
Quantum Electronics  43 (5)  423 – 427  (2013)	 © 2013  Kvantovaya Elektronika and Turpion Ltd

Abstract.  We study the peculiarities of the formation of Bessel 
beams in semiconductor lasers with a high propagation parameter 
M 2. It is shown that the propagation distance of the Bessel beam is 
determined by the divergence of the quasi-Gaussian beam with high 
M 2 rather than the geometric parameters of the optical scheme. It 
is demonstrated that technologically inevitable rounding of the axi-
con tip leads to a significant increase in the transverse dimension of 
the central part of the Bessel beam near the axicon. 

Keywords: Bessel beams, quasi-Gaussian beams, axicon, beam 
propagation parameter, semiconductor laser. 

1. Introduction 

Bessel beams have long attracted the attention of researchers 
because of their spatial invariance, i.e., the possibility of long-
distance propagation without divergence [1 – 3], which holds 
great promise for use in devices for the manipulation of 
micro-and nano-objects (in the so-called optical tweezers) 
and for the control of micromachines, and other applications 
[4]. In the projection on a plane, which is perpendicular to the 
propagation axis, the Bessel beams appear as a bright spot 
surrounded by a system of concentric rings and their profile is 
described by the zero-order Bessel function of the first kind, 
which gave its name to such beams. 

In practice, the Bessel beams are produced by the interfer-
ence of converging rays when a collimated Gaussian beam 
passes through a conical lens (axicon). The diameter of the 
central spot (the central lobe of the Bessel beam) is deter-
mined by the angle of the axicon, and may be of the order of 
the radiation wavelength. Bessel beams have a finite distance 
of propagation, depending on the diameter of the cross sec-
tion (aperture) of the initial beam (Fig. 1). In this case, the 
distance of the Bessel beam propagation can reach several 
meters. Another important feature of Bessel beams is ability 
of the central lobe self-healing after meeting with an obstacle, 
which (when used in optical tweezers) provides an opportu-

nity to manipulate not one, but several microscopic objects 
simultaneously [5]. Application of Bessel beams greatly 
increases the working distance between the object being 
manipulated and the focusing optics; in this case, fine adjust-
ment is not required, which makes such systems more flexible 
and more attractive from the practical standpoint. 

According to a popular belief, for the Bessel beams to be 
formed, one needs light sources with a high spatial coherence, 
such as gas and solid-state lasers, which makes optical twee-
zers a very complex and expensive tool. However, as was 
shown recently, the temporal coherence of a light source has 
a much smaller effect on the formation of Bessel beams than 
its spatial coherence [6]. This allowed the generation of Bessel 
beams using surface- and edge-emitting semiconductor lasers 
[7, 8], including a curved-grating distributed-Bragg reflector 
laser [9]. Furthermore, we demonstrated superfocusing of 
multimode radiation from semiconductor lasers and light-
emitting diodes [10], and the possible application of the Bessel 
beams produced by semiconductor lasers for optical manipu-
lation of microscopic (including biological) objects [11]. 

The present work is devoted to a detailed study of the forma-
tion of Bessel beams by semiconductor lasers with a high propa-
gation parameter M 2, as well as to investigation of the effect of 
technologically inevitable rounding of the axicon tip on the 
transverse dimension of the central lobe of the Bessel beam. 

2. Influence of the propagation parameter M 2

on the formation of Bessel beams 

In general, the quality of the laser beam is usually described 
by the propagation parameter M 2 [12, 13], which is defined as 
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Figure 1.  Propagation of the Bessel beam formed from a quasi-Gauss-
ian beam with a high parameter M 2: zB is the Bessel beam propagation 
distance due to the beam divergence; zB0 is the geometric propagation 
distance; z0 is the Rayleigh length. 
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the ratio of the beam divergence to the divergence of an ‘ideal’ 
Gaussian beam (i.e., a beam with M 2 = 1), corresponding to 
the diffraction limit. Similarly, the parameter M 2 determines 
how many times the focal spot of the beam is greater than the 
spot produced by focusing the ideal Gaussian beam with the 
same optical system. The parameter M 2 is useful because it 
allows one to describe quasi-Gaussian beams using the math-
ematical apparatus developed for Gaussian beams; in this 
case, use is made of a simple replacement l ® М 2l, i.e., the 
wavelength is increased numerically by M 2 times. 

When a Bessel beam formed from a collimated multimode 
quasi-Gaussian beam propagates, the diameter of the beam 
central lobe gradually increases due to large divergence of the 
forming quasi-Gaussian beam, which leads to an increase in 
the transverse dimension of the Bessel beam kernel and can 
limit the propagation distance zB of the beam formed (Fig. 1). 
In order to evaluate the effect of the beam divergence, it is 
necessary to consider it in the expression relating the diameter 
of the central lobe of the Bessel beam with geometrical param-
eters of the optical system: 
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where l is the wavelength; n is the refractive index of the axi-
con material; a is the apex angle of the axicon; and x(z) is the 
beam divergence angle, which depends on the longitudinal 
coordinate z. In this paper, leaving the effects of misalign-
ment [7, 14, 15] for further research, we will assume that the 
quasi-Gaussian beam is coaxial to the axicon and collimated 
in a plane passing through its apex. Therefore, after determin-
ing (Fig. 1) the angle of divergence as the arctangent of the 
ratio of transverse coordinate of the forming beam ray on the 
axicon to the wavefront curvature of the beam R(z) when the 
beam reaches the symmetry axis,
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and using the known expression for the wavefront curvature 
of the quasi-Gaussian beam [16]
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(w0 is the beam aperture), after obvious transformations and 
taking into account Snell’s law g = (n – 1)b in the paraxial 
approximation, we can write: 
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where b = 90° – a/2 is an additional apex angle of the axicon. 
Substituting (4) into (1), after a simple trigonometric trans-
formations we finally obtain 
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This cumbersome expression can be greatly simplified in the 
paraxial approximation, 
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wherein the difference between the results of calculations 
using expressions (5) and (6) does not exceed 5 % in the entire 
range of practically important apex angles of the axicon. 
Equation (6) also provides a simple calculation of the propa-
gation distance of the Bessel beam, defined by the divergence 
of the forming beam [7]. Having defined the propagation dis-
tance zB of the Bessel beam as the distance at which the trans-
verse size of its central lobe increases by 2  times (similarly 
to the definition of the Rayleigh length), we, using (6), can 
write: 
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After completing the obvious transformations, we obtain the 
expression 
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which is fully consistent with the result obtained directly from 
the analysis of the divergence of the forming beam [7].

It should be noted that when the forming beam divergence 
is not taken into account, in considering only the geometric 
parameters of the optical scheme, the Bessel beam propaga-
tion distance is found from the known equation [17]
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(k is a numerical factor), which in view of (6) in the geometri-
cal optics approximation takes the form
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where d0 is the central lobe diameter of the Bessel beam with-
out divergence. 

From the comparison of expressions (8) and (10) one can 
easily see that the reduction of the beam forming aperture w0 
in comparison with 
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leads to restriction of the propagation distance of the Bessel 
beam because of the divergence of the forming beam, while 
the geometric parameters of the optical scheme have no effect. 
Obviously, this effect is particularly important in the forma-
tion of Bessel beams from quasi-Gaussian beams with large 
values of M 2. 

Figure 2 shows the calculated dependence of the diameter 
of the central lobe of the Bessel beam on the longitudinal 
coordinate z for different values of the propagation parame-
ter M 2 of the forming beam and its aperture w0. 
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3. Effect of the rounded tip of the axicon on 
the transverse dimension of the central lobe of 
the Bessel beam 

Rounding of the axicon tip is a highly undesirable defect 
occurring during the axicon manufacture, which is explained 
by inevitable technological difficulties in the final polishing of 
the conical surface of the axicon. The effect of the rounded tip 
of the axicon can be neglected in the study of the formation of 
Bessel beams with a large beam-forming aperture and signifi-
cant propagation distance. However, when the beam-forming 
aperture is reduced to hundreds of micrometers and the Bessel 
beam propagation distance is correspondingly reduced, the 
account for the effect of the axicon tip rounding on the trans-
verse dimension of the central lobe of the Bessel beam is abso-
lutely necessary.

Consider the axicon with a tip rounded to a radius R and 
the transverse size H of the rounded region (Fig. 3). The 
radius of rounding is related to the size of the rounded area by 
the obvious relationship 

H = R sin b.	 (12)

It follows from expression (12) that the region of the Bessel 
beam formation by the rounded tip of the axicon is shifted 
with respect to the ‘ideally’ sharp axicon tip by a distance z0 = 

R/n, and with respect to the round tip – by a distance z0 + d 
(Fig. 3), where 
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As shown schematically in Fig. 3, the rounded tip of the axi-
con acts on the forming beam as a plano-convex lens with a 
focal length f, described by the matrix [16] 
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Therefore, in the region of ‘geometric shadow’, z0 + d, the 
central part of the forming beam is focused, and in the region 
of the Bessel beam propagation focused radiation may inter-
fere with the conically converging rays, distorting the trans-
verse profile of the Bessel beam. Note that as follows from 
(14), the focal length of the ‘extra lens’ is 

f
n
R
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-
,	 (15)

and at n » 1.5 it is several times the size of the ‘geometric 
shadows’, z0 + d » R/n. 

The numerical aperture of the lens of radius R and aper-
ture H with the small focal length f taken into account is given by 
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that in the paraxial approximation using (12) and (15) can be 
written in the form 
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where Мс
2 is the propagation parameter of the central part of 

the forming beam incident on the rounded tip of the axicon. It 
should be noted that in most cases we can approximately assume  
Мс

2 » 1. The diameter of the focal spot of the forming beam 
with the given parameter Мс

2 is 
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and the diameter of the focused beam as a function of z is 
determined by the expression 
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Comparison of (6) and (18) shows that the minimum 
transverse dimension of the beam focused by the lens, result-
ing from the rounding of the axicon tip, corresponds with 
good accuracy to the transverse dimension of the central lobe 
of the Bessel beam. From this it is evident that in the experi-
ment one should expect a relatively drastic visual increase in 
the transverse size of the central lobe of the Bessel beam in 
approaching the rounded tip of the axicon at a distance less 
than the axicon focus (15). The effect of the axicon tip round-
ing on the increase in the diameter of the propagating central 
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Figure 2.  Dependences of the diameter of the Bessel beam central lobe 
on the longitudinal coordinate z at w0 = 100 mm, M 2 = 1 (dashed lines), 
w0 = 50 mm, M 2 = 1 (solid lines), w0 = 100 mm, M 2 = 5 (dotted lines). The 
calculation was performed for the axicon with an apex angle of a = 160° 
(the upper family of curves) and a = 140° (the lower family of curves). 
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Figure 3.  Calculation of the effect of the axicon tip rounding on the 
formation of a Bessel beam. 
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lobe of the Bessel beam at different radii of rounding is shown 
in Fig. 4. It is clearly seen that the round tip of the axicon can 
lead to a significant increase in the visible size of the central 
lobe of the Bessel beam, even when it is formed by an ideal 
Gaussian beam. 

4. Experiment 

For experimental verification of expressions (5) and (19) 
determining the change in the transverse dimension of the 
central lobe of the Bessel beam generated by an axicon with a 
tip rounded to a radius R from a quasi-Gaussian beam with 
the propagation parameter М 2 > 1, we used an optically 
pumped vertical external cavity surface-emitting laser 
(VECSEL) with a wide active area and wavelength of 1040 
nm [18]. The laser structure utilised the active region based on 
InGaAs quantum dots and GaAs/AlGaAs distributed Bragg 
mirrors. The active semiconductor element was mounted on 
the intracavity diamond heat sink with a copper base, ensur-
ing effective heat removal to the holder with water cooling. 
The pump source was a semiconductor laser with a fibre pig-
tail for radiation with a wavelength of 808 nm. The pump 
radiation was focused to a spot of 120 mm in diameter. The 
external V-shaped cavity was formed by a distributed Bragg 
mirror of an active semiconductor element, by a concave 

spherical mirror 75 mm in radius, and by a flat input mirror 
with 0.6 % transmission. The propagation parameter of the 
output beam in our experiments was М 2 = 2. 

Bessel beams were formed by the axicon with an apex 
angle of 140° ( b = 20°) and recorded using a telescopic projec-
tion system and a CCD detector. The intensity distribution of 
the Bessel beams at different distances from the axicon was 
measured by moving the detection system on a microposi-
tioner stage. The parameters of the detection system were 
chosen so as to ensure the width of the field of view of 100 mm. 

Figures 5a – c present several transverse intensity distribu-
tion of the Bessel beam, obtained at different distances from 
the axicon tip with a beam-forming aperture of  w0 = 60 mm. 
Quite clear is a tendency to a decrease in the transverse dimen-
sion of the central lobe of the Bessel beam with the distance 
from the axicon tip (i.e., with a decrease in the influence of the 
tip rounding), and to its increase due to the beam divergence 
with increasing markedly distance from the axicon. Figure 5d 
shows the diameter of the central lobe of the Bessel beam ver-
sus the distance from the axicon tip z. One can see good agree-
ment of the experimental data with theoretical predictions. 

5. Conclusions 

Thus, we have studied the characteristics of the Bessel beam 
formation using radiation of semiconductor lasers with a high 
beam propagation parameter М 2. It is shown that the dis-
tance of the Bessel beam propagation is determined by the 
divergence of the quasi-Gaussian beam with high М 2 rather 
than the geometric parameters of the optical system. We have 
demonstrated that the rounding of the axicon tip leads to a 
significant increase in the transverse dimension of the central 
lobe of the Bessel beam near the axicon. 
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Figure 5.  Transverse intensity distributions of the Bessel beam at the 
beam-forming aperture of the VECSEL w0 = 60 mm, М 2 = 2 and a = 
140°, obtained at a distance z = (a) 100 mm, (b) 1100 mm and (c) 3100 mm 
from the axicon, and (d) the dependence of the Bessel beam central lobe 
diameter on the longitudinal coordinate z. The experimental values are 
indicated by black squares. The radius of the axicon tip rounding, R, in 
calculations is assumed to be 60 mm; the dashed line is the dependence 
d(z) in the absence of the forming beam divergence.
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