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Abstract.  Spectral characteristics of the noise intensity fluctua-
tions at the output of a scattered-light interferometer, caused by 
phase fluctuations of semiconductor laser radiation are considered. 
This kind of noise is one of the main factors limiting sensitivity of 
interferometric sensors. For the first time, to our knowledge, the 
expression is obtained for the average noise power spectral density 
at the interferometer output versus the degree of a light source 
coherence and length of the scattering segment. Also, the approxi-
mate expressions are considered which determine the power spec-
tral density in the low-frequency range (up to 200 kHz) and in the 
limiting case of extended scattering segments. The expression 
obtained for the noise power spectral density agrees with experi-
mental normalised power spectra with a high accuracy.

Keywords: scattered radiation, semiconductor laser, noise power 
spectral density, backscattered light interferometer.

1. Introduction

The problem of determining the noise spectral characteristic of a 
fibre scattered-light interferometer arises in studying the 
interferometer sensitivity to external phase influence. In addi-
tion, consideration of the noise power spectrum of the scat-
tered-light interferometer with a cw radiation source is a first 
step to studying noise of the coherent reflectometer, in which 
cw laser radiation is modulated by short-duration pulses [1, 2].

In the present work,  one of the main kinds of noise in an 
interferometer with a cw radiation source, originating from 
random phase fluctuations of the source field, is investigated. 
The phase noise of the source is converted in the interferom-
eter to output intensity fluctuations similarly to classical 
Michelson and Mach – Zehnder interferometer schemes [3, 4]. 
However, in contrast to interferometers with two interfering 
rays, in a scattered-light interferometer a multipath interfer-
ence occurs of the random fields scattered by a large number 
of scattering centres distributed within a considered segment. 
In such an interferometer, the phase delay between interfering 
fields always exists, whose maximal value increases with the 
length of the scattering segment.

Thus, the base configuration of the interferometer in 
question is a single scattering segment, which can be realised, 
for example, with a waveguide circulator (Fig. 1). A main spe-
cific feature of a scattered-light interferometer is that all the 
fields involved in the interference have random amplitudes 
and phases, which vary in time under the action of environ-
ment. As a result, the average intensity of the scattered radi-
ation at the interferometer output undergoes temporal fluc-
tuations or random drift, whose statistical behaviour is con-
sidered in [5 – 7].

In addition to fluctuations of average intensity, noise fluc-
tuations are also observed, with the noise power randomly 
varying in time. The presence of these fluctuations is one of 
the factors limiting the sensitivity of the external-action sen-
sor on the basis of a scattered-light interferometer [8, 9]. The 
aim of the present work is to study the spectral properties of 
output noise intensity fluctuations of the scattered-light inter-
ferometer, caused by phase fluctuations of the field of the 
laser source operating in cw mode.

2. Theoretical part

Consider the two main schemes of a scattered-light interfer-
ometer: with a single (Fig. 1) and two (Fig. 2) scattering seg-
ments. The first scheme is basic one, whereas the second 
scheme provides obtaining the interference of rays, scattered 
by two independent segments. Features of the second scheme, 
methods for demodulation of the scattered radiation and 
detection of external phase action on the fibre are described in 
our previous publications [8, 9]. The spectral characteristics of 
noise for both schemes under the conditions reported below 
are identical; however, experimental verification of the sec-
ond scheme is simpler. Note that a necessary element provid-
ing the possibility of correct measurements in the second 
scheme is the acousto-optical modulator that shifts the radia-
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Figure 1.  Basic configuration of the scattered-light interferometer. Radia
tion of the semiconductor laser source is amplified and passes through a 
circulator to a scattering segment; radiation scattered by the segment is 
coupled out through the same circulator and directed to a wideband 
photodetector.
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tion frequency in one interferometer arm by the known value 
f0 = 200 MHz.

The noise power spectral density of intensity fluctuations 
arising in a scattered-light interferometer can be found by 
using the Wiener – Khintchine theorem [10], according to 
which, for the wide-sense stationary processes, the autocorrela-
tion function and the power spectral density are the Fourier 
transforms of each other, respectively.

Consider a radiation scattering process in an isotropic 
optical fibre. The scattering medium will be considered by 
using the earlier model [5 – 7, 11], in which the scattering cen-
tres are uniformly distributed over a volume of the fibre of 
length L much longer than the radial dimension of the 
medium. The dimension of each scattering centre is much less 
than the radiation wavelength, and the scattering amplitudes 
for centres are uncorrelated circular complex Gaussian ran-
dom variables [10, 11], for which the following expressions are 
valid

á r*(zn) r(zm)ñr = r0 d(zn – zm),	 (1)

á r(zn) r(zm)ñr = 0,	 (2)

where r(zn) and r(zm) are the differential amplitude coeffi-
cients of Rayleigh scattering, i.e., the coefficients of scattering 
for the infinitesimal small fibre sections with coordinates zn 
and zm (m, n = 1, ..., N); á...ñr is averaging over an ensemble of 
all possible realisations { r}; r0/2 is the dispersion of the real 
and imaginary parts of the scattering coefficient; and d is the 
delta function.

Consider the base scheme of a scattered-light interfero
meter (Fig. 1). The analytical representation for the source 
electric field vector at the input into a scattering fibre can be 
written in the form

Us(t) = As(t) exp(iw0t),  As(t) = ps Is exp[ijs(t)],	 (3)

where As(t) is the vector of the complex amplitude of the 
source field; ps is the polarisation vector; Is is the source radia-
tion intensity; js(t) is the phase of source radiation; and w0 is 
the optical frequency.

For simplicity we will assume that the polarisation state 
is constant over the considered segment, and so is the inten-
sity of laser radiation. Then for the first interferometer scheme 
(Fig. 1), the complex amplitude of scattered radiation at the 
input for a certain realisation of the scattering coefficient dis-
tribution { r} = { r(z1), r(z2), ..., r(zN)}, has the form [11]

( / )A A t z21
( )
scat s gr

L

0
u= -

r y exp(–az/2) exp(–2ikz) r(z) dz,	 (4)

where a is the linear intensity attenuation coefficient in the 
fibre of length L; k is the radiation propagation constant; ugr 
is the radiation group velocity; and index r means that 
the parameter refers to a single fixed realisation of the scatter-
ing coefficient distribution. We assume that within the limits 
of the considered segment in a fibre, the complex amplitude of 
the radiation field weakly damps, i.e., the coefficient a is suf-
ficiently small (which is true for a standard single-mode fibre 
SMF-28 at the wavelengths near 1555 nm, a = 0.2 dB km–1). 
The instantaneous radiation intensity, scattered by the fibre 
segment is, according to (4)

( / )I t z21
( )
scat s gr

LL

1
00

u= -
r *Ayy As(t – 2z2/ugr)

	 ´ exp(2ikz1) exp(–2ikz2) r*(z1) r(z2) dz1 dz2.	 (5)

In view of the fact that the phase of the source field As(t) 
varies randomly, the instantaneous intensity (5) undergoes 
noise fluctuations near an average value. In addition, if the 
particular realisation of scattering coefficient distribution { r} 
varies, then the average intensity (5) also changes. The power 
spectral density of intensity fluctuations of scattered radiation 
for a particular fixed realisation of the scattering coefficient 
distribution { r} can be obtained from the Fourier transform 
of the autocorrelation or autocovariance intensity function 
(5) [3, 4, 11]. Write out the expressions for the autocorrelation 
and autocovariance functions of instantaneous intensity (5) 
for the particular realisation { r}:

( , ) ( ) ( ) ,R t t I t I t( ) ( ) ( )
scat scat scat t1 1 1t t+ = +

r r r 	 (6)

( , ) ( ) ( )C t t I t I t( ) ( ) ( )
scat scat scat t1 1 1t t+ = +

r r r

	 ( ) ( ) ,I t I t( ) ( )
scat scatt t1 1 t- +

r r 	 (7)

where á...ñt means averaging over time. Under real physical 
conditions, static realisation of the scattering coefficient dis-
tribution { r} is not fixed, it varies under the action of envi-
ronment: the mutual positions of scattering centres and 
phases of the scattered fields vary, which leads to changes in 
both the average intensity and its noise characteristics. In 
practice it is useful to know the average noise level at the 
interferometer output, i.e., the noise power spectral density 
for scattered radiation averaged over all possible statistically 
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Figure 2.  Experimental setup: scattered-light interferometer with two scattering segments.
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equivalent distributions of scattering coefficients { r} or 
over all possible statistically equivalent scattering segments. 
For calculating this parameter we take an average of the 
autrocorrelation function (6) over all possible realisations 
{ r}:

( , ) ( , )R t t R t t( )
scat scat1 1t t+ = +

r
r

	 ( ) ( ) .I t I t1
( )

1
( )

scat scat tt= +
r r

r 	 (8)

In expression (8), averaging over time and over ensemble can 
be performed independently because the scattering amplitude 
and complex source field amplitude are independent of each 
other. In making averaging in (8) one should employ the Gaussian 
moment theorem for complex random variables [12], which in 
view of (1) yields the expression for the 4th moment

á r*(z1) r(z2) r*(z3) r(z4)ñr 

	 = r02 d(z1 – z2) d(z3 – z4) + r02 d(z2 – z3) d(z1 – z4).	 (9)

The resulting expression for correlation function (8) averaged 
over the ensemble reduces to

( , ) d dR t t I z zscat s

LL

1 0
2 2

1 3
00

t r+ = yy 	

	 ( / ) ( / )t z A t z2 2s s grgr

LL

0
2

1 2
00

r u u+ - -*Ayy

	 ( / ) ( / ) .d dt z A t z z z2 2s gr s gr t2 1 1 2# t u t u+ - + -*A 	 (10)

The first summand in (10) is the square of the intensity averaged 
over ensemble { r} for the radiation scattered by a single seg-
ment of length L, which, according to (5) and (1) is defined by 
the expression [11]

( ) ,dI I t I z I T
2

( )
scat
m

scat s
gr

s

L

1 1 0
0

0r
u

r= = =
r

r y 	 (11)

where T = 2L/ugr. The second summand is the double inte-
gral of the 4th moment for the source field As(t), which can 
be transformed taking into account that the phase of semi-
conductor laser radiation js(t) varies according to the ran-
dom walk statistics [6, 7, 13]. By performing the averaging of 
the integrand in (10) over time as in [3, 4] and making a sub-
stitution t1 = 2z1/ugr, t2 = 2z2/ugr we obtain the expression 
for the autocorrelation function of scattered radiation inten-
sity averaged over ensemble { r}, which is independent of 
time t :
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where |t2 – t1| is the time delay between the interfering fields; 
tcoh = 1/(pDn) is the coherence time for the radiation source; 
Dn is the spectral bandwidth of the radiation source; and the 
rectangular function P is determined by the expression
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, | | | | .2
1
02 1
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-
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Similarly, the product of the time-averaged intensities is 
averaged over ensemble { r}:
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By subtracting (14) from (12) we obtain the expression for the 
intensity autocovariance function of the scattered-light inter-
ferometer with a single scattering segment of length L, which 
is averaged over all possible distributions of scattering coef-
ficients:

( )
( ) | | | |

exp expC
T
I 2 2

scat
scat
m

coh coh

TT
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00
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t
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1 2t t
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c m 	 (15)

Expression (15) has the relatively simple physical meaning, 
that can be elucidated by considering the known intensity 
autocovariance function of a Mach – Zehnder or Michelson 
interferometer [3, 4, 13, 14], which can be presented in the 
form [4]

( )
| | | |

exp expC I
2

2 2
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coh coh

2
2 1t t
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t
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= - - -
-c cm m'

| | | | | |
exp exp cos

4 2 2
2

coh coh

2 1 2 1

t
t t t

t
t t

j+ -
- -

- -
-c cm m; E 1

| |
,

2 2 1t t
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c m 	 (16)

where j = k(z2 – z1) is the optical path difference in the inter-
ferometer and IMZ is the average intensity of radiation at the 
interferometer output. A Mach – Zehnder or Michelson inter-
ferometer has a minimal or maximal transmission at cos j = ±1 
( j = pl, where l is an integer) and it is usually said that the 
interferometer operating point is outside quadrature. On the 
contrary, at cos j = 0 (j = p/2 + pl) the transmission of inter-
ferometer corresponds to the intensity IMZ and it is usually said 
that the interferometer operating point resides in quadrature 
[4, 14]. For the in-quadrature and out-off-quadrature operation 
regimes the interferometer output noise differs. Note that if 
expression (16) is averaged over all values of the operating 
point j, then the second summand in (16) vanishes and (16) 
will correspond to the integrand in (15) within the accuracy of 
a constant factor. Thus, one may assume that the intensity 
autocovariance function averaged over ensemble { r} for the 
scattered-light interferometer (15) is the sum of the autoco-
variance functions for all possible elementary interferometers 
formed by the scattering centres with the field time delays 
0  £ |t1 – t2| £ T, which are averaged over all positions of 
their operating points j. In view of the linearity of the Fourier 
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transform, the power spectral density averaged over ensemble 
{ r} for the scattered-light interferometer is the sum of the 
power spectral densities averaged over all positions of operat-
ing points for all elementary Michelson interferometers 
formed by the scattering centres.

In the case of a scattered-light interferometer with two 
scattering segments (Fig. 2), the more labourious calculation, 
which includes averaging of 16 terms of autocorrelation 
function and 16 terms of intensity products over ensemble, 
finally results in the following expression for the averaged 
autocovariance function:
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f0 is the frequency of the acousto-optical modulator and T0 
is  the additional delay of fields in the interferometer. The 
first summand in (17), which is similar to expression (15), is 
responsible for the sum of the autocovariance functions of 
intensities of the fields scattered independently by the first 
and second scattering segments of the interferometer. The 
second and third summands correspond to the cross-autoco-
variance functions for the first and second scattering seg-
ments of the interferometer, i.e., similarly to (15), in expres-
sion (17) the autocovariance functions are summed over all 
possible interferometers formed by the scattering centres, but 
for the two segments in this particular case.

An important particular case is the additional time delay 
of fields equal to zero (T0 = 0), i.e., the case, where the inter-
ferometer with two scattering segments is balanced. Then, 
expression (17) may be represented in terms of expression 
(15):

Cscat2(t) = 2Cscat1(t) + exp(2p i f0t)Cscat1(t) 

	 + exp(–2p i f0t)Cscat1(t).	 (18)

Thus, the autocovariance function for the interferometer 
corresponding to the second scheme (Fig. 2) is distinct from 
that for the interferometer corresponding to the first scheme 
(Fig. 1) by two additional copies of the autocovariance func-
tion (15) with the phase factors only differing in the phase 
sign. Due to the linearity of the Fourier transform, the spec-
tral characteristic for the second scheme obtained from (18) 
differs from that for the first scheme obtained from (15) by 
two additional spectrum copies for the first scheme shifted 
by frequency f0 to positive and negative ranges. In this case, 
the spectral component at frequency f0 can be easy measured 
experimentally.

By performing labourious Fourier transformation of 
expression (15) and double integration with the relationships 
for the spectral characteristics of the Mach – Zehnder 
interferometer taken into account [4] we obtain the expression 

for the noise power spectral density, determined by averaged 
autocovariance function (15):
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The expression for the noise power spectral density in the case 
of the scheme with two scattering segments observed at fre-
quency f0 has, according to (18), a similar form. If the auto-
correlation function (12) is used for the calculation, then the 
spectrum will comprise additional components – d-functions 
at a zero frequency with the amplitudes determined by (14); 
one may show that similar components at the frequencies ±f0 
will also arise in the spectral characteristic of the interfero
meter with two scattering segments.

The power spectral densities (19) for the sources with the 
spectral widths of 2 and 500 kHz normalised to square aver-
age intensity of scattered radiation are shown in Fig. 3. The 
dependences look similar though the dependence for the laser 
with less coherence is more sloping. One can see that in the 
frequency range up to 200 kHz (which includes the acoustic 
frequency band) the power spectral densities for  the two 
sources exhibit weak frequency dependence. Hence, in this 
range each of the spectral characteristics can be approximated 
by a constant value of the power spectral density, i.e., by 
white noise. Expanding expression (19) in series near zero fre-
quency and only retaining zero-order terms we obtain the 
relationship

Sscat1( f ) » 
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I T T
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2 4
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Figure 3.  Theoretical average noise power spectral density at the output 
of the scattered-light interferometer for the lasers with spectral widths 
Dn = 2 and 500 kHz and with scattering segment length of 50 m.
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2coh
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t t

- - +
T2c cm mE 	 (20)

It is easy to verify by a direct substitution that at the frequency 
of 200 kHz the relative difference in the power densities calcu-
lated by formulae (19) and (20) is less than 1 %. The dependence 
of Sscat1( f ) (20) on the length of scattering segment L = Tugr /2 
for lasers with different degrees of coherence is shown in 
Fig.  4. For lengths L > 10 m, the relative difference of noise 
power for the two lasers monotonically falls reaching zero value 
at L = 1750 m; for the scattering segment with L = 50 m it is 
21  dB. Finally, note that at lengths of scattering segments much 
longer than the source coherence length, that is, at T >> tcoh 
under the assumption that the propagating radiation weakly 
attenuates along the scattering segment, expression (19) is sim-
plified and takes the form

Sscat1( f ) » ( )
1 (

,I scat
m

coh

coh
1
2

2p
t

+ f )t
	 (21)

here, one can see that the spectral characteristic is of Lorentzian 
type with the full width at half maximum equal to the double 
spectral width of source emission 2Dn.This limiting case 
agrees with the results of [11] and holds for semiconductor 
sources with a low degree of coherence.

3. Experimental part

In order to confirm the theoretical results, the experimental 
setup was designed, which corresponds to Fig. 2. Radiation of 
a semiconductor laser operating in cw mode at the wavelength 
near 1555 nm was amplified by an erbium-doped fibre ampli-
fier to a power of 25 dBm. After the 50 % splitter, the radia-
tion beams passed through circulators into two scattering seg-
ments, which were presented by pieces of a single-mode fibre 
SMF-28. The radiation scattered in each segment was cou-
pled out through the same circulators and amplified by 
erbium-doped fibre pre-amplifiers. After filtration by the 
optical filters with the spectral bandwidths of 100 GHz, the 
radiation propagating in one interferometer arm passed 
through the acousto-optical modulator which shifted the 
radiation frequency by f0 = 200 MHz.

The interference signal detected by a wide-band photo
detector was then analysed by an Agilent E4411B spectrum 

analyser. The additional optical paths covered by the radiation 
in two interferometer arms from the output coupler to input 
into the scattering segment and from output of scattering seg-
ments to the photodetector (with the allowance made for the 
length of the amplifying fibre in the pre-amplifiers) were chosen 
with equal lengths. The lengths of the scattering segments var-
ied from 50 to 90 m, remaining equal. To avoid reflection from 
the end of the scattering segment, the optical radiation was 
coupled out through knots of small radius at the end of the seg-
ments. Two laser types were employed: a high-coherence laser 
with the spectral bandwidth Dn = 2 kHz and a standard tele-
communication laser with Dn = 500 kHz. For recording the 
statistically average power spectrum, the spectral analyser 
operated in the regime of averaging over 500 samples and the 
scanning was performed with resolution Df = 10 kHz.
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500 realisations (specrum analyser resolution is 10 kHz, and its video 
bandwidth is 10 kHz); circles denote the theoretical noise power spectra 
and squares denote theoretical noise power spectra with the noise of 
pre-amplifier and of photodetector taken into account. Solid horizontal 
lines mark a level of the noise due to pre-amplifiers and photodetector.
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Theoretical and experimental power spectra normalised to 
the average value of scattered radiation power are presented 
in Fig. 5b for the two described laser types at the lengths of 
scattering segments L = 50 m each. One can see that at longer 
scattering segments the spectral characteristics become more 
abrupt. The peaks at the frequency of 200 MHz correspond to 
a harmonic component of the autocorrelation function. 
Similar experimental dependences were observed near zero 
frequency both for interferometers with one and two scatter-
ing segments. Solid curves refer to experimental power spec-
tra of scattered radiation and circles denote the power spec-
tra calculated by (19) for the spectral bandwidth of 10 kHz. 
For a low-coherence laser the curves coincide to a high degree 
of accuracy. However, for a high-coherence laser good agree-
ment is only observed if the frequencies differ from the centre 
frequency by at most 2 MHz. In our opinion, such a behaviour 
is explained by the fact that the spectral components at high 
frequencies have a low power and an influence becomes 
noticeable of the noise produced by beatings of the signal 
with a spontaneous emission of the optical pre-amplifier and 
by shot and thermal noise of the photodetector. All the kinds 
of noise mentioned have a uniform distribution over spec-
trum in the range of measurements [15]. In our experimental 
setup the total normalised noise of all kinds was –109 dB Hz–1 
(in Fig. 5 it is marked by a horizontal line). The spectra of 
scattered radiation power with this noise taken into account 
are marked in Fig. 5 by squares. Thus, with the additional 
noise of spontaneous emission and of the photodetector taken 
into account the theoretical and experimental spectral charac-
teristics of scattered radiation coincide with high accuracy.

4. Conclusions

In the present work, spectral noise characteristics are consid-
ered for a fibre scattered-light interferometer with a semicon-
ductor laser source. To our knowledge, for the first time the 
expression for the average noise power sepctral density of 
fluctuations at the interferometer output caused by phase 
fluctuations of the radiation source is derived. The power of 
noise intensity fluctuations depends on the degree of coher-
ence of the laser source and on the length of the scattering 
segment in the interferometer. In a low-frequency range (up 
to 200 kHz) the noise power spectral density is well approxi-
mated by white noise, whose spectral density can be calcu-
lated by formula (20). Experimental normalised spectra coin-
cide with the theoretical spectra to a high accuracy. 
Nevertheless, for the laser with a high degree of coherence in 
the frequency range where the noise power spectral density is 
low one should take into account the noise of optical pre-
amplifier and of photodetector. The expressions obtained 
after normalising to the square average intensity of scattered 
radiation experimentally measured for a particular fibre can 
be employed for estimating the sensitivity and minimal detect-
able signal level while using a scattered-light interferometer as 
a sensor of external phase actions.

Acknowledgements. Authors are grateful to Ya.A. Tezadov for 
providing a laser source, photodetector and acousto-optical 
modulator.

References
  1.	 Gorshkov B.G., Paramonov V.M., Kurkov A.S., Kulakov A.T., 

Zazirnyi M.V. Kvantovaya Elektron., 36, 963 (2006) [ Quantum 
Electron., 36, 963 (2006)].

  2.	 Nesterov E.T., Treshchikov V.N., Ozerov A.Zh., Sleptsov M.A., 
Kamynin V.A., Nanii O.E., Sus’yan A.A. Pis’ma Zh. Tekh. Fiz., 
37 (9), 55 (2011). 

  3.	 Petermann K., Weidel E. IEEE J. Quantum Electron., 17 (7), 1251 
(1981).

  4.	 Moslehi B. J. Lightwave Technol., 4 (11), 1704 (1986).
  5.	 Alekseev A.E., Tezadov Ya.A., Potapov V.T. Pis’ma Zh. Tekh. 

Fiz., 38 (2), 74 (2012).
  6.	 Alekseev A.E., Tezadov Ya.A., Potapov V.T. Radiotekh. Elektron., 

56 (12), 1522 (2011).
  7.	 Alekseev A.E., Tezadov Ya.A., Potapov V.T. Kvantovaya 

Elektron., 42, 76 (2012) [ Quantum Electron., 42, 76 (2012)].

  8.	 Alekseev A.E., Tezadov Ya.A., Potapov V.T. Pis’ma Zh. Tekh. 
Fiz., 38 (24), 67 (2012).

  9.	 Alekseev A.E., Tezadov Ya.A., Potapov V.T. Radiotekh. Elektron., 
58 (3), 292 (2013).

10.	 Goodman J.W. Statistical Optics (New York: Wiley–Interscience, 
1985; Moscow: Mir, 1988). 

11.	 Gysel P., Staubli R.K. J. Lightwave Technol., 8 (4), 561 (1990).
12.	 Mandel L., Wolf E. Optical Coherence and Quantum Optics 

(Cambridge: Cambridge University Press, 1995; Moscow: 
Fizmatlit, 2000).

13.	 Tkach R., Chraplyvy A. J. Lightwave Technol., 4 (11), 1711 (1986).
14.	 Salehi M.R., Cabon B. J. Lightwave Technol., 22 (6), 1510 (2004).
15.	 Desurvire E. Erbium-Doped Fiber Amplifiers, Principle and 

Applications (New York: Wiley, 1994).


