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Abstract. Bistable self-modulation regimes of generation for a ring 
YAG : Nd chip laser with the counterpropagating waves asymmetri-
cally coupled via backward scattering are simulated numerically. 
Two branches of bistable self-modulation regimes of generation are 
found in the domain of the parametric resonance between the self-
modulation and relaxation oscillations. The self-modulation regimes 
observed in earlier experiments pertain to only one of the branches. 
Possible reasons for such a discrepancy are considered, related to 
the influence of technical and natural noise on the dynamics of 
solid-state ring lasers.

Keywords: solid-state ring laser, self-modulation regime of genera-
tion, dynamic chaos, amplitude and frequency nonreciprocity of 
ring cavity, bistability.

1. Introduction

Solid-state ring lasers (SRLs) with a homogeneous gain are 
characterised by a complicated generation dynamics. Various 
operation regimes are observed in such lasers, which differ in 
temporal, spectral and polarisation characteristics of radia-
tion. The nonlinear dynamics of SRL radiation was studied in 
many papers (see, for example, reviews [1 – 5] and references 
therein). The investigations conducted show that in non-
autonomous SRLs [4] (in particular, SRLs with periodically 
modulated parameters) a noticeably greater number of opera-
tion regimes are observed as compared to autonomous SRLs 
[2, 3, 5].

Monolithic (monoblock) SRLs (ring chip lasers) are inter-
esting from scientific and practical points of view. As com-
pared to the SRLs comprised of discrete elements, the chip 
lasers possess higher temporal, frequency and polarisation 
stabilities of output radiation, low sensitivity to external 
actions and high efficiency.

The generation regime of a ring chip laser can be effec-
tively controlled by an external magnetic field, which pro-
duces the optical nonreciprocity of a ring cavity [3, 6 – 11]. In 
theoretical and experimental studies performed earlier it was 
shown that the amplitude and frequency nonreciprocities of a 
ring laser strongly affect the dynamics of the ring chip laser. 
In particular, an external magnetic field applied to the active 
element makes it possible to realise the unidirectional genera-

tion regime (running wave regime) [8, 9] and a number of self-
modulation regimes [7, 10, 11].

An important problem in studying the nonlinear dynam-
ics of ring chip lasers is to find out the conditions in which 
bistable generation occurs. Bistable states are important in 
studying nonlinear stochastic phenomena in SRLs [12], in 
particular, the stochastic resonance in ring lasers [13 – 15].

It was found [12] that bistable self-modulation oscillations 
occur in a ring chip laser in the range of the parametric reso-
nance between the self-modulation and relaxation oscilla-
tions. In this case, bistable are the self-modulation regime of 
the first kind and the quasi-periodic self-modulation regime. 
However, the authors of [12] did not study the influence of the 
amplitude nonreciprocity of the cavity on the bistability and 
the analysis was only performed in a limited, rather than the 
whole, range of parametric resonance.

In the present work, in the frameworks of the vector 
model of the SRL [16, 17] the detailed analysis is performed 
with the numerical simulation of bistable self-modulation 
generation regimes occurring in the range of the parametric 
resonance. The wide ranges of bistability are found with vari-
ous self-modulation regimes of generation (the periodic and 
quasi-periodic self-modulation regimes and regime of 
dynamic chaos). The results obtained are compared with the 
experiments performed earlier. Based on this comparison, the 
adequacy is discussed of the SRL model employed in describ-
ing the dynamics of a ring chip laser in the range of the para-
metric resonance between the self-modulation and relaxation 
oscillations.

2. Theoretical model and laser parameters

In studying the dynamics of a ring chip laser we used the vec-
tor model of the SRL [16, 17]. In this model, the polarisation 
of radiation for the counterpropagating waves is assumed 
prescribed and determined by the unit vectors e1,2 for the 
counterpropagating directions. The system of equations in 
the vector model has the form
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Here, ( ) ( )exp iE t E, , ,1 2 1 2 1 2j=u  are the complex amplitudes of 
the counterpropagating waves; and N0 and N± are the spatial 
harmonics of inverse population N, determined by the expres-
sions
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The system of equations (1) differs from the standard model 
equations [1] only by the polarisation factor that is present in 
the last equation

b = (e1e2)2 = cos2 g, (3)

where g is the angle between the unit vectors e1,2. In equations 
(1), the following notations were used: wc /Q1,2 is the cavity 
band widths; Q1,2 is the cavity Q-factors for the counterprop-
agating waves; T = L/c is the time needed for light to pass the 
cavity of length L; T1 is the time of longitudinal relaxation; 
l is the length of the active element; a = T1cs/(8'wcp) is the 
saturation parameter; s is the cross section of lasing transi-
tion; W = w1 – w2 is the frequency nonreciprocity of the cavity; 
and w1 and w2 are the cavity eigenfrequencies for the counter-
propagating waves. The pump rate is presented in the form 
Nth(1 + h)/T1, where Nth is the threshold inverse population 
and h = P/Pth – 1 is the excess of the pump power over the 
threshold value. The linear coupling between the counter-
propagating waves is determined by the phenomenological 
complex coupling coefficients

( ), ( )exp expi im m m m1 1 1 2 2 2J J= = -u u , (4)

where m1,2 are the moduli of coupling coefficients and J 1,2 are 
the corresponding phases.

In the calculations, some parameters were taken equal to 
experimentally measured values for the laser under study. For 
a YAG : Nd chip laser the relaxation time is T1 = 240 ms. The 
cavity bandwidth was determined by the relaxation frequency  

/( )QTr c 1w hw=  (Q » Q1 » Q2). At the excess h = 0.218 in 
the laser under study the main relaxation frequency is wr /2p = 
98.5 kHz, which gives wc /Q = 4.37 ´ 108 s–1. The value of the 
polarisation parameter b = 0.75 was found (as in [17]) by the 
experimentally measured dependence of the additional relax-
ation frequency wr1 on the frequency nonreciprocity of the 
cavity W.

As was shown [18], in a ring chip laser the ratio of moduli 
of coupling coefficients m1/m2 can be varied by changing the 
temperature of the monoblock. In the present work it is 
assumed that the modulus of one of the coupling coefficients 
is m1/2p = 129.4 kHz and the ratio is m1/m2 = 0.41. It is dif-
ficult to estimate the phase difference of the complex coeffi-
cients m ,1 2u  by the characteristics of self-modulated oscilla-
tions. For simplicity, the phase difference J1 – J2 was taken 
zero. The amplitude nonreciprocity of the ring cavity D = 
wc /Q2 – wc /Q1 varied in the numerical simulation, and the fre-
quency nonreciprocity of the cavity was taken zero.

3. Results

In an autonomous ring chip laser, the self-modulation regime 
of the first kind arises in a wide range of variations of laser 
parameters, which is specific in the opposite phase modula-

tion of the intensity of counterpropagating waves. If the 
self-modulation frequency wm is close to the doubled fun-
damental relaxation frequency, then a number of the non-
linear effects arise related to the parametric interaction 
between the self-modulation and relaxation oscillations 
(parametric resonance). In this range instability of the self-
modulation generation regime of the first kind arises and 
more complicated self-modulation regimes are excited 
(including that of dynamic chaos) [12, 19 – 23]. If the 
amplitude nonreciprocity of a ring cavity related to unequal 
moduli of the coupling coefficients m1, m2 is present and 
the cavity Q-factors Q1 and Q2 are not equal for the coun-
terpropagating waves then, as was first shown in [12], the 
self-modulated generation regimes may become bistable in 
the considered range.

3.1. First branch of bistable self-modulation regimes

In varying the parameter h from 0.17 to 0.44, two branches of 
self-modulation generation regimes were observed depending 
on initial conditions. We denote them as branch 1 and branch 
2. First, consider branch 1. In this case, at h = 0.17 and D = 0 
the ring chip laser operated in the self-modulation regime of 
the first kind. Then the value of h increased successively with 
a step dh = 0.01. After passing through the whole interval of h 
values, the amplitude nonreciprocity was changed and the 
calculation repeated again with h varying in the limits men-
tioned. The amplitude nonreciprocity changed from –500 to 
3000 s–1 with a step of 250 s–1.

In branch 1 at 0.17 < h < 0.22 the self-modulation regime 
of the first kind (periodic regime – PR) was observed. The 
time dependence of the wave intensity I1 and the spectrum of 
self-modulation oscillations are shown in Fig. 1.

In the range 0.22 < h < 0.33, the periodic regime arises 
with the period twice that of self-modulation oscillations 
(PR2) (Fig. 2a). This regime is specific in that an additional 
component arises at the half-frequency of self-modulation 
oscillations (Fig. 2b).

In the range 0.33 < h < 0.39, the periodic self-modula-
tion regime with the doubled period of self-modulation 
oscillations is changed by the quasi-periodic regime with the 
period equal to the doubled period of the self-modulation 
oscillations (quasi-periodic regime – QPR2). In this regime, 
an envelope of self-modulation oscillations arises (Fig. 3a), 
and the spectrum of output radiation comprises, in addition 
to the spectral components at the self-modulation and relax-
ation frequencies, the components at half the self-modula-
tion frequency. A characteristic dependence of the output 
radiation on time and the spectrum of self-modulation oscil-
lations in this regime are shown in Fig. 3. At h > 0.39 this 
regime changes again to the self-modulation regime of the 
first kind.

Figure 4a presents the domains of existence for the self-
modulation generation regimes in branch 1 in the plane of the 
laser parameters h, D.

3.2. Second branch of bistable self-modulation regimes

For branch 2, the evolution of the self-modulation generation 
regimes is shown in Fig. 4b under the varying parameters h 
and D. As was earlier established [12, 18], in the ring chip laser 
under study with the asymmetrical coupling (m1/m2 = 0.4) at 
h > 0.19, in addition to the periodic self-modulation regime 
of the first kind (PR), also arises the quasi-periodic self-mod-
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ulation regime (QPR). In view of this fact, in branch 2 at h = 
0.19 and D = 0 the initial conditions were chosen correspond-
ing to the QPR. Then the value of h was successively increased 
with a step dh = 0.01. After passing over the whole interval of 
h variation, similarly to the case of branch 1, the amplitude 
nonreciprocity was changed and the calculation repeated with 
a new value of D.

From Fig. 4b one can see that the quasi-periodic regime 
QPR at D = 0 exists in the range 0.19 < h < 0.26. At greater 
amplitude nonreciprocity D, the domain of existence for this 
regime converges. The characteristic shape of the self-modu-
lation oscillations of the radiation intensity and the spectrum 
of one of the waves are shown in Fig. 5. In this regime, in 
addition to the frequency of self-modulation oscillations fm, 
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Figure 1. (a) Time dependence of the wave intensity I1 = aE1
2 in the self-modulation regime of the first kind and (b) the spectrum of intensity at h = 

0.19 and D = 500 s–1.
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Figure 2. (a) Time dependence of the wave intensity I1 = aE1
2 in the periodic regime with the doubled period of the self-modulation oscillations and 

(b) the spectrum of intensity at h = 0.28 and D = 500 s–1.
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Figure 3. (a) Time dependence of the wave intensity I1 = aE1
2 in the quasi-periodic regime with the doubled period of the self-modulation oscillations 

and (b) the spectrum of intensity at h = 0.35 and D = 500 s–1.
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the fundamental relaxation frequency fr is excited, the rest 
spectral components being combination frequencies of these 
two fundamental frequencies.

In increasing the parameter h, the regime QPR in branch 
2 transfers to the regime of dynamic chaos (DC), which at 
D = 0 exists in the range 0.26 < h < 0.32. One can see in 
Fig. 4b that the amplitude nonreciprocity weakly affects the 
width of the domain of existence for the DC regime. Time 
dependences of the counterpropagating wave intensities are 
shown in Figs 6a, b for the DC regime for two different time 
intervals (short and long). The spectrum of intensity of one of 

the waves is shown in Fig. 6c. One can see that this regime has 
the range of a continuous spectrum, specific for regimes of 
dynamic chaos, in which a number of discrete frequencies are 
separated corresponding to the self-modulation and relax-
ation oscillations.

In branch 2 in the range 0.32 < h < 0.37, the periodic 
self-modulation regime arises with the doubled period (PR2) 
and the quasi-periodic self-modulation regime (QPR2). 
These regimes are similar to those arising in branch 1. In 
the range h > 0.37, the bistability vanishes and the self-
modulation regime of the first kind arises (PR).
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Figure 4. Domains of existence for the self-modulation regimes in branches (a) 1 and (b) 2 in the plane of laser parameters h and D.
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Figure 5. (a) Time dependence of the wave intensity I1 = aE1
2 in the quasi-periodic self-modulation regime and (b) the spectrum of intensity at h = 

0.22 and D = 250 s–1.
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1,2 in the regime of dynamic chaos for (a) long and (b) short time 

intervals and (c) the spectrum of the intensity I1 of the wave in this regime at h = 0.28 and D = 250 s–1.
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4. Comparison with experiment

Self-modulation regimes arising in the range of the paramet-
ric resonance were studied experimentally earlier in [22, 23]. 
In those works, only the self-modulation regimes of oscilla-
tions arising in branch 1 were discovered: the periodic regime 
with the doubled period of self-modulation oscillations and 
the quasi-periodic regime with the doubled period of self-
modulation. The experimental results well agree with the 
results of the numerical simulation for branch 1. Branch 2 
studied in the present work has not been observed experimen-
tally yet. The only exception is the quasi-periodic self-modu-
lation regime, which has been observed indirectly under the 
noise modulation of pumping [12]. The investigations con-
ducted in [12, 18] have shown that the bistability of self-mod-
ulation oscillations occurring under the asymmetrical cou-
pling of the counterpropagating waves is strongly affected by 
fluctuations of the pump power. Even under a weak noise of 
the pumping the quasi-periodic self-modulation regime, as 
shown in [12], cannot be observed. Based on these results one 
may assume that the self-modulation regimes pertaining to 
branch 2 also cannot be observed experimentally due to tech-
nical fluctuations of the pump power. To observe instability 
in this case it is necessary to perform further experimental 
investigations under thorough stabilisation of the pump radi-
ation and control of technical noise.

One more reason for the discrepancies between the results 
of numerical simulation and experiments may be the imper-
fect SRL model employed in the present work. The reason is 
that in equations (1) of the vector model, the noise of sponta-
neous emission is usually neglected while describing the gen-
eration dynamics. Possibly, in the frameworks of more exact 
model, the conclusions concerning bistability of self-modula-
tion oscillations in the range of the parametric resonance may 
change if natural fluctuations of laser radiation parameters 
would be taken into account.

Thus, for revealing the reasons of the discrepancies 
between the numerical simulation of the present work and 
experimental results, additional theoretical and experimental 
investigations are needed.

5. Conclusions

The numerical simulation of the generation dynamics for a 
ring chip laser on the basis of the SRL model predicts exis-
tence of two bistable branches of self-modulation oscillations. 
In the experimental studies presented in [22, 23], only the gen-
eration regimes pertaining to branch 1 of the present work 
were observed (regimes PR2 and QPR2). This discrepancy 
may be related to the influence of technical and natural noise 
on the dynamics of SRL generation in the range of the para-
metric resonance between the self-modulation and relaxation 
oscillations.
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