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Abstract.  Resolution of the lenses made of a negative-index material 
is considered. It is shown that the super-resolution concept is unten-
able and the possibility of obtaining a perfect image on its own 
eventually contradicts Maxwell’s equations in vacuum. It is also shown 
that known limitations of the diffraction theory on resolution of 
optical instruments hold true for the resolution of lenses of a nega-
tive-index material, in particular, the resolution of a Veselago lens.
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1. Introduction

In last decades, much attention has been paid to electrody-
namics of materials characterised by a negative refractive index. 
Such materials were first mentioned by L.I. Mandelshtam 
(see the historical review in [1]), and a systematic study of 
their properties was started by V.G. Veselago [2]. Due to 
progress in composite material nanotechnology, the new 
media were designed possessing the properties that can be 
explained by a negative refractive index [3, 4]. The thesis was 
proposed [5, 6] that lenses made of such materials allow one 
to overcome the diffraction limit for optical instruments. This 
thesis encounters numerous objections [7], which are not 
absolutely unquestionable [8]. However, the concept of a 
superlens (in the form of a plane layer of a negative-index 
material) suggested in [5], which implies in the ideal case over-
coming the diffraction limit and creation of an ‘ideal image’ 
has found numerous successors (see, for example, [9 – 14] and 
references therein). Nevertheless, the superlens concept itself 
seems quite strange. Indeed, since Fresnel times the dimension 
of a focal spot is known to be only determined by the angle 
between utmost converging rays in the focal plane and by the 
radiation wavelength (see, for example, [15], §55). The dimen-
sion of the focal spot is the property of converging wave 
regardless of the optical system producing the wave. In the 
case of a superlens, the converging wave is outside the layer 
with negative refraction and it seems reasonable that it should 
be focused to a domain of usual dimensions. It seems strange 
that the authors of the mentioned works on sulerlenses ignore 
this conflict with well established fundamental facts.

In [16 – 18], the strictly stated problem was considered on 
propagation of the electromagnetic wave emitted by the ele-

mentary Hertzian electric dipole, placed parallel to a layer 
boundary or, in a particular case, to a semi-space. The layer 
or semi-space is filled with a nergative-index material. The 
problem was solved based on the classical approach [19] to 
similar problems with ordinary dielectrics, which date back 
to the classical Sommerfeld approach [20, 21].

Calculations in [16, 17] were performed for the materials 
with negative refraction and weak absorption. The size of the 
focal spot was approximately equal to half-wavelength and 
no super-resolution was found. In the present work, we will 
discuss this result from the viewpoint of a strict consequence 
from a theory of electromagnetic field, namely, the equiva-
lence theory.

2. Resolution of a Veselago lens

Pendry [5] considered the Veselago lens, which is a plane plate 
(Fig. 1) made of a material with dielectric and magnetic per-
meabilities e = –e0 и m = –m0, respectively, where e0 and m0 are 
the permeabilities in vacuum in the SI system. Waves initiated 
by a point source A undergo negative refraction at the plate 
boundary and are focused to point P (in the ray approxima-
tion). Pendry [5] comes to the conclusion that in the limiting 
case of infinitesimal losses the ‘ideal image of the source’ will 
be formed at point P, that is, a singularity of the focused field 
will arise or, at least, the spot with the size noticeably smaller 
then the characteristic problem dimension. Such a conclusion 
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Figure 1.  Veselago lens and the auxiliary surface surrounding the focal 
point P.
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is explained by amplification of evanescent waves in the plate 
that forms the negative-index lens. In the limiting case of zero 
losses this amplification would compensate, according to 
author [5], the damping evanescent waves outside the plate 
and ideally reproduce all evanescent harmonics in the image 
plane, thus forming the ideal image. However, the transfer to 
zero-loss limit in [5] was performed incorrectly. To make the 
transfer one should fix the absorption, find the field from the 
point source in the focal plane and then study the focal distri-
bution variation under reduced absorption, which has not 
been made in [5]. In solving this problem under strict formula-
tion [16, 17] it was found that for each particular value of 
material losses, the focal spot remains distributed in a finite 
space domain in accordance with known fundamental dif-
fraction limitation. The followers of the super-resolution con-
cept were not convinced of such an argument (see [22] and 
references therein). They hope that by reducing substantially 
the losses of the lens material or introducing into it an active 
medium one may attain the desirable. But the limitations of 
diffraction theory are of fundamental character. They cannot 
depend on the form of harmonic decomposition of the electro-
magnetic field, because the field can be decomposed on various 
complete basic wave sets (the field decomposition on plane 
and evanescent waves is a particular case of possible complete 
wave sets). Hence, in the present work we will consider the 
limitations on resolution of focusing optical instruments 
imposed by the electromagnetic field equations (ultimately by 
Maxwell’s equations).

We will prove that super-resolution is impossible and find 
the real dimension of the focal spot in the image plane.

Let us surround the image point P by the closed surface S 
that resides completely in vacuum outside the negative-index 
material (see Fig. 1). The problem of monochromatic electro-
magnetic wave propagation in vacuum is well studied. Inside S 
one may write known and well studied electrodynamics equa-
tions. According to the Stratton – Chu formulae [23], the elec-
tric and magnetic fields at point P can be found by the known 
fields at the boundary S in the following way:

EP = iwmAe – i
1
we
grad divAe – rot Am,	 (1)

HP = iweAm – i
1
wm

grad divAm + rot Ae,	 (2)

where
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are the electric and magnetic vector potentials; n is the inter-
nal normal to surface S; r = |rP – rS| is the distance from 
surface element dS to point P; k = w/c is the wavenumber; e = e0 
and m = m0 are the dielectric and magnetic permeabilities inside S; 
w is the wave frequency; c is the speed of light in vacuum; and 
the time dependence of complex representation for harmonic 
fields is taken in the form exp (–iwt). Note that the differential 
operators in (1) and (2) affect the coordinates of point P.

The Stratton – Chu formulae for the domain of S lacking 
foreign sources of the electromagnetic field express the equiv-
alence theory [24], which follows from Lorentz lemma and is 
thoroughly considered in the works by Love, Shchelkunov, 
Kotler, et al. [25].

Consider the physical meaning of Eqns (1), (2). If real 
electromagnetic fields E and H are known at the boundary of 

the domain S comprising no foreign sources, then the field at 
an arbitrary point inside S is a sum of the fields from electric 
and magnetic surface currents residing on the surface S and 
having the surface densities je = [n, H ] and jm = [E, n], respec-
tively. The electromagnetic fields of these surface currents are 
completely equivalent to the fields of external (with respect to 
surface S) currents; this fact explains the name of the theory 
of equivalence.

Thus, the electromagnetic field at any point inside domain 
S is completely determined by the real electromagnetic field 
on the surface S. This conclusion is independent of the surface 
shape; hence, the surface S can be easily deformed and turned 
to a semi-sphere of large radius (Fig. 2).

The integrals in (1), (2) over an infinitely remote semi-
sphere surface turn to zero due to the Sommerfeld radiation 
condition. Finally we come to the integral over the only plane 
parallel to the plate and residing in vacuum at an infinitely 
short distance from it.

Note that the transformation of surface S to semi-sphere 
is not principal for further proof and is only used for clear and 
convenient consideration. The employment of the Sommerfeld 
radiation condition is not principal as well.

Further on, in view of the Stratton – Chu formulae, the 
electromagnetic field at any point P inside surface S is the sum 
of fields from the surface currents jedS = [n, H ]dS and jmdS = 
[E, n]dS distributed over surface S. The area dS with the surface 
currents written gives at the observation point P the fields
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Figure 2.  Deformed surface S transformed to the semi-sphere of infi-
nitely large radius.
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Differentiation of (3) results in the tensor form:
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where aqw, bqw, cqw, dqw, and gqw are tensors dependent only on 
direction cosines of the unity vector directed from the point of 
integration to observation point, which have the structure
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where C1, C2, C3 are constants (specific for each tensor): 
x = xP – xS; y = yP – yS; z = zP – zS; r = |rP – rS|. The tensors 
slowly vary versus the direction cosines and this dependence 
is not principal in further consideration. The field (dEP)q in (5) 
is intentionally presented in this form in order to stress the 
dependence of its components on distance r. The expression 
(dEP)q in (5) where q ranges over values 1, 2, 3 or x, y, z, presents 
the projection of vector dEP to qth coordinate axis (it is a 
complex value). In the right side of equation (5) we employ 
the Einstein summation convention with respect to index w.

In view of (5), formula (1) can be rewritten in the form
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Prior to determining the size of the focusing domain we 
have to answer the question: what does the ideal focusing 
mean from the viewpoint of the equivalence theory?

The answer is obvious: under ideal focusing the fields 
(dEP)q  from all areas dS are added in-phase. On the complex 
plane, the field (dEP)q  from each element dS is presented by a 
vector. Hence, under the ideal focusing, the vectors for all dS 
are parallel to each other and form the complex vector of the 
resulting field component (EP)q, for which the vector diagram 
of each component (EP)q of the total field can be considered 
similarly to summing oscillations in optics ([26], p. 372). The 
vector diagram in Fig.3 conditionally shows the summation 
of fields from separate surface elements (dEP)q, which gives 
the vector of the resulting field component (EP)q at the focal 
point P (light arrows correspond to ideal focusing). The con-
ditional character of this diagram implies that real integration 
in (7) requires summation of infinitesimal vectors (dEP)q having 
different lengths. The angle of the resulting vector relative to 
the origin of coordinate system is not significant and is deter-
mined by the origin of time scale. We specially stress that the 
vectors shown in Fig. 3 in a complex plane present the com-
plex numbers (EP)q and (dEP)q, which in the real space are not 
vectors, but the components of the complex electric field vector 
at the coordinate axes; for example, (EP)q may be a projection 
of the electric field vector onto one of the coordinate axes in 
the focal plane.

Let the observation point be shifted from position P to P' 
by the small distance D along the focal plane (see Fig. 2), such 
that D << d and D << l (d is the distance from the lens to focal 
plane and l is the wavelength inside S). The total electric field 
at the observation point in this case slightly changes. In the 

shift, the contributions from separate surface elements dS vary 
according to (5) due to both length variations of vectors (dEP)q 
and their small turning (in accordance with the phase changes 
in the waves arising in shifting the observation point). In Fig. 3, 
the result of summing vectors (dEP)q at shifted point P' is shown 
by black arrows.

We may estimate the size of the domain in the focal plane 
where the field is close to that at the focal point P. The two 
limiting cases may be separated: d >> l and d << l. We will 
assume that in the case d >> l point P resides in the far-field 
zone of the lens and in the case d << l it resides in the near-
field zone.

First, consider the far-field case (d >> l). Under a small 
shift (D << d ) the variations of (dEP)q in (5) are determined 
by the changes in the phase factor exp(ikr) arising in the shift. 
The elementary vectors on the vector diagram would turn with 
a virtually constant amplitude. Hence, the resulting vector 
would reduce in amplitude and, generally speaking, it would 
turn as well. It is not difficult to understand that a noticeable 
change in the amplitude of the resulting vector occurs at D ~ l/2, 
where l is the wavelength in vacuum. In this case, the phases 
of the waves determined by separate elements vary from zero 
for dS on the axis of symmetry (point O in Fig. 2) to ±kD ~ p 
for infinitely far elements of the plane. Hence, the character-
istic dimension of the focal spot in the vicinity of the focal 
point P is ~l. At small shifts (such that D << l/2), the result-
ing vector (EP)q cannot change noticeably because turns of the 
summed vectors (dEP)q in this case are negligible and their 
length is not changed.

The last result directly entails the impossibility of Pendry 
super-resolution in the far-field zone. Indeed, if the field at 
point P is infinitely high then under a small but finite shift 
D << l/2 the relative variation of the field amplitude (EP)q is 
small; hence, the field will be infinitely high in a limited domain, 

Im(EP)q

Re(EP)q

End of the resulting field 
vector at the focal point P End of the resulting field 

vector at the point P' 
shifted from the focus

Figure 3.  Schematic vector diagram showing summation of fields from 
separate surface elements (dEP)q to the vector of the resulting field (EP)q 
at the focal point P (light arrows) and at shifted point P' (dark arrows).
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which is not possible, because an infinite electromagnetic energy 
will be concentrated in the domain (the point source before 
the lens emits a finite energy). Moreover, successive (from the 
boundary of the infinite field zone obtained) finite shifts D << l/2 
allow one to further expand this zone of infinite field, thus 
gradually filling the domain S.

In the near-field zone (d << l) at small shift D << d the 
greatest changes in (5) will be contributed by the factors

a
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whereas the contribution of the phase multiplier exp(ikr) will 
be negligible. In this case, the elementary vectors (dEP)q on 
the vector diagram actually do not turn but only change in 
amplitude. On surface S, maximal equivalent surface currents 
je = [n, H ] and jm = [E, n] will be observed near the axis of 
symmetry (point O in Fig. 2) being in-phase [at D << d the 
variation of exp(ikr) is negligible]. It is obvious [see (7)] that a 
noticeable change in the resulting vector amplitude will occur 
at D ~ d /2, where d is the characteristic problem dimension. 
Now we may conclude that the focal spot in the vicinity of 
point P in the near-field zone has the dimension of ~d. At 
small shifts (such that D << d) the resulting vector (EP)q can-
not become noticeably smaller because the summands (dEP)q 
negligibly change their lengths at invariable directions.

The proof of impossibility of Pendry super-resolution in 
the near-field zone is similar to that for the far-field zone. 
Indeed, if the field is infinitely high at point P then a small, 
however, finite shift D << d will cause a small relative change 
in the amplitude of the field (EP)q. Hence, the field will be 
infinitely high in a finite domain in the vicinity of focus which 
is impossible because an infinitely high energy will be concen-
trated in this domain (a point source emits a finite energy). 
Similar consideration leads to the conclusion that super-reso-
lution is impossible in the intermediate zone as well.

The conclusions derived above are completely confirmed 
by the calculations of focusing properties of the Veselago lens 
with weak material absorption performed in the frameworks 
of theory in [16, 17].

It is appropriate to answer the criticism of [16, 17] expressed 
in [22]. The authors contend that the integration limits in 
[16, 17] are not sufficiently large to correctly take into account 
all evanescent waves contributing into ‘super-resolution’. The 
fact that analytical solutions in [16, 17] are correct and strict 
is not subjected to question in [22]. However, the criticism of 
the numerical calculations [16, 17] is not grounded by the fol-
lowing reasons.

1. In [16], the focus inside the Veselago lens (which is by 
some reason missed in [22] and which should also comprise 
the perfect Pendry image) is rigorously investigated. The upper 
integration limit in [16] is approximately 102k0, where k0 is 
the wavenumber in vacuum at the considered frequency. In 
this case, the details of focal distribution of an approximately 
100-times smaller scale than the wavelength l in vacuum could 
be resolved; however, the calculations resulted in that the focal 
field distribution has an ordinary dimension (on the order 
of l). The calculation details are given in [16].

2. In [17], the rigorous solution is presented in the form of 
an integral for the problem on finding the focal energy distri-
bution for the Veselago lens. As the absorption in the lens 
tends to zero, the numerical integration fails at some stage due 
to large exponents arising in the integrand followed by over-
flow of numerical notation. In order to avoid this difficulty 

and solve the problem, the small absorption was added to the 
lens material e = e0(–1 + 0.001i) and m = m0(–1 + 0.001i). One 
can ascertain that the evanescence waves will have noticeable 
amplitudes only for the wavenumbers slightly larger than k0; 
then an increase in the wavenumber over which the integral is 
taken, the amplitudes sharply fall. Hence, to obtain a correct 
result (at the mentioned absorption inside the lens) it is suffi-
cient to consider the wavenumber range limited by 2k0 – 3k0, 
which was done in [17]. The calculation in [17] might reveal 
the details of focal distribution with the dimensions of ~l/3; 
however, the distribution with the ordinary dimension ~l 
was obtained. Issuing from the conclusions of the present work 
we can assert that this is not accidental. Hence, the answer to 
criticism in [22] is as follows: the limits in [17] were chosen 
sufficient for the integral to converge and for observing the 
hypothetical super-resolution that was not eventually found.

3. Much more precise numerical calculations were per-
formed in [16], which prove that the spot in the focus inside 
the Veselago lens has a dimension of ~l. The Veselago lens 
can be presented as two such lenses (one of them gives the image 
of the point source inside the Veselago lens and the second 
transfers this image to the external focus of the lens). Hence, 
in the focus of the Veselago lens, the dimension of a minimal 
spot should also be approximately l! A finite-size spot inside 
the lens cannot be converted to a point in the external focus!

Finally, note that mathematically incorrect calculations 
were made by Pendry in [5], which finally resulted in all those 
misunderstandings with super-resolution. The author first 
takes a sum of geometric series and then the denominator in 
the obtained formula tends to infinity, which is not correct 
mathematically.

3. Conclusions

Thus, in the present work we prove that a super-resolution 
and, hence, a system producing the ideal image is impossible. 
The field focused in free space cannot have a singularity. The 
dimension of a minimal focal spot from a point source in the 
image plane is the value ~l in the far-field zone and on the 
order of the characteristic size of problem d in the near-field 
zone. These conclusions are independent of the construction 
of focusing system and materials from which the system is 
created including constructions with active and supercon-
ducting media.

To avoid oppressive search for super-resolution in future, 
the impossibility of super-resolution is suggested to be termed 
second principle of electrodynamics by analogy with second 
principle of thermodynamics (impossibility of perpetuum 
mobile).

References

  1.	 Makarov V.P., Rukhadze A.A. Usp. Fiz. Nauk, 54, 1285 (2011) 
[ Phys. Usp., 54, 1285 (2011)].

  2.	 Veselago V.G. Usp. Fiz. Nauk, 92, 517 (1967) [ Sov. Phys. Usp., 
10, 509 (1968)].

  3.	 Smith D.R. et al. Phys. Rev. Lett., 84, 4184 (2000).
  4.	 Shelby R.A., Smith D.R., Schultz S. Science, 292, 77 (2001).
  5.	 Pendry J.B. Phys. Rev. Lett., 85, 3966 (2000).
  6.	 Lagarkov A.N., Kissel V.N. Phys. Rev. Lett., 92, 077401-1 (2004).
  7.	 Williams J.M. Phys. Rev. Lett., 87, 249703-1 (2001).
  8.	 Pendry J.B. Phys. Rev. Lett., 87, 249704-1 (2001).
  9.	 Cui T.J., Cheng Q., Lu W.B., et al. Phys. Rev. B, 71, 045114 (2005).
10.	 Chen J.J., Grzegorczyk T.M., Wu B., et al. Phys. Rev. E, 74, 

046615 (2006).
11.	 Alitalo P., Tretyakov S.A. Metamaterials, 1, 81 (2007).



	 A.B. Petrin818

12.	 Cheng Q., Cui T.J. Opt. Lett., 30 (10), 1216 (2005).
13.	 Scalora M., D’Aguanno G., Mattiucci N., et al. Opt. Express, 

15 (2), 508 (2007).
14.	 Podolskiy V.A., Kuhta N.A., Milton G.W. Appl. Phys. Lett., 

87, 231113 (2005).
15.	 Sivukhin D.V. Kurs obshchei fiziki (General Physics) (Moscow: 

Nauka, 1985).
16.	 Petrin A.B. Pis’ma Zh. Eksp. Teor. Fiz., 87, 550 (2008) [ JETP 

Lett., 87, 464 (2008)].
17.	 Petrin A.B. Zh. Eksp. Teor. Fiz., 134, 436 (2008) [ JETP, 107, 364 

(2008)].
18.	 Petrin A., in Wave Propagation in Materials for Modern 

Applications (Vukovar: IN-TECH, 2010, Ch. 7); www.sciyo.com.
19.	 King R.W.P., Smith G.S. Antennas in Matter (Cambridge, MA: 

Massachusetts Inst. Technol. Press, 1981).
20.	 Sommerfeld A. Ann. Physik. (Leipzig), 81, 1135 (1926).
21.	 Wait J.R. IEEE Antennas and Propagation Magazine, 40 (5), 7 (1998).
22.	 Shevchenko V.V. Usp. Fiz. Nauk, 181, 1171 (2011) [ Phys. Usp., 

181, 1171 (2011)].
23.	 Statton J.A. Electromagnetic Theory (McGraw – Hill, 1941; 

Moscow: Gostekhizdat, 1948).
24.	 Markov G.T., Chaplin A.F. Vozbuzhdenie elektromagnitnykh voln 

(Excitation of Electromagnetic Waves) (Moscow: Energiya, 1967).
25.	 Markov G.T. Radiotekh. Elektron., 4, 5 (1958).
26.	 Gorelik G.S. Kolebaniya i volny (Oscillations and Waves) (Moscow: 

Fiz.-Mat. Lit., 1959).


