (5) takes the form
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The integral in (6) is

f
p
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Since sin2(mj) = 1/2 [1 – cos (2mj)] and the function cos (2mj) 
at large m rapidly oscillates compared to the slowly varying 
f (r, j), then, upon angular integration, the term cos (2mj) can 
be neglected. In this case, integral (8) is equal to 4/p. Sub
stituting this result into (6), we derive the final formula for the 
wavenumber of the given mode (in common units):

k = k0(1 + d),  d = –2a/p,  	 (9)

where k0 = pmn /(nmR) is the unperturbed wavenumber of the 
given mode.

The TE waveguide mode relates to the problem with homo
geneous Neumann boundary conditions df/dn = 0. Exactly 
the same considerations as in the case of the TM mode yield 
an expression coinciding with (9) but with different formula 
for the unperturbed wave number, k0 = hmn /(nmR), where hmn 
is the nth zero of the m-order Bessel function derivative.

At m ® ¥, the eigenvalues of whispering gallery modes 
can be calculated from the condition that the phase incursion 
is a multiple of p, i.e., knm(p + 2a)R = mp; then,

.k n R
m 1
m p= -

2ac m  	 (10)

In formula (9), pm n » m at m ® ¥, and expressions (9) and (10) 
coincide. Thus, formula (9) is confirmed in the limiting case.

For applicability of formula (9), the eigenvalues of Eqn  (5) 
for an imperfect resonator must be well described by the first 
approximation of the perturbation theory with respect to 
parameter a. This condition is fulfilled if the fields of modes 
corresponding to a given eigenvalue in perturbed and unper-
turbed resonators differ insignificantly. From the diffraction 
theory, it is known that the latter occurs when the size of a 
defect of the boundary parallel to the Poynting vector must be 
much smaller than the wavelength. In the described case, the 
characteristic size of a perturbation that qualitatively change 
the field is described by the formula DR = R(1 – cos a) » 
1/2Ra2. As a result, we obtain the equivalent conditions

a << /Rl ,  a << 2 /mp .	 (11)

For m = 600 we have a < 0.1.
Table 1 compares the wavenumbers found by formula (9) 

(kf) and by computer calculation (kc). One can see that, even 
for a relatively small m = 100, formula (9) at DR/R = a = 0.26 
yields an error of 10 %, which confirms applicability of for-
mula (9) even at rather strong deviations from the semicircle 
shape.

DR

DR
a

a
R R

a b

Figure 1.  Considered imperfect regions close to (a) a half-disk and (b) a 
disk.
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4. Calculation of modes in the case  
of a disk resonator

Let us now turn to another, superficially similar problem, 
namely, consider a disk as an unperturbed region and a disk 
with a small cleavage as a perturbed one (Fig. 1b). The small 
angle a is related to the small (in radius, DR/R << 1) defect by 
the formula DR/R = 1 – cos a » a2/2.

This problem cannot be solved by conformal mapping 
because this mapping qualitatively changes the circle shape 
and, hence, is singular. The first term of the series for this 
transformation poorly describes the defect. Therefore, we 
will solve the second problem by the boundary perturbation 
method [11]. We will use this method for a degenerate case.

It is known that any solution y(r) with the eigenvalue k 
from Eqn (1) for a perturbed region (lying inside an unper-
turbed region) with the boundary conditions y(r) = 0 satisfies 
within this region the exact integral equation

( ) ( ) ( )
( )
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where the functions fq(r) with wavenumbers kq are the solu-
tions for the unperturbed region. If the perturbation is small, 
then k » kq for some q. The integration is performed over the 
line L, i.e., over the perturbed part of the boundary.

In our case, the modes fq are doubly degenerate, i.e., 
k1 = k2; k3 = k4, and so on, because of which the solution is 
sought in the form y(r) = a1 f1(r) + a2 f2(r) + dY (r). Here, 
dY (r) ® 0 at a ® 0. Substituting this expression into (12), we 
find in the first approximation

(k1
2 – k2) [a1 f1(r) + a2 f2(r)]
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Multiplying this expression by fj
* (  j = 1, 2), integrating 

it over the unperturbed region, and taking into account the 
orthogonality of modes, we obtain a system of homogeneous 
algebraic equations, which has a solution if the determinant is 
equal to zero,
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The solution of problem (1) for a disk with a unit radius 
and homogeneous boundary conditions f = 0 consists of the 
functions

fm n = Bm n Jm ( pm n r) exp (±im j),  km n = pm n .

Here, one km n corresponds to the two orthogonal modes 
with the exponents ±im j. Similar to the previous case, we take 
òA|fm n|2 dS = 1. Then, Bm n = Am n /2.

When calculating matrix elements (14), one integrate only 
over the perturbed boundary regions, because for unper-
turbed regions fj = 0. Then,
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where J’m ( pm n r) = (dJm (x)/dx)|x = pm n r . For integration over 
the boundary, we should use r = cos a /cos j. At V12 = V*

21, the 
factor exp(±i2m j) appears in (15) under the integral sign. 
Expanding Jm( pm n r) in series near r = 1 with an accuracy to 
the terms of third-order smallness in a (assuming that m a is an 
arbitrary rather than a small parameter), we obtain from (13) 
the following final formula for d from expression (2):

3
,

2

3
!pd a D

=
! 	 (16)

where 

2
( )

(2 )
cos

sin
k

k k
m

m
m
m1 2

20
2p

a a
a

D = - = -
+ -

; E

determines the wavenumber splitting.
Expression (16) includes neither the Bessel function nor 

its derivatives because they can be excluded after integration 
using the exact formula Jm – 1( pm n) = J'm ( pm n).

Similar considerations can be made for the TE mode. In 
this case, all the intermediate expressions are different due 
to different boundary conditions, but, after integration and 
simplifications, we obtain the same formula (16) with the 
only difference that the unperturbed eigenvalue of degenerate 
modes in the case of the TE mode is k0 = hm n /(nmR), where 
hmn  is the nth zero of the m-order Bessel function deriva-
tive. For calculation, we used the exact formula J''m (hm n) = 
(m2/h2m n – 1) Jm (hm n).

With increasing a, the splitting D begins oscillate around 
zero with the frequency 2m and increases in amplitude. The 
oscillation envelope is easily found to be |D|max = (2p)–1a/m2. 
From this one can see that the maximum splitting slowly 
increases with increasing a and rapidly decreases with in-
creasing m, because of which D for whispering gallery modes 
(m >> 1) hardly can be determined by direct measurement of 
the spectrum, but, in some cases, the splitting can be mea-
sured by sending the beam through a nonlinear medium and 
measuring the difference frequency.

To estimate the applicability limits of formula (16), one 
can use the same diffraction considerations as in the case of 
a  half-disk. Despite the use of the boundary perturbation 

Table  1.  Imperfect half-disk. Mode wavenumbers obtained by numerical 
computer calculation (kc2) and by formula (9) (kf

2) at different DR/R » a.

DR/l DR/R kf
2 kc

2 (kc
2 – kf

2) /kc
2 (%)

1.7 0.10 1.03 ́  104 1.04 ́  104 1.0

2.1 0.12 1.00 ́  104 1.02 ́  104 2.0

2.4 0.14 9.73 ́  103 9.97 ́  103 2.4

2.8 0.16 9.43 ́  103 9.74 ́  103 3.3

3.1 0.18 9.13 ́  103 9.52 ́  103 4.0

3.5 0.20 8.82 ́  103 9.30 ́  103 5.0

3.8 0.22 8.52 ́  103 9.10 ́  103 6.3

4.0 0.24 8.22 ́  103 8.90 ́  103 7.6

4.5 0.26 7.92 ́  103 8.71 ́  103 9.0

Note:  Disk radius R = 1, m = 100, unperturbed eigenvalue k0
2 = 1.18 ́  104; 

DR/l is the ratio of the defect size to the wavelength.
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theory in the case of a disk, the assumption of smallness of 
field changes in this case is also true. The expressions for the 
characteristic defect size (as well as the expressions for the 
applicability limits of this approach) coincide with the expres-
sions for a half-disk (11).

Table 2 compares the wavenumbers kf and kc obtained 
using formula (16) and numerical computer calculations, 
respectively. The disk-shaped resonator is characterised by 
very strong mode field distortions at small defects. In this 
case, formula (16) gives a good approximation for eigenvalues 
even for strongly distorted fields, although the concept of 
whispering gallery modes may turn out to be inapplicable for 
these modes. Figure 2 shows how strongly the field changes 
at small (compared to the wavelength) deformations.

5. Conclusions

The WGM spectra for half-disk- (9) and disk-shaped (16) 
resonators with specific perturbations are calculated. The for-
mulas are obtained in the first approximation.

For a half-disk, the change in kf linearly depends on the 
perturbation value, while the perturbation itself can exceed the 
wavelength. As is shown by computer calculations, the field 
is also resistant to the perturbation and remains distributed 
along the walls. Therefore, high-order WGMs are stable to 
the considered perturbation.

The spectrum for a disk resonator weaker depends on the 
linear dimensions of perturbation. However, the WGM field 
in this resonator depends on the considered perturbations 
much stronger. If the perturbation is larger than half-wave-
length, the mode field is strongly distorted and redistributed 
over the resonator volume. In addition, indefinitely small 
boundary perturbation removes mode degeneration, because 

of which the running waves existing in a perfect disk trans-
form into two standing waves with similar spectra, and run-
ning waves are difficult to observe experimentally.
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Figure 2.  Computer-calculated distributions of parameter |Ez| (module of the projection of the electric field vector on the z axis) for the TM mode 
(m = 37, n = 1) at different defect sizes DR/l (shown under each of the structures). The darker spots correspond to stronger fields. The figure shows 
only halves of perturbed disks; the thick line shows the symmetry line.

Table  2.  Imperfect disk (notations are the same as in Table 1). 

DR/l DR/R kf
2 kc

2 (kc
2 – kf

2) /kc
2 (%)

0.55 0.10 1.251 ́  103 1.253 ́  103 0.2

0.67 0.12 1.258 ́  104 1.257 ́  104 0.1

0.78 0.14 1.266 ́  103 1.264 ́  103 0.2

0.83 0.15 1.274 ́  103 1.266 ́  103 0.6

Note:  Disk radius R = 1, m = 29, k0
2 = 1.227 ́  103. Eigenvalues are 

calculated for defect sizes at which the mode field still can be qualitatively 
attributed to whispering gallery modes.


