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Abstract.  An analytical solution (in quadratures) to the problem of 
propagation of quasi-monochromatic optical signal in a semicon-
ductor amplifier under harmonic modulation of its pump current 
is obtained for the first time. It is shown that the modulation of the 
output radiation has amplitude and phase features. The relation is 
found between the coefficients of the amplitude and phase modula-
tion with the effect of gain saturation taken into account. Adequacy 
of the results obtained is confirmed experimentally. 

Keywords: mobile optical communication, semiconductor optical 
amplifier, optical travelling-wave amplifier, quantum-well hetero-
structure.

1. Introduction 

Bogatov et al. [1] showed that it is possible to develop an opti-
cal amplifier/modulator with an operation speed of more than 
2 ́  1010 s–1 on the basis of a laser diode. This modulator is inter-
esting in that it can be integrated monolithically with optical 
transmitters and power amplifiers in single-crystal semicon-
ductor heterostructures (e.g., AlGaAs or InGaAlPAs). These 
single-crystal optical circuits may also contain typically elec-
tronic devices, in particular microwave GaAs transistors, which 
can serve as drivers for the amplifiers/modulators in question. 

The first experiment on gigahertz modulation of mono-
chromatic radiation in the amplifier/modulator based on a 
laser diode was performed in [2]. The optical scheme consisted 
of a single-frequency laser, which was the source of mono-
chromatic radiation input, and an amplifier/modulator. In 
papers [3, 4] the authors obtained in a single-crystal hetero
laser with two independent regions of the pump (one of which 
served as a modulating region, and the other – as an optical 
power amplifier) a high-power (~2 W) modulated optical beam 
with a modulation efficiency of ~13 W A–1 at 1 GHz. This 
is a promising result, which indicates the possibility of new 
applications of diode lasers, such as high-speed free-space 
optical communications, in particular, in outer space.

The numerical calculation carried out in [1] is not always 
convenient for the physical analysis, especially for the limiting 
operation modes of such devices. In this case, as a rule, the 
possible analytical solutions of the problem may be useful. In 

addition, numerical results look more convincing only after 
experimental verification. The present paper to some extent 
makes up for the above deficiencies: We have found the con-
ditions that allow us to obtain analytical solutions and have 
compared them with numerical solutions and experimental 
results. 

2. Model and analytical solution 

As in [1], we believe that the amplifier/modulator is a diode 
laser that has no reflection on the facets. This can be achieved 
by either depositing an antireflection coating on its faces, or 
inclining the optical axis of the active region at an angle a (as 
a rule, a < 15°) to the output facets, or using a diode in the 
form of a region of an integrated optical circuit with a separate 
electrical contact. It is assumed that the optical waveguide 
comprising an active region sustains only one fundamental 
transverse mode, for example due to its ridge structure [5]. 
The pump current Jp of such an amplifier/modulator includes 
a constant component J and a harmonic component at the 
frequency W with a relative amplitude g:

Jp = J{1 + 1/2 [ g exp(–iWt) + c.c.]}.	 (1)

A continuous external optical flow with an intensity I0 is 
fed to the input of the amplifier. Conditionally, the amplifier/
modulator scheme is shown in Fig. 1. The amplitude of the 
electric field strength ( , )z tE  in the amplifier volume can be 
represented as the sum of three waves: 

( , )z tE  = 1/2{exp(ik0z – iw0t) [E0(z) + E1(z) exp(iqz – iWt)

	 + E–1(z) exp(–iqz + iWt)] + c.c.}.	 (2)
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Figure 1.  Schematic of the diode amplifier. 
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The amplitude E0(z) characterises an amplified wave of 
external radiation at a frequency w0, propagating with the 
wave vector k0, while the amplitude E1(z) and E–1(z) are waves 
that have appeared in the amplifier by modulating the pump 
current at a frequency of W. They have the wave vectors that 
are different from k0 by ±q. Because we assume that the opti-
cal properties of the amplifier correspond to a single-mode 
waveguide, the transverse distribution of the wave amplitude 
u(x, y) corresponds to the fundamental transverse mode of the 
waveguide. We also assume that this function is independent 
of the longitudinal coordinate z and the laser pump level. For 
an optimised waveguide, as shown in [6], this approximation 
may be quite adequate. Therefore, hereinafter the function 
u(x, y), which characterises the transverse distribution of the 
amplitude of the fundamental mode, will be omitted. The wave-
guide character of wave propagation is automatically taken 
into account by using an effective (waveguide) refractive index n, 
effective optical thickness d and width W of the beam and the 
optical confinement factor G of the active region, as described, 
for example, in [5, 6]

3

| ( ,0)| | ( , )|dd x x 0 02 2u u=
3-
y  =~ da /G,

W » 
3

| ( , )| | ( , )|dy y0 0 02 2u u
3-
y ,	

(3)

where da is the thickness of the active quantum-well layer of 
the active region. The effective (waveguide) dielectric constant 
e is given in the form 

e(w, z) = e0(w) + i k0
0ae  – i

k0
0e GG(N)(1 – iR),

e0(w) =~ n2(w),  k0 = w0n/c,	
(4)
 

where c is the speed of light; e0 is the real value that represents 
the effective dielectric constant at the transparency threshold 
(equality of the radiation gain and loss); a is the nonresonant 
optical waveguide loss; G is the material gain in the active 
region; and R is the waveguide coefficient of amplitude – phase 
coupling as defined, for example, in [7]. 

In the above notations, the wave vectors have the form 

k1 = k0 + q,  k–1 = k0 – q,	 (5)

where q = Wngr /c, and ngr(w0) = n(w0) + w0¶n/¶w|w = w0 is the 
group index. The gain G can be presented in the linearised 
form: 

G = s(N – Ntr),  s = ¶
¶
N
G

N Ntr=
,	 (6)

where s is the differential gain (stimulated transition cross 
section); N is the concentration of injected electrons in the 
active region; and Ntr is the concentration at which the medium 
is transparent. In turn, the equation for N can be written as 

( )
( , )N N G N cn
t z

ed Wl4
E

a

W2

'p w
G

+ + -t
o

	 ´ J{1 + 1/2 g[exp(iWt) + c.c.]} = 0.	 (7)

Here t is the lifetime of the carriers; 'w is the photon energy; 
e is the electron charge; l is the length of the amplifier; and GW 

is the coefficient that takes into account the current spreading 
and is equal to some fraction of the total current, which passes 
across the width W of the active region. The vinculum above 
E2(t, z) denotes averaging over time with the scales (2p/w0), 
corresponding to the period of the light wave. It is convenient 
to express N in the form 

N(z, t) = ( )N z  + dN(z, t),	 (8)

where ( )N z  is the average value of N(z, t), but for a time interval 
greater than 2p/W. We are interested in such modulation fre-
quencies W, for which Wt > 1, and the amplitude at which the 
relations 

|dN| < N ,   |E1|, |E–1| < |E0|	 (9)

are fulfilled. These conditions allow equation (7) to be lin-
earised in dN, E1 and E–1 and the solutions to be obtained: 

( )N z  – Ntr = Ntr h/(1 + I(z)/I0),	 (10)

dN(z, t) = hNtr /
( )exp

i
i

I I t
t

1 2
1

s h
h
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8 s
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+
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* *

G + c.c.3.	 (11)

Here I = cn|E0|2/(8p) is the intensity on the amplifier axis; 
Is = 'w/(st) is the saturation intensity; Jtr = eNtr da lW/(tGW) 
is the transparency current; and h = J/Jtr – 1 is the relative 
excess of current J over current Jtr. Given the time oscillating 
addition de(z, t), arising due to the oscillating addition to the 
carrier concentration dN(z, t) according to (11), expression (4) 
can be rewritten as 

e(z, t) = e0(w) + i k0
0ae  – i

k0
0e Gs(1 – iR)( ( )N z  – Ntr)

	 – i
k0
0e Gs(1 – iR) dN(z, t).	 (12)

Below, using the standard procedure and substituting expres-
sion (12) for the waves in form (2) into the wave equation, we 
obtain, taking relations (9) into account, three equations for 
‘slow’ amplitudes E0(z), E1(z) and E–1(z): 
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Here G0 = hsNtr is the unsaturated gain (absorption at 
J < Jtr). In (13) we have neglected the dispersion of loss and 
gain, and also assumed that the dispersion of the refractive 
index is linear. Equation (13a) describes the stationary wave 
amplification with account for the saturation effect. Its solu-
tion is known, see, e.g. [8]. Equations (13b) and (13c) describe 
the propagation and amplification of waves at sideband fre-
quencies. The first two terms on the right-hand side of these 
equations coinciding with the right-hand side of equation 
(13a) are responsible for the attenuation and amplification of 
the waves as they propagate as stationary waves. The third 
term on the right-hand side of (13b) and (13c) is responsible 
for the generation of waves at sideband frequencies due to 
amplitude – phase modulation of the input radiation wave. 
The last term on the right-hand side of (13b) and (13c) is 
responsible for the nonlinear interaction of the waves at side-
band frequencies as a result of the intensity and inversion beats 
at the frequency W. This nonlinear interaction was considered 
for the first time in [9]. Subsequently, the nonlinear interac-
tion in various scenarios was included in the analysis of laser 
diodes (see e.g. [10 – 16]) and diode amplifiers [17 – 20]. This 
interaction of the waves is the result of their coherent scattering 
on the dynamic spatial gain and refractive index grating due 
to the beats of the population inversion. These beats were first 
reported in [21]. A similar interaction in relation to the solid-
state Nd : YAG laser was considered in [22].

Let us first present the solution to equation (13a). We 
multiply it term by term by cnE*

0/(8p) and, separating the real 
and imaginary parts, obtain the equations for the intensity 
I(z) and phase j(z): 

( )
( ) /
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d
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z
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(15)

E0(z) = |E0(z)|exp [ij(z)].

It is convenient to introduce a dimensionless intensity u(z), 
normalised to the saturation intensity Is, and the dimension-
less total unsaturated gain g, normalised to the losses a,

u(z) = I(z)/Is,  u0 = I(0)/Is,  g = (GG0 – a)/a.

Then the solution of equations (14) and (15) can be written 
in the implicit form as 

| ( )|
( )

| |
( ),exp

g u z
u z

g u
u g zg g1
0

1
0 a

-
=

-+ +
	 (16)

( )
( )

.lnz R z R
u
u z

2 2 0
j a=- - c m 	 (17)

Thus, the final solution of the equation (13a) takes the form

( )
8 ( )

[ ( )] .exp iE z cn
I u z

z
/

s
0

1 2p
j= ; E 	 (18) 

Consequently, the total stationary power P
–
 of the optical 

flow inside the amplifier will be distributed according to the 
expression

P
– 
(z) = dWIs u(z).	 (19)

The two remaining equations (13b) and (13c) can be con-
sidered as a system of linear equations with variable coeffi-
cients, which describes the coupled waves with the amplitudes 
E1 and E–1. We introduce new functions V1(z), V–1(z) and 
search for the solutions in the form 

( )
( )
( )

.
E
E

E z
V z
V z

1

1
0
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1
=

- -
= =G G 	 (20)

Substituting expression (20) into equations (13b), (13c) 
and carrying out the necessary transformations, we obtain a 
system of equations for V1(z) and V*

–1(z): 
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where
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The matrix St  has two eigenvalues b1,2 and the corresponding 
two eigenvectors 

( )
( )

exp
exp

i
i
y
y

-= G for b1 = 2 cos (y) and 
1
1-

= G for b2 = 0. 

In this case, it is easy to show that the general solution of 
(21) can be written as 

1
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where the complex functions F(u) and F(u) are defined as 
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Here, z(u) is the inverse function of u(z), which was impli
citly given by equation (16). Equality (22) together with (16), 
(17) and (20) analytically determines in the general form the 
amplitude of a quasi-monochromatic wave propagating and 
amplifying in a diode amplifier, including in the absence of 
the pump current modulation ( g = 0). The constant coeffi-
cients C1 and C2 are found from the boundary conditions 
at  z = 0. In our case, it follows from the boundary condi-
tions E1(0) = E–1(0) º 0 that C1 = C2 = 0. Then for the field 
amplitudes with (20) and (22) taken into account, we have the 
equation

2( )
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where

( )
( ) ( )

( ( ))
( ( ))

,a z
g

u z
F u z1 1

h
h

F=
+ + 	 (25а)

e
( )

[ ( ( )) / ( ( ))]
[ ( ( )) / ( ( ))]

.arctan
R
Im

z
F u z u z
F u z u z

q
F
F

= 	 (25b)

If the total field magnitude E(z, t) is written as

E(z, t) = 1/2E(z, t) exp(–iw0t + ikz) + c.c.,

where E(z, t) = E0(z) + E1(z) exp(– iWt + iqz) + E–1(z) exp(iWt – iqz), 
then using (25), the amplitude E(z, t) can be written in the form 

E(z, t) = E0(z) x(z, t),	
(26)

x(z, t) = 1 + g
2( ) (1 ) ( )exp ia z R
2

/1 2 y+ -

	 ´ cos(Wt – qz – q(z)).

Dynamics of the amplitude E(z, t) is determined by the 
factor x(z, t) in expression (26). It is convenient to represent 
this factor by the vector in the complex plane, as shown in 
Fig. 2. The end of this vector moves periodically with a period of 
2p/W along a straight line, which passes through the point with 
coordinates (1, 0) and is inclined to the horizontal axis at an 
angle –y. The movement amplitude is equal to g a(z)(1 + R2)1/2, 
as shown in Fig. 2. One can clearly see that the modulation of 
the amplitude E(z, t) of a quasi-monochromatic wave is the 
modulation of mixed type, i.e., amplitude – phase modulation. 
The range of phase variation is

Dj = j1 – j2 = ( )
( )

( )
( )

,arctan arctan
a z

a z R
a z

a z R
2 2g
g

g
g

-
+

+
c cm m 	 (27)

whereas the phase shift between the modulation current and 
phase modulation, as well as the amplitudes will be equal to 
p + qz + q(z). 

At g a(l)(1 + R2)1/2 < 1 the power of the optical wave can 
be approximated as 

P(t) =~ P
–
 + dPcos(Wt – ql – q(l)),	 (28)

where P
–
 is the stationary output power, defined by equation 

(19) for z = l. Then, for the relative modulation depth of the 
power dP/P

–
 we have 

dP/P
–
 = ga(l).	 (29)

For the ratio of the intensities (P1 and P–1) of the spectral 
components at frequencies w0 + W and w0 – W to the intensity 
of the unshifted component at frequency w0, we according to 
(25) obtain

( )
( )

( )
( )

( ( )) .
P

P
P

P
a l R

16
1

0

1 0

0

1 0 2
2

w
w

w
w

g
W W+

=
+

= +- 	 (30)

Thus, we have found analytically the amplitude modula-
tion depth (29), the phase modulation amplitude (27) and the 
ratio of the intensity of radiation at the carrier frequency to the 
intensity of the sideband frequencies defined by equality (30). 
However, we have not limited our consideration to the level 
of the input optical flow because the gain saturation is auto-
matically taken into account in the model adopted.

3. Comparison of the results of the analytical 
solution with the results of the numerical  
calculation and experiment 

The experiment was performed on a setup, which is similar to 
that described previously in [2]. The setup consisted of a sin-
gle-frequency external-cavity diode laser, which served as a 
source of input radiation for the amplifier/modulator (Fig. 1) 
based on an AlGaAs quantum-well heterostructure laser diode 
(manufactured by Superlum Diodes Ltd. and similar to that 
described in [23]). The longitudinal axis of the active region of 
the amplifier was tilted to its output facets at an angle of ~7°. 
To further suppress radiation backscattered from the input 
faces, they had an AR coating. The pump current of the 
amplifier in the framework of the present paper was modu-
lated at a single frequency (1.245 GHz) for different modula-
tion amplitudes. To measure the optical spectra of the input 
and output amplifier radiation, we used an MDR-41 mono-
chromator and a scanning confocal interferometer. The signal 
from the output of the interferometer, whose length (~10 mm) 
was modulated by supplying saw-like voltage on a piezoceramic 
holder of one of its mirrors, was detected by a photodiode and 
digitized using a digital oscilloscope. After that, the array of 
data was stored in the computer memory. Figure 3 presents the 
results of the measurements of spectrum in the presence and 
absence of pump current modulation of the amplifier/modu-
lator. These data were numerically processed, which permitted 
determining the value of P±1/P0 with the absolute error of 0.01. 
Because, according to (30), P+1 = P–1, and in the experiment due 
to systematic errors they vary somewhat, for comparison with 
the calculation we used the value of P1/P0 = (P+1 + P–1)/(2P0). 

Figure 4 shows experimental data demonstrating the depen-
dence of the output intensity of the optical beam on the pump 
current in the absence of modulation, and the results of the 
numerical calculation in accordance with equation (16). One 
can see that the agreement between theory and experiment is 
quite good. The parameters that were used in the calculation, 
are consistent with our data on the experimental sample: 

Group refractive index ngr  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                    3.9
Optical confinement factor G  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                 0.04
Active region thickness da/nm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                 14
Active region width W/mm   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                  4.5
Diode length l/mm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                     1800
Input radiation wavelength l/mm  .  .  .  .  .  .  .  .  .  .  .  .  .              0.85
Nonresonant absorption in the heterostructure a/cm–1  .  .    12

Re x

Im x

x1

x2

1
j1

j(t)

j2 –y

ga(1 + R2)1/2

Figure 2.  Diagram of the dynamics of the normalised slow complex field 
amplitude x at the amplifier/modulator output. The end of the ‘vector’ 
x moves with frequency W/2p along the segment x1x2, which is divided in 
half by the abscissa axis; tan y = R.
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Stimulated recombination cross section s/cm2  .  .    0.47 ́  10–15

Transparency concentration Ntr/cm–3  .  .  .  .  .  .  .  .          2.9 ́  1018

Carrier lifetime for interband recombination t/ns   .  .  .  .       1.0
Amplitude – phase coupling coefficient R  .  .  .  .  .  .  .  .  .  .          5.5
Radiation power at the amplifier input Pin/mW  .  .  .  .  .  .      2.0
Pump current modulation frequency W(2p)–1/GHz  .  .     1.245
Effective thickness d/mm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                   0.35
Saturation intensity Is/W cm–2  .  .  .  .  .  .  .  .  .  .  .  .  .               5 ́  105

These data were also used to calculate the dynamic char-
acteristics of the amplifier/modulator in comparison with the 
experiment. 

Analytical expressions (30) for the optical wave intensities 
at sideband frequencies w0 – W and w0 + W allow one to com-
pare the experimental characteristics with calculated ones. 
Figure 5 shows the dependence of Р1/Р0 on the absolute depth 
of the pump current modulation at a constant average value 
and on the average value of the pump current at a constant 
absolute depth of modulation, calculated in accordance with 
(30). A comparison of the data shows that they are in good 
agreement. 

In accordance with the results of [1], a key parameter that 
determines the operation speed of the modulator is the stimu-
lated transition cross section s; therefore, to determine the 
upper limit of the operation speed, we used in the calculation 
the highest achievable (in practice) value of s (3.0 ́  10–15 cm2). 
Figure 6 shows the results of the calculations of the output 
field intensity modulation amplitude and the phase variation 
range dependences on the pump current and the modulation 
frequency, obtained analytically according to (29), and numeri-
cally as described in [1]. The values of the parameters used in 
the calculation are given below:

Group refractive index ngr  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                    3.9
Optical confinement factor G  .  .  .  .  .  .  .  .  .  .  .  .  .  .               0.0132
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Figure 3.  Results of measurement of the signal at the scanning confocal 
interferometer output under (a) constant g = 0 and (b) modulated g = 0.2 
pumping. The constant component of the pump current is Js = 130 mA. 
Notations are shown above the peaks of the spectral components to 
which they correspond. Two orders of the interferometer bandwidth are 
presented with the free dispersion region width Dw/2p = 7.5 GHz. 
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Active region thickness da/nm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                 8
Active region width W/mm   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                   3
Diode length l/mm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                       500
Input radiation wavelength l/mm  .  .  .  .  .  .  .  .  .  .  .  .  .              0.85
Nonresonant absorption in the heterostructure a/cm–1  .  .    20
Stimulated recombination cross section s/cm2  .  .  .    3.0 ́  10–15

Transparency concentration Ntr/cm–3  .  .  .  .  .  .  .  .          1.0 ́  1018

Carrier lifetime for interband recombination t/ns   .  .  .  .       1.0
Amplitude – phase coupling coefficient R  .  .  .  .  .  .  .  .  .  .          3.0
Radiation power at the amplifier input Pin/mW  .  .  .  .  .  .      1.0
Pump current modulation frequency Js/mA   .  .  .  .  .  .  .         200
Effective thickness d/mm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                   0.61
Saturation intensity Is/W cm–2   .  .  .  .  .  .  .  .  .  .  .              0.78 ́  105

One can see from Fig. 6 that first, at a relative depth of the 
output intensity modulation dP/P

–
 < 0.5, the results obtained 

analytically and numerically agree well. Second, the found 
dependences are a further confirmation of the feasibility of 
the modulation bandwidth up to ~20 GHz at an appropriate 
choice of the active region and the heterostructure (s value). 

4. Conclusions 

In this paper, we have obtained for the first time, to our 
knowledge, the analytical expressions for the amplitude of a 

quasi-monochromatic waves propagating in a semiconductor 
amplifier under conditions of harmonic modulation of its 
pump current, taking into account the effect of gain satura-
tion by optical radiation. The general solutions obtained in 
the form of (22) allow their use not only under the conditions 
typical for a modulator/amplifier, but also consideration of a 
quasi-monochromatic input signal amplifier in the absence 
of  any pump current modulation. The agreement between 
the  results obtained analytically and numerically, and their 
experimental verification are further evidence in favour of the 
possibility of radiation modulation in the amplifier to the fre-
quencies of ~20 GHz, as was noted in [1].

The two methods of finding the dynamic characteristics 
of the amplifier/modulator, analytical and numerical, are in 
agreement and, along with a common field of application, 
have different applicability. Thus, they can complement each 
other. Indeed, the analytical model is limited by the use of not 
too large values of the modulation depth g. Moreover, the upper 
limit for g, at which the analytic solution is still adequate, 
depends on the parameter Wt. The higher the parameter, the 
more valid the model at large g. Some criterion of applicability 
can be the condition on the value [ gа(l )]2, appearing in (30): 
[ gа(l )]2 < 1/2. On the other hand, in the numerical analysis it 
is a convenient to test the calculation algorithm by independent 
analytical calculations with their visual physical interpreta-
tion. For example, one can see from analytical expressions for 
the field amplitude (26) and phase variation Dj (27) and the 
complex total amplitude in Fig. 2 that because of a nonzero R, 
there appears phase modulation under amplitude modulation. 
Moreover, this relationship between the phase modulation 
and the amplitude modulation is rather ‘strict’, because it 
does not depend on the gain saturation of the amplifier and is 
preserved when the optical beam propagates along the entire 
length of the amplifier. 
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