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Abstract.  The problem on laser radiation propagation in a birefrin-
gent medium is solved with the allowance made for thermally 
induced linear birefringence under the conditions of cubic nonlin-
earity. It is shown that at high average and peak radiation powers 
the degree of isolation in a Faraday isolator noticeably reduces due 
to the cubic nonlinearity: by more than an order of magnitude when 
the B-integral is equal to unity. This effect is substantial for pulses 
with the energy of 0.2 – 3 J, duration of 10 ps to 4 ns and pulse rep-
etition rate of 0.2 – 40 kHz.

Keywords: laser systems with high peak and high average powers, 
thermally induced birefringence, cubic nonlinearity, polarisation 
distortions.

1. Introduction

One of promising directions in laser physics evolution is the 
development of laser systems simultaneously possessing a 
high average power and a high peak power. In designing such 
lasers, most significant are both thermal effects, which limit 
the average power, and parasitic nonlinear-optical effects, 
which limit the peak power. The parameters of such lasers 
vary in a wide range: from femto- and picosecond lasers with 
the pulse energy of a fraction of joule and a pulse repetition 
rate ~1 kHz to nanosecond neodymium glass lasers with the 
energy of several hundred joules and a pulse repetition rate 
equal to tenth or hundredth of Hz; therefore, the range of 
applications for such lasers is rather wide.

Actual are investigations of a combined (simultaneous) 
action of thermal and nonlinear-optical effects. In particular, 
interesting is propagation of light through a medium with the 
birefringence induced by two simultaneous effects: thermo-
elastic stresses and cubical nonlinearity. The contributions of 
these effects are not additive because thermally induced bire-
fringence is independent of intensity or laser polarisation, 
whereas the anisotropy induced by cubical nonlinearity depends 
on intensity and polarisation. A Faraday isolator being a key 
element in many laser systems refers to the optical elements 
for which consequences of the mutual influence of cubical 
nonlinearity and thermal effects may become critical.

Thermal effects arising in a Faraday isolator are caused 
by the relatively high absorption of laser radiation in its mag-

netically active element 10–3 cm–1. The absorption of radiation 
causes a non-uniform temperature cross-section distribution 
and leads to formation of a thermal lens, a nonuniform distri-
bution of the rotation angle of the polarisation plane, and 
linear birefringence caused by mechanical stresses due to a 
temperature gradient (the photo-elastic effect). The thermal 
lens produced does not change the polarisation state of laser 
radiation and, hence, does not affect the isolation properties 
of the Faraday isolator. According to [1, 2], the most impor-
tant contribution into the reducing of isolation is made by the 
photo-elastic effect, whereas the effect of the non-uniform 
distribution of the rotation angle of polarisation plane can be 
neglected. Hence, in the present work, by the thermal self-
action is meant exclusively the photoelastic effect, which 
changes not only the phase difference of eigen polarisations but 
also the polarisations themselves that in this case become ellip-
tical. Ellipticity, ellipse axis orientation and phase difference 
are functions of transverse coordinates. All these factors 
result in the depolarisation of radiation, which has a negative 
consequence in that the non-isolation (the parameter inverse 
to the degree of isolation) of Faraday isolators becomes dis-
tinct from zero. By depolarised radiation is meant radiation 
with the polarisation constant in time but varying from point 
to point in a transverse cross section. Hence, depolarisation is 
the transfer from polarised radiation to depolarised.

Presently, there are several papers devoted to the problem 
of compensation of thermally induced distortions in a Faraday 
isolator [1 – 5], and so we will be interested in how the cubic 
nonlinearity affects the already known methods for with-
standing the negative thermal effect mentioned above.

Manifestation of cubic nonlinearity in a magnetically 
active element of a Faraday rotator, which possesses, with 
respect to laser glass, a relatively small optical thickness, is 
explained by the greater value of the medium nonlinear char-
acteristic: gnl = 7.2 ́  10–7 (glass magnetically active element) 
and 17 ́  10–7 GW–1 cm2 [crystal of terbium – gallium garnet 
(TGG)], where gnl determines the dependence of the refractive 
index on intensity n(I) = n0 + gnlI. Cubic nonlinearity is also 
measured by using the B-integral, i.e., the nonlinear phase 
incursion in a medium of length L:

( ) ( , ) ,dB r I r z z2
nl

L

0
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l

g= y

where l is the light wavelength in vacuum and r is the radius 
in the cylindrical system of coordinates. By the effect caused by 
cubic nonlinearity will be meant the polarisation effect related 
with an origin of field-induced anisotropy. The difference in the 
refractive indices arising in this case for the circularly polarised 
waves results in a turn of the polarisation ellipse [6, 7].
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937Influence of cubic nonlinearity on compensation of thermally induced polarisation distortions

Thus, both cubic nonlinearity and thermally induced bire-
fringence introduce polarisation distortions in the laser beam 
(depolarisation arises). Hence, in laser systems with high aver-
age and peak powers, the problem arises on considering changes 
in polarisation of laser radiation in the medium with circular 
birefringence (Faraday effect) and with two parasitic effects, 
namely, thermally induced linear birefringence and nonlinear 
circular birefringence. The problem is a continuation of studies 
[8] concerning the influence of cubic nonlinearity on the effi-
ciency of compensating thermally induced distortions in glass 
active elements. There are two substantial differences between 
these problems. First, the active element problem does not con-
sider circular birefringence, which principally should be taken 
into account in the case of a Faraday isolator. Second, in com-
pensating for thermally induced birefringence in active ele-
ments, the integral residual depolarisation of ~1 % is admissi-
ble. In the case of the Faraday isolator, the non-isolation is a 
very important parameter, which in modern devices should 
not exceed 0.1 %. This is why at equal B-integrals the influence 
of cubic nonlinearity on the non-isolation of the Faraday iso-
lator is more substantial than its influence on the accuracy of 
compensating for thermally induced distortions in laser active 
elements. Nevertheless, the heat release and, hence, the ther-
mally induced birefringence in isolators is lower than in active 
elements.

In the present work, we study propagation of laser radia-
tion in a magnetically active medium possessing thermally 
induced linear birefringence and cubic nonlinearity. The influ-
ence of cubic nonlinearity is studied on characteristics of 
modern widely used schemes for compensating for thermally 
induced birefringence in Faraday isolators with glass (MOG  10) 
and crystal (TGG crystal) magnetically active elements.

2. Propagation of laser radiation in an absorbing 
magnetically active element with cubic nonlinearity

Consider the case of a magnetically active medium and choose 
the propagation direction of laser radiation along z axis. Then, 
the vector of the electric field intensity E has projections to 
axes x and y. For the magnetically active medium we choose 
the two possible types: magnetically active glass (MOG 10) and 
TGG crystal with orientation [001]. In both media, the cubic 
nonlinearity is assumed isotropic. For a TGG crystal this is an 
approximation which usually holds true in isotropic crystals 
(authors have no data on the values for off-diagonal compo-
nents of the nonlinear susceptibility tensor).

By neglecting diffraction, one may write the stationary 
system of differential equations for components of the vector 
E in the case of radiation propagation in the nonlinear 
medium possessing linear and circular birefringence:
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where k0 = 2p/l; cxxxx is the diagonal component of the 
4th rank nonlinear susceptibility tensor; dcirc and dlin are the 
phase differences for purely circular (without linear) and purely 
linear (without circular) birefringence, respectively; and Y is 
the inclination angle of eigen polarisation relative to the x axis 
for a purely linear birefringence (Fig. 1). Note that the rota-
tion angle of laser radiation polarisation caused by the 
Faraday rotator is F = dcirс(L)/2. Despite the fact that the 
considered thermal and nonlinear effects are caused by the 
self-action of laser radiation, their common contribution 
into (1) can be described as a sum of the corresponding sum-
mands due to the difference in the transition times. Indeed, 
the cubic nonlinearity is characterised by a short relaxation 
time (10–15 – 10–16 s) [9] and becomes actual only for the 
pulsed radiation with a high power and a short duration (1 ns 
and less). The response time of a medium to the thermal 
action is much longer than the cubic nonlinearity transition 
time. Hence, the considered thermal effect of self-action is 
revealed in the medium after the transition process finishes 
and a stationary regime is established. This is why the cubic 
nonlinearity for a single short pulse appears instantaneously 
on the background of the stationary thermal action.

Assume that the radiation after passing the first transit 
across the Faraday isolator (at point A in Fig. 2) has a Gaussian 
transverse intensity distribution, and the radiation polarisation 
is linear and directed along the x axis:

E0(r) = x0 e0 exp 2r
r
2 0

2

-e o,

where x0 is a unit vector along the x axis. Then, for an infinitely 
long cylindrical magnetically active element one can employ 
the expressions [3, 10, 11]:
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Figure 1.  Cross section of a magnetically active crystal:	
r, j are the polar coordinates; q is the inclination angle of the crystallo
graphic axis; Y is the inclination angle of eigen polarisation at purely linear 
birefringence (in the case of glass magnetically active material Y = j).
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where q is the inclination angle of the crystallographic axis 
(Fig. 1);
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n, k, a, pij are the Poisson coefficient, thermal conduction, 
absorption coefficient, and photoelasticity coefficients of mag-
netically active medium, respectively; P = pr0

2I is the power 
of laser radiation; T is the temperature of magnetically active 
element; and x = 2.2 for TGG crystal [10] and x = 1 for MOG.

At a prescribed parameter x the non-isolation of Faraday 
isolator is completely determined by the normalised power of 
heat release p and by the B-integral. In the calculations we used 
Q = 17 ́  10–7 K–1, k = 5 ́  10–2 W K–1 cm–1, a = 7 ́  10–4 cm–1 [5], 
L = 2 cm, cxxxx = 1.66 ́  10–13 esu [12, 13] for TGG crystal and Q 
= 5 ́  10–7 K–1 [14], k = 0.5 ́  10–2 W K–1 cm–1 [14], a = 10–3 cm–1 
[15], L = 3 cm, cxxxx = 5.67 ́  10–14 esu [16] for the magnetically 
active glass.

3. Basic schemes of the Faraday isolator

Consider the basic schemes of the Faraday isolator presented 
in Fig. 2: a traditional scheme and schemes with internal [3] 
and external [5] compensation of thermally induced polarisa-
tion distortions.

In all the schemes without thermal and nonlinear effects, 
after a first passage (from left to right) through the Faraday 
isolator the beam preserves the horizontal polarisation (in the 
plane of the figure) and passes through polariser ( 4 ); in the 

backward transit the beam changes its polarisation to vertical 
(normal to the figure plane) and is reflected by polariser ( 1 ). 
The linear birefringence caused by the photoelastic effect and 
the circular birefringence due to the cubic nonlinearity result in 
the radiation which, after a reverse transit, has the horizontal 
polarisation and passes through polariser ( 1 ) (the non-isolation 
radiation). The non-isolation of a Faraday isolator at certain 
point we will define as the part of radiation intensity with the 
horizontal polarisation:
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where E is the field in the reverse transit through the Faraday 
isolator (point B in Fig. 2).

Most interesting is the non-isolation integral over the beam 
cross section
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Here we assume that the light diameter of the Faraday isola-
tor is such that aperture losses may be neglected and one may 
integrate in (6) over polar radius r to infinity.

The scheme with internal compensation of thermally 
induced distortions (Fig. 2b) comprises, arranged in-line 
along the optical axis, polarisers ( 1 ) and ( 4 ), Faraday rotator 
of polarisation plane ( 5 ) and half-wavelength plate ( 2 ). The 
Faraday rotator comprises two magnetically optical elements 
placed in a magnet system, each rotating the polarisation plane 
by 22.5°. Between the magnetically active elements there is the 
reciprocal optical element in the form of quartz plate which 
rotates the polarisation plane by the angle bR = 67.5°.

The scheme with external compensation of polarisation 
distortions (Fig. 2c) comprises, arranged in-line along the 
optical axis, polarisers ( 1 ) and ( 4 ), Faraday rotator ( 3 ), which 
rotates the polarisation plane by the angle of 45°, compensating 
element ( 7 ), reciprocal polarisation rotator ( 6 ), which rotates 
the polarisation plane of passing radiation by the angle of 67.5°, 
and half-wavelength plate ( 2 ). The material of the compensating 
element may differ from that of magnetically active element 
( 3 ), and the parameters of reciprocal polarisation rotator ( 6 ) 
and element ( 7 ) are calculated by using the parameters of element 
( 3 ) and thermo-optical constants for the material of the com-
pensating element. In the present work we consider the case of 
using a TGG crystal as the compensating element. 

In the schemes given in Figs 2a and 2b, glass and TGG 
crystal will be considered as magnetically active media; in the 
last scheme (Fig. 2c) only TGG crystal will be considered. In 
Table 1, the values are given, which are optimal from the 
viewpoint of least integral non-isolation gmin, for the param-
eters bR, bL, qopt and р2 /р1 (the ratio of normalised powers of 
heat release in the two magnetically active elements for the 
schemes in Figs 2b and2c) for all three schemes at B = 0 and 
q1 = q2 = qopt (for TGG crystal).

4. Influence of cubic nonlinearity on the  
non‑isolation of the Faraday isolator

Figures 3a and 3c show the integral non-isolation g versus 
normalised power of heat release p at various values of the 
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Figure 2.  Schematic diagrams of (a) traditional Faraday isolator, Faraday 
isolators with (b) internal [3] and (c) external [5] compensation:	
( 1, 4 ) polarisers; ( 2 ) plate l/2 with the inclination angle of optical axis 
relative to the x axis equal to bL; ( 3 ) Faraday rotator 45°; ( 5 ) Faraday 
rotator 22.5°; ( 6 ) reciprocal rotator of polarisation plane; ( 7 ) compen-
sating optical element.
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B-integral for the traditional scheme (Fig. 2a) and for the 
scheme with internal compensation (Fig. 2b) and glass used as 
a magnetically active material. The same dependences for a 
TGG crystal are shown in Figs 3b and 3d.

Note that the values of the B-integral and the normalised 
power of heat release presented in the work correspond to the 
values in the Faraday rotator, which turns the polarisation 
plane by the angle of p/4 at the length equal to L. In other 
words, the sum of values B (or p) in the two elements of the 
Faraday rotator of length L/2 each in the scheme with internal 
compensation equals to the value of B (or p) in one element 
for the traditional scheme and for the scheme with external 
compensation of depolarisation. In calculations for the schemes 
with internal and external compensation of depolarisation, 
the influence of the cubic nonlinearity was taken into account 
in polarisation rotator ( 6 ) and in compensating element ( 7 ).

At B = 0 the difference between employment of magneti-
cally active glass and TGG crystal is insufficient. At increasing 

B, the efficiency of compensation of thermally induced depolari-
sation falls. In the traditional scheme, the character of depen-
dence g(p) does not change (Figs 3a and 3b). In the scheme 
with internal compensation (Figs 3c and 3d), in addition to a 
noticeable increase in non-isolation, the character of its depen-
dence on the power of heat release also changes: g becomes 
proportional not to p4 but to p2. Such a strong (as compared 
to the traditional scheme) effect can be explained as follows. 
The birefringence caused by cubic nonlinearity is proportional 
to the difference of intensities of two circularly polarised com-
ponents of radiation [9]. Such nonlinear birefringence only 
occurs at nonzero ellipticity of radiation polarisation and is 
absent in the case of a linearly polarised radiation. Hence, 
without thermal effects (p = 0) the nonlinear effect is also 
absent ( g = 0) because the polarisation of radiation is defi-
nitely linear in this case. If p ¹ 0, then there are nonlinear 
distortions of polarisation, which, however, are small as com-
pared to thermal distortions, because these are second-order 

Table  1.  Characteristics for three schemes of Faraday isolators at В = 0 and q1 = q2 = qopt [3, 5].

Scheme qopt (TGG)/rad bR/rad bL/rad р2 /р1 gmin at dlin << 1

Traditional (Fig. 2a) –p/8 – –p/8 – 1.4 ́  10–2 р2

With internal compensation (Fig. 2b) p/16 3p/8 p/8 – bR /2 1 0.4 ́  10–5 ( x4 + 2/3 x2 + 1) р4

With external compensation (Fig. 2c) p/16 3p/8 p/8 – bR /2 81/2 /p 5.3 ́  10–5 ( x4 + 2/3 x2 + 1) р4
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Figure 3.  Integral non-isolation g vs. normalised heat release power in magnetically active element p in (a, b) the traditional scheme (Fig. 2a) and in 
(c, d) the scheme with internal compensation (Fig. 2b) with employment of (a, c) magnetically active glass and (b, d) TGG crystal. Dotted curves 
refer to the dependences derived by the formulae from Table 1 at B = 0 in the approximation dlin << 1, the rest curves are numerical solutions of 
system (1).
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effects. In the compensating schemes (Figs 2b and 2c) thermal 
effects are well suppressed; hence, the influence of cubic non-
linearity becomes noticeable.

Similar investigation of the cubic nonlinearity effect on 
the compensation of thermally induced depolarisation in the 
case of two identical active glass elements and 90-degree rota-
tor of the polarisation plane placed between them was con-
ducted in [8]. In the present work it was established that at the 
output of one of these elements the intensity distribution of 
the depolarised component weakly depends on the value of 
the B-integral. In the scheme with the 90-degree rotator of the 
polarisation plane the cubic nonlinearity has a noticeable 
effect: the integral degree of residual depolarisation in this 
scheme is proportional to B2. This result is explained by the 
fact that the nonlinear birefringence violates the equality of the 
phase difference acquired by linear eigen polarisations of light 
passing through the two active elements that are identical from 
the viewpoint of thermally induced polarisation distortions. 

The dependences of g(p) for the schemes with internal and 
external compensation of thermally induced distortions in the 
Faraday rotator in the case of the B-integral increasing from 
0 to 3 are shown in Fig. 4 for the case of TGG crystal. Separate 
consideration of these schemes is explained by fact that they 
may be optimised from the viewpoint of least non-isolation 
for the case B = 0 by adjusting the orientations of crystallo-

graphic axes (optimal relation between q1 and q2) in two TGG 
crystals and by choosing parameters bR, p2 /p1 for each value 
of normalised power of heat release p (Figs 4b and 4d). For 
the scheme with internal compensation the optimal parameters 
are bR » 73.18°, р2 /р1 » 0.964, q1 » 20° and q2 » 15.3°; 
whereas for the scheme with external compensation these 
parameters are bR » 73.5°, р2 /р1 » 0.908, q1 » 27.2° and 
q2 »  22.3° [5]. In the scheme with external compensation 
(Fig. 2c) and in the scheme shown in Fig. 2b, in addition to 
the increased non-isolation g the latter becomes proportional 
not to p4 but to p2 at B > 0.

Figure 5 shows the dependences of the integral degree of 
depolarisation on the B-integral for the schemes corresponding 
to Figs 2b and 2c in the case of using TGG crystal at p = 1. 
Taking into account the quadratic dependence g(p) at p < 3 
(Fig. 4), with the help of Fig. 5 one can easily determine g for 
wide ranges of variation in parameters p and B. The calcula-
tions show that the increase in g due to the cubic nonlinearity 
in these schemes is proportional to the product p2B2. In the 
general case, in the schemes shown in Figs 2b and 2c, the non-
isolation is well described by the formula g(р, B) = аp4 + bp2B2, 
where factor a at standard parameters can be found by using 
the expressions for gmin from Table 1 at p = 1. The values of 
a and b at optimal parameters for the considered schemes were 
obtained from a numerical solution of system of equations (1). 
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Figure 4.  Integral non-isolation g vs. the normalised power of heat release in a magnetically active element p for the schemes with (a, b) internal and 
(c, d) external compensation at (a, c) standard and (b, d) optimal values of parameters bR, p2 /p1, q1 and q2. Dotted curves denote dependences derived 
by the formulae from Table 1 at B = 0 in the approximation dlin << 1, the rest curves are numerical solutions of system (1).
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Parameters a and b are given in Table 2 for a TGG crystal, the 
parameter of anisotropy of the latter is x = 2.2.

The value of g plays an important role at B = 0, which 
depends on the efficiency of compensating polarisation dis-
tortions in the schemes from Figs 2b and 2c without cubical 
nonlinearity. Thus, if at B = 0 the scheme with internal com-
pensation and optimal parameters has a minimal non-isola-
tion, this will also be so if one takes into account the cubic 

nonlinearity. In the scheme with internal compensation and in 
the optimised scheme with external compensation the increase 
in B from zero to unity reduces the optical isolation from 42 
to 27 dB, and for the optimised scheme with internal compen-
sation – from 54 to 38 dB. Note that a TGG crystal is, generally 
speaking, an anisotropic medium with the cubic crystal lat-
tice. The allowance made for off-diagonal components of non-
linear susceptibility tensor c is liable to result in an increased 
non-isolation.

5. Discussion of results

As was shown above, the problem of influence of cubic non-
linearity on the non-isolation of the Faraday isolator is described 
by two dimensionless parameters, namely, the normalised 
power of heat release p and B-integral. One may estimate the 
dimensional parameters of laser radiation, at which its non-
linear self-action would increase the thermally induced non-
isolation of the Faraday isolator with a TGG crystal used as 
a  magnetically active element. We assume that the dimen
sionless parameters p and B vary within the following limits: 
lg р Î [–0.5, 0.5], and В Î [0.5, 3]. The reasons for considering 
such ranges for p and B values can be elucidated from Figs 4 
and 5. At lg p < –0.5 the value of thermally induced depolari-
sation is small even if its increase due to cubic nonlinearity is 
taken into account. Physically it is related with the fact that the 
polarisation of radiation remains close to linear, for which 
the rotation due to cubic nonlinearity is absent. If lg p > 0.5 
then, conversely, the Faraday isolator does not provide good 
isolation due to the thermal effect even at B = 0 and the 
influence of cubic nonlinearity in this case weakly worsens 
the  situation (at B < 3). The lower limitation of B-integral 
values is determined by the fact that actually it is difficult to 
reach the non-isolation g < 10–4, and the upper limitation is 
explained by a starting development of beam self-focusing 
[6, 17 – 19].

Assume that the energy density of laser radiation corre-
sponds to the optical breakdown threshold for a crystal (Wth). 
Consider a Gaussian beam with r0 = 0.3 cm, which is typical 
for a Faraday isolator 1 – 2 cm in diameter. Define in these 
conditions the value of the B-integral and pulse energy ep as 
functions of pulse duration tp assuming that at the pulse dura-

Table  2.  Coefficients a and b for the schemes with internal and external 
compensation at standard and optimal values of parameters bR, р2 /р1, 
q1 и q2 for the TGG crystal. 

Scheme Parameters a b

With internal 
compensation

Standard
Optimal

1.1 ́  10–4

4.0 ́  10–6
1.9 ́  10–3

1.4 ́  10–4

With external 
compensation

Standard
Optimal

1.5 ́  10–3

6.6 ́  10–5
5.4 ́  10–3

1.9 ́  10–3
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Figure 5.  Integral non-isolation of Faraday isolator g vs. the B-integral 
at p = 1 in the schemes with ( 1, 3 ) external and ( 2, 4 ) internal compensation 
in the case of the TGG crystal. Curves ( 3, 4 ) correspond to the param-
eters optimised for B = 0.
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Figure 6.  (a) Dependences of B and ep on pulse duration tp for the TGG crystal of length L = 2 cm at r0 = 0.3 cm, W *
th = 5 J cm–2, tp* = 1 ns, and (b) 

normalised power p vs. average power of laser radiation P.
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tion tp* = 1 ns the threshold energy density is Wth = 5 J cm–2 [20]. 
In view of I = ep /(pr0

2tр) and Wth ~ tр1/2 [21 – 23] we obtain

2

p p

, .B k
t t
W L r W

t

t /

nl
p

th
p th

p
0 0

1 2

pg e= =
*

*

* *
e o 	 (7)

Dependences (7) are shown in Fig. 6a, and the normalised 
power of heat release p is shown in Fig. 6b versus the average 
laser radiation power P derived from formulae (4) for a TGG 
crystal with the thermo-optical characteristics taken from 
Section 2 of the present work.

According to Fig. 6a, in a TGG crystal at the radiation 
wavelength of 1.064 mm the range of nonlinear phase variation 
B = 0.5 – 3 rad can be realised with the pulses possessing the 
energy ep = 0.2 – 3 J and duration tp = 10 ps to 4 ns. The chosen 
range of parameter p variation corresponds to the average 
power of laser radiation P = 0.7 – 7 kW (Fig. 6b). Hence, of 
actual interest is the range 0.2 – 40 kHz of the pulse repetition 
rate f = P/ep.

6. Conclusions

The system of stationary differential equations is obtained, 
which describes propagation of laser radiation in the medium 
with circular and linear birefringence under conditions of cubic 
nonlinearity. The influence of cubic nonlinearity on the value 
of non-isolation is studied for modern schemes of Faraday 
isolator: a traditional scheme and schemes with internal and 
external compensation of thermally induced polarisation dis-
tortions.

It was shown that in all the schemes the increase in the 
non-isolation g due to cubic nonlinearity is proportional to 
the square of the B-integral; at B > 1 this increase amounts 
to  an order of magnitude and higher. In the scheme with 
internal compensation and in the optimised scheme with exter-
nal compensation at the normalised power of heat release p = 1 
the increase in B from zero to unity results in the reduction 
of the degree of isolation from 42 to 27 dB; for the optimised 
scheme with internal compensation this reduction is from 54 
to 38 dB. It was shown that, if at B = 0 a scheme exhibits 
a greater isolation then the isolation remains the best under 
arisen cubic nonlinearity at any thermal load as well.

The estimates of laser radiation parameters are obtained 
at which the effect of isolation fall due to the combined action 
of thermal polarisation effects and cubic nonlinearity should 
be taken into account in the Faraday isolator with a TGG 
crystal: the pulse energy is 0.2 – 3 J, pulse duration is 10 ps to 
4 ns, pulse repetition rate is 0.2 – 40 kHz.
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