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Abstract.  The possibility of applying the mathematical formalism 
of spiral light beams to the problems of contour image recognition 
is theoretically studied. The advantages and disadvantages of the 
proposed approach are evaluated; the results of numerical model-
ling are presented. 
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1. Introduction

The problem of image recognition is rather wide [1] and the 
first approaches to its solution were proposed as long ago as 
in the middle of the 20th century. A traditional instrument in 
this field is the contour analysis [2], the essence of which is 
considering the image as a set of contours. The existing meth-
ods of storage, compression and recognition of contour 
images suffer from a number of essential drawbacks. In par-
ticular, they are based on the presentation of contour images 
in the form of reduced expansions over certain bases, which 
makes the expansion dependent on the choice of the reference 
point at the contour and thus introduce ambiguity into the 
method of its definition. This circumstance makes necessary 
the development of new approaches, which could provide 
reliable and unambiguous recognition of objects having a 
complex contour structure.

In the present paper we propose an essentially new method 
of contour image recognition, based on using the mathemati-
cal formalism of spiral Gaussian beams, which may remove a 
part of drawbacks inherent in the known methods of contour 
analysis. 

The basis of the proposed approach are the so called spiral 
beams, i.e., the light fields, conserving their structure under 
focusing and propagation and being the subject of study in 
coherent optics.

At zeros of the complex amplitude of the light field, the 
distribution of phase possesses a number of specific features, 
or singularities. They are also referred to as wave front dislo-
cations. Initially this term was introduced into use and con-

sidered from the geometrical point of view in the paper by 
J.F. Nye and M. Berry [3], where the attention was drawn to 
the distinction between the zeros of the wave field complex 
amplitude in 1D and 2D cases. The meaning of this difference 
consists in the following. While for a 1D field the geometrical 
set of zeros of real and imaginary parts of the field complex 
amplitude is a set of points, for a 2D field the zeros of real and 
imaginary parts are lines. In connection with this fact the 
behaviour of isolated zeros of the amplitude becomes differ-
ent at small variations (‘stirring’) of the field. In a 1D case the 
zero points of the real and imaginary parts easily ‘lose’ each 
other, and a zero of amplitude vanishes. On the contrary, in a 
2D field the zero lines of the real and imaginary parts are 
deformed, but the points of their crossing, i.e., the isolated 
zeros of amplitude remain stable. The phase of the field is 
indefinite at the zeros of its amplitude and possesses a helical 
structure is the vicinity of a zero, while the circulation of the 
phase gradient around each zero is an integer multiple of 2p. 
Such isolated points became to be referred to as wave front 
dislocations, or phase singularities. The sign of a wave front 
dislocation is determined by the sign of the phase increment 
during the path-tracing around it.

Among the Russian authors, the attention to these optical 
objects was paid by Zel’dovich et al. [4]. In their papers the 
density and sign of dislocations were studied in random light 
fields (speckle fields). The studies of light fields with phase 
singularities are carried out also by the research teams lead by 
Soskin, Volar and Bekshaev. They studied the topological 
properties of such fields and the methods of their synthesis 
using specific holograms [5 – 7]. It is worth noting that the spi-
ral beams used in the present paper are a certain sub-family of 
singular light fields, since all singularities of the considered 
beams have the same sign.

The essence of the approach proposed in the present paper 
is that the operations are carried out not with a planar curve, 
but with the spiral beam, determined by it. This is possible 
because there is a one-to-one correspondence between curves 
and beams. However, it is more profitable to consider exactly 
a spiral beam as an object, more ‘rich’ from the mathemati-
cal point of view and possessing a number of useful proper-
ties. 

2. Image, contour and curve

In the problem of image recognition the first and obligatory 
procedure is the selection of the boundaries (contours) of the 
object. However, in the present work it is implied that the 
contours have been already extracted using one of the existing 
methods. The next step is correct description of the obtained 
contours, i.e., their characteristics should be unambiguous 
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and invariant with respect to different factors (particularly, 
they should be independent of the reference point choice). 
Figure 1 presents the image of a cat, in which for simplicity 
only one contour, the image boundary, is selected. 
Undoubtedly, the result of recognition can (and should) be 
based on a variety of solutions corresponding to individual 
contours separated from the image, which is easily provided if 
a mechanism for comparison of two contours exists. Just the 
determination of qualitative characteristics of a contour and 
extracting from them the information about the similarity 
with the object is the goal of the present paper. 

It is natural to consider as the mathematical representa-
tion of contours some closed planar curves, consisting of an 
ordered set of points:

( ) ( ) ( ), [0, ] .it x t y t t T!z = + 	 (1)

Obviously, any closed curve is a periodic function with the 
period T.

It is clear that any contour can be presented in the form of 
an infinite expansion in a certain complete set of orthogonal 
functions. The problem of choosing a convenient basis is, of 
course, essential. The problem of expansion of the above 
functions is thoroughly considered in [8], where the classical 
bases, used in image recognition, are presented. The problem 
is, however, two-fold. First, to provide reasonable time limits 
for the analysis process one has to confine himself to a finite 
number of basis functions. Second, the dimension of the finite 
set of expansion coefficients with respect to the basis is radi-
cally dependent on the reference point, from which the curve 

‘begins’ (i.e., on defining the corresponding function in the 
interval [0,T ] or [a, a + T ]). Of course, from the point of view 
of curve description it is of no importance, but only in the 
case of a complete basis set, which is not implemented in prac-
tice because of the limited time and computation resources. 
All this stimulated us to seek for an alternative approach.

3. Spiral beam

In the process of analysing light fields of different types a new 
type of light beams referred to as spiral beams was discov-
ered, analysed theoretically and implemented experimentally 
[9]. It appeared that a spiral beam represents a light field, con-
serving its structure to a scale factor and rotation in the course 
of propagation and focusing. Moreover, the structure of such 
a light field can be rather diverse; in particular, it can have the 
shape of an arbitrary planar curve, including a closed one. 

It was found that the complex amplitude S(z, z*) of the 
field of such a beam is uniquely related to the corresponding 
curve z(t) and is described by the expression
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where r is the Gaussian parameter of the beam, and the aster-
isk denotes complex conjugation. The example of a given 
curve and the corresponding spiral beam is presented in 
Fig. 2. 

Rather essential is the property of ‘quantisation’ of spiral 
beams in the form of closed curves. If the condition (the quan-
tisation condition) holds

, 0,1,2,S N N
2
1

curve
2 fp r= = ,	 (3)

Figure 1.  Original image (left) and object contour (right).
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Figure 2.  (a) ‘Generating’ curve; (b) intensity [squared modulus of the complex amplitude S(z, z*)] distribution and (c) phase [argument of S(z, z*)] 
distribution of the corresponding spiral beam.
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where Scurve is the area under the curve, then the complex 
amplitude of the beam field does not depend on the choice of 
the reference point at the curve. In other words, the spiral 
beam is not determined by the reference point at the contour. 
Therefore, any finite sum of the series ( , | ( ) | ,S z z t*

N z  
[ , ])t a a T! +  is also independent of this reference point to 

the mutual unimodular term, depending only on the parame-
ter a. Therefore, the problem of choosing the reference point 
in the analysis and recognition of the input contour is 
removed. This means that with any required precision we can 
put into correspondence to the spiral beam 
( , | ( ), [ , ])S z z t t a a T!z +*  a finite sum of the series
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Since under the rotation of the analysed contour by the angle 
a the finite sum of the series changes as
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the problem of the contour rotation is removed, too, and this 
proves once more that the expansion coefficients can charac-
terise the rotation angles.

We should emphasise one more rather important aspect 
here. As shown in [10], the quantisation parameter determines 
the number of zeros of the complex amplitude within the con-
tour and, in fact, the power of the polynomial, corresponding 
to the initial analytic function of the spiral beam. Apparently, 
if the analysed contour is complex, the quantisation parame-
ter cannot be small: the complex object cannot be described 
simply. Nevertheless, the fact that the problem of dependence 
on the choice of the reference point and the rotation angle is 
removed is rather essential and makes the proposed method 
worthy of a detailed analysis. Note, though, that in the case of 
a complex analysed contour any other method will be also not 
free of the objective limitation related to the presence of the 
contour cumbersome configuration. 

4. Comparison of contours

Now let us consider two contours, the input one and the refer-
ence one, stored in a database, and let us determine whether 
they correspond to each other or not. Let us construct spiral 
beams for both contours, keeping the necessary number of 
terms in the series. Using the above scheme let us put into cor-
respondence to the contours two spiral beams or two sets of 
complex coefficients {cn

(1)} и {cn
(2)} (n = 0, . . . , N).

It is assumed that before the construction of beams the 
normalisation of the area, bounded by the contours, has 
already been carried out. The reduction to one area allows 
determination of the scale of the input object. In the case 
when the quantisation parameter is sufficient to provide dis-
tinguishing between two contours, the above sets of coeffi-
cients coincide to a rotation (naturally, within the framework 
of the fixed basis):
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If jn = const for all n, then jn is the angle a of relative rotation 
of the contours. This fact is easily obtained by deriving the 
expression for the ratio of two complex amplitudes from the 
representation of the spiral beams in the form of series (4) and 
(5). If condition (6) is not satisfied, one can conclude that the 
contours do not correspond to each other.

5. Brief description of the algorithm, 
its advantages and drawbacks

Based on the abovementioned considerations, one can briefly 
formulate the step-by-step sequence of operations aimed to 
establish the similarity of two given contours. First, it is nec-
essary to present them as ordered sets of points in the plane, 
i.e., curves. Using the obtained curves one should calculate 
the corresponding spiral beams and then expand them in the 
orthogonal basis, taking the required number of expansion 
coefficients, which is empirically determined by the problem 
frameworks. Finally, based on the comparison of two sets of 
coefficients one can draw a conclusion whether the two con-
tours (or rather there ‘hypostases’ in the form of spiral beams) 
are similar to a scale factor and a rotation. Such a sequence of 
operations can be presented in the form of the block diagram, 
shown in Fig. 3.

Thus, it is possible to implement the recognition algo-
rithm, having the following specific features. The first one is 
the independence of the algorithm operation on the choice of 
the reference point at the contour and the scale of the contour 
image. The second one is the decreased recognition time due 
to reducing the problem of processing a 2D contour to the 
problem of processing a 1D one. This second feature is not 
specially reflected in the text, but it is implied that the specific-
ity of spiral beams allows the reduction of 2D expansions in 
the basis of Laguerre – Gaussian functions [used in the repre-
sentation of the beam in the form (4)] to 1D Hermite – Gaussian 
functions. Third, the contour object can be of arbitrary shape; 
its complexity is limited by the system resolution only, but not 
by the number of the contour sections, as in other methods. 
An attractive property of the proposed method is that the enu-
meration of possibilities, which is typical for such a generally 
accepted recognition method as the contour analysis using 
correlation functions, is not required. 

As a drawback of the method one should mention the 
necessity of 2D calculations in the operations carried out at 
the intermediate stages. However, there are real reasons to 
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Figure 3.  General block diagram of the method.
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believe that this drawback is completely removable using 
some additional properties of the spiral beams, as already 
mentioned above. The following unresolved problem is also 
of importance for real application of the method. Surely, the 
complete spiral bean unambiguously determines the curve 
‘generating’ it. However, there is one rather nontrivial ques-
tion that requires an answer, namely, what should be the 
minimal number of powers in the residual series for a spiral 
beam, i.e., what should be the quantisation parameter to pro-
vide reliable distinction between two objects?

6. Results of numerical modelling

Let us consider four contours: delta-shaped, delta-shaped 
rotated by the angle 15°, square, and square rotated by the 
angle 8°. The corresponding illustrations are presented in 

Figs 4 and 5, and the calculated sets of coefficients are sum-
marised in Tables 1 and 2. 

To construct the spiral beams we used the quantisation 
parameter N = 10. The result remains valid for N > 10, the 
precision of the calculations being even better. In the course 
of construction the mesh of the complex grid was automati-
cally chosen such that the area under the curve Scurve was kept 
equal to  Np = 10p and satisfied relation (3), which yields the 
Gaussian parameter r = 2  and the scaling factor equal to 1. 
From Tables 1, 2 it is seen that there are pairs of contours, 
corresponding to each other, namely 1, 2 and 3,  4, since only 
for them condition (6) is satisfied. The conclusion that the 
contours from different pairs do not correspond to each other 
is made already at the step of comparing the moduli of the 
coefficients cn, so that the calculation of the rotation angle is 
not necessary.
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Figure 4.  (a) Delta-shaped ‘generating’ curves and corresponding distributions of (b) intensity and (c) phase of the spiral beams. 
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Figure 5.  (a) Square-shaped ‘generating’ curves and corresponding distributions of (b) intensity and (c) phase of the spiral beams.
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7. Conclusions

In the present paper a new approach is proposed within the 
framework of contour analysis, based on close cooperation of 
modern coherent optics, theory of functions, and numerical 
methods. An algorithm for comparing contours is presented 
and theoretically justified, which allows determination of 
whether two contours are similar or not to a scale factor and/
or rotation. In addition, it was clarified that due to the choice 
of specific intermediate objects, the spiral beams, the answer 
to the above question is always unambiguous, which is 
achieved without enumeration of all possibilities. One should 
agree that the pay for this advantage is a large volume of nec-
essary calculations, caused by the two-dimensionality of the 
approach; however, to the authors’ opinion there are serious 
promises for significant reduction of the computation vol-
ume, as well as for attaining reasonable complexity of the 
algorithm.
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Table  1.  Complex expansion coefficients of delta-shaped spiral beams, their moduli and rotation angles.

n cn
(1)/10–6 cn

(2)/10–6 |cn
(1)|/10–6 |cn

(2)|/10–6 jn

0 –1026 – 334i –1026 – 334i 1079 1079 –

1 14365 – 60664i 29577 – 54879i 62342  62342 15

2 2173 + 367i 1698 + 1404i 2203 2203 15

3 –120 – 256i 96 – 266i 283 283 15

4 –248374 – 64057i –68712 – 247127i 256501 256501 15

5 457 – 1679i 1740 + 7i 1740 1740 15

6 – 865 – 269i 269 – 865i 906 906 15

7 –18539 + 67022i –59940 – 35254i 69539 69539 15

8 – 46 – 17i 37 – 31i 49 49 15

9 – 8 + 37i 21 – 32i 38 38 15

10 1039 + 265i –1032 + 290i 1072 1072 15

Table  2.  Complex expansion coefficients of square-shaped spiral beams, their moduli and rotation angles.

n cn
(3)/10–6 cn

(4)/10–6 |cn
(3)|/10–6 |cn

(4)|/10–6 jn

0 21 21 21 21 –

1 1494 + 1499i 1271 + 1692i 2117 2117 8

2 –11 + 53909i –14870 + 51817i 53909 53909 8

3 750 – 768i 997 – 396i 1073 1073 8

4 567 + 2i 480 + 302i 567 567 8

5 8310 + 8338i 1007 + 11729i 11772 11772 8

6 –20 + 99862i –74226 + 66806i 99862 99862 8

7 1383 – 1395i 1930 + 367i 1965 1965 8

8 36 16 + 33i 36 36 8

9 444 + 446i –287 + 560i 629 629 8

10 –1 + 3200i –3151 + 555i 3200 3200 8


