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Abstract.  The spectra of reflection of s- and p-polarised waves 
from gradient nanocoatings at arbitrary angles of incidence are 
found within the framework of two exactly solvable models of 
such coatings. To use the detected spectra in the visible and IR 
ranges, for different frequencies and coating thicknesses we present 
the wave reflection coefficients as functions of dimensionless fre-
quencies related to the refractive index gradient of the coating 
material. It is shown that reflection from the gradient coatings 
in question is an order of magnitude weaker than reflection from 
uniform coatings, other parameters of radiation and the reflection 
system being equal. We report a new exactly solvable model illus-
trating the specific effect of gradient film optics – the possibility 
of non-reflective propagation of an s-wave through such a film (an 
analogue of the Brewster effect). The prospects are shown for the use 
of gradient nanostructures with different refractive index profiles 
to fabricate broadband non-reflective coatings. 

Keywords: gradient nanofilms, reflection of waves, s and p polarisa-
tions, non-reflective wave propagation. 

1. Introduction 

This paper deals with the processes of reflection of light at 
oblique incidence of radiation on a transparent gradient 
dielectric nanofilm. The physical foundations of these pro-
cesses are due to the special mechanism of wave dispersion in 
nonuniform films, which is determined by a continuous distri-
bution of the refractive index inside the film material [1]. The 
dispersion of waves in such media depends not only on the 
value of the refractive index n at a given point of the medium, 
but also on the values of n in the vicinity of this point; the 
spatial distribution of n is determined by a technique for 
nanofilm fabrication [2]. It is necessary to emphasise the 
fundamental difference of this mechanism from material dis-
persion related to the parameter ¶2n/¶w2 and from spatial 
dispersion of homogeneous media (the latter leads, as is known 

from the crystal optics and plasma physics [3], to small correc-
tions to the refractive index of the order of a/l << 1, where 
a is the lattice constant or mean free path of particles in the 
medium and l is the wavelength). Away from the resonance 
frequencies of the medium, such effects accumulate slowly 
along the path of wave propagation at distances that make 
up many wavelengths. In contrast, the evolution of waves in 
gradient media has a number of features. 

To study analytically the wave fields inside nanofilms, we 
should find exact solutions of Maxwell’s equations with a 
certain spatial dependence of the refractive index n(z) = n0U(z) 
without any assumptions about the slowness or smallness 
of  spatial variations of the fields and the parameters of the 
medium [here n0 is the value of the refractive index n at the 
medium boundary z = 0 and the dimensionless function U(z) 
is assumed continuous]. At normal incidence of radiation on 
the film, polarisation effects are absent upon reflection, in 
which case the reflection spectra of gradient media for several 
exactly solvable models are found in [4]. When calculating the 
reflectance spectra for oblique incidence of electromagnetic 
waves there arise a number of effects caused by the polarisa-
tion structure of the wave fields: 

(i) the vector field structure is different for s and p polarisa-
tions (these fields inside the medium are described by differ-
ent equations); 

(ii) the possibility of constructing the models of U(z), pro-
viding accurate solutions for only one polarisation (e.g., only 
for s waves); 

(iii) the set of exactly solvable models of U(z), suitable for 
both s and p waves, is limited. 

S- and p-waves inside gradient films with a dielectric con-
stant e(z) can be conveniently described by introducing the 
generating functions Ys and Yp, corresponding to these polari-
sations. By selecting the normal to the layer as the z axis, and 
the projection of the wave vector to the layer surface as the y 
axis, we can write Maxwell’s equations describing the polari-
sation structure of s-wave with the help of the electric compo-
nent Ex of the wave field, parallel to the surface z = 0, and 
magnetic components Hy and Hz located in the incidence 
plane (y, z): 
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div(eE) = 0,  div(mH) = 0.	 (2) 

The components of the p-wave (Hx, parallel to the surface 
z = 0 and electric components Ey and Ez located in the plane 
of incidence) are still related by equation (2), but system (1) 
should be replaced: 
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For the analysis of equations (1) – (3) it is expedient to 
express the components of the fields through the generating 
functions Ys and Yp. Then for s polarisation 
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and for p polarisation 
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Using expressions (4) – (5), we can reduce the system of equa-
tions (1) and (3) to two equations describing the s- and p-waves, 
respectively: 
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where ky = wn1 sin d/c; n1 is the refractive index of a homoge-
neous medium; and d is the angle of incidence on the film. 

Introducing a new variable h and new functions fs and fp: 
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we can represent equations (6) and (7) for the s- and p-waves 
in the form 
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Here K = (wn0 /c)2 – k2y /U2; Uh = dU/dh; Uhh = d2U/dh2. 
Equations (9) and (10) are valid for arbitrary distributions of 
refractive indices of U(z) and angles of incidence d.

The conditions of continuity of the field components on 
the surface of a nanofilm for s and p polarisations are different. 
Considering a plane wave 

Y0 = A0 exp{i w[n1(z cos d + y sin d) c–1 – t ]},

falling from a homogeneous medium with the refractive index 
n1 at an angle d on the film boundary z = 0 and introducing 
complex polarisation-dependent reflection coefficients Rs and 
Rp, we can write the continuity conditions for the s- and p-waves 
in the form 

A0(1 + Rs) = AsYs|z = 0, 
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If the film of thickness d is located on a uniform thick 
substrate with a refractive index n, the continuity conditions 
specified in the plane z = d relate the components of the field 
in the film to the corresponding components of the field of a 
plane wave in the substrate: 

Y = A exp{iw[( sinz n n2
1
2 2d-  + yn1 cos d) c–1 – t ]}.

The difficulty of solving equations (9) and (10), corre-
sponding to the s and p polarisations, for a profile of the 
refractive index n(z) = n0U(z) within the coating limits the set 
of exactly solvable models of U(z). 

To show the sensitivity of the processes of wave reflec-
tion by a gradient coating to the form of the profile U(z), in 
Section 2 we consider two simple models of U(z) [5]: 

U1(z) = (1 + z /L)–1,  U2(z) = exp(–z /L),	 (12)

which are characterised by one free parameter – the charac-
teristic length L determining the spatial scale of the change in the 
refractive index. Although the values of the model functions 
U1(z) and U2(z) on the film boundary (z = 0) are equal, the 
values of their gradients at z = 0 are also equal and the differ-
ences at equal values of the ratio z/L for the considered thick-
nesses of nanofilms are small [thus, for example, z/L = 0.3, 
U1(0.3) /U2(0.13) = 1.04], the regimes of the field propagation 
defined by these profiles can vary significantly. The regimes 
of wave propagation through the coatings with profile (12) at 
arbitrary angles of incidence are described in the framework 
of these models with the help of exact analytical solutions 
of the corresponding equations. In Section 2 we present the 
advantages of gradient films when they are used as broadband 
non-reflective coatings. In contrast to papers [3] and [5] we 
show new physical effects that determine these advantages – 
artificial dispersion determined by the U(z) profile, cutoff fre-
quency of the waves and polarisation-independent regimes of 
wave tunnelling in gradient media. In Section 3 we demonstrate 
another property inherent in gradient films: unlike uniform films 
where only p-waves can propagate non-reflectively (Brewster 
effect [5]), gradient films allows for non-reflective propaga-
tion of s-waves. This analogue of the Brewster effect is given 
within the framework of a flexible exactly solvable model con-
taining, in contrast to (12), three free parameters L, M and g: 
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When reducing the inhomogeneity of the refractive index 
(L ® ¥), distributions (12) and (13) degenerate to a constant 
value: U ® 1. 

2. Broadband non-reflective coatings 

Development of non-reflective thin-film coatings, which are 
effective in a wide spectral range at an arbitrary polarisation 
of the waves, attracts constant attention. The use of gradient 
films opens up new prospects for obtaining controlled reflec-
tion spectra in the specified wavelength range. The reflection 
spectra of these films with other parameters being equal 
exhibit significant dependence on the refractive index profile 
U(z). We begin our analysis of profiles (12) with the expres-
sion for U1(z), and by substituting U1(z) in (8) we define the 
variable h = L ln(1 + z/L). Equations (9) and (10), defining 
the functions fs and fp, are in this case reduced to the Bessel 
equation: 
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Here W is a characteristic frequency associated with the medium 
inhomogeneity. Linearly independent solutions of equation (14) 
at q2 < 0 are, as is known, the Bessel functions of the imaginary 
argument Il and Macdonald functions Kl [6]. In studying the 
field in a layer of finite thickness d we should use their linear 
combinations: ( , )

l
1 2J  = Il ± iKl. Using the solutions of equa-

tion (14) and notations (8) we can write the generating func-
tions for s- and p-waves: 
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For simplicity in expressions for the functions Ys and Yp 
(16) we have omitted the phase factors exp[i(kyy – wt)]; the 
values of Qs and Qp in (17) are determined from the condi-
tions of continuity at the air – film (n1 = 0, z = 0, U1 = 1) and 
film – substrate interfaces [z = d, U1 = Um = (1 + d/L)–1]. In the 
latter case, for the convenience of calculations the variable z 
can be written as 

.sin
un U2m

m0
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Substituting expressions (16) and (17) into (4) and (5) 
allows us to write explicitly the formulas for the components 
of the fields. Complex reflection coefficients for s- and p-waves 
are found from equations (11) using a standard procedure. 
For example, for an s-wave the coefficient Rs is determined by 
the equation 
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[the coefficient Rp is obtained from (11) in the same way]. These 
data are used to construct the reflection spectra |Rs, p(u)|2. 
Note that the functions fs,p (17) for both polarisations are 
equal, which greatly reduces the computation time, whereas 
the difference between Ys and Yp is determined only by the 
degree of the factor (1 + z/L) (16). At high frequencies (w > W, 
u < 1) the indices of the functions Jl in (17) are imaginary 
numbers, since l2s, p < 0; in the low-frequency part of the spec-
trum (w < W, u > 1) the indices of these functions are real 
numbers (l2s, p > 0). To calculate the functions Jl under the 
above values of the indices ls, p, use is made of the expres-
sions in the form of infinite series or integral representations 
[6]; therefore, fields ( 17) are studied below using numerical 
methods. 

Examples of reflection spectra of |R(u)|2 in the low fre-
quency region are shown in Fig. 1. To show the effect of the 
gradient structure on the spectra of |R(u)|2, it is useful to 
compare them with the reflection spectra of homogeneous 
films; thus, the parameters of the incident waves (polarisa-
tion, frequency w and angle of incidence d), parameters of the 
reflection structures (refractive indices n0 and n) and film thick-
ness d are identical in both cases. Complex reflection coeffi-
cients of s- and p-waves from homogeneous films deposited 
on a substrate have the form 
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Figure 1.  Influence of the gradient structure of nanocoatings with a re-
fractive index profile N(z) = n0(1 + z/L)–1 on the reflection spectra of (a) 
s- and (b) p-waves incident at angle d = 45° for n0 = 1.9, and the refrac-
tive index of the substrate n = 1.5. Due to the smallness of the reflection 
coefficient, for gradient coatings |R(u)|2gs and |R(u)|2gp for a given dimen-
sionless frequency u (15) and polarisation of incident waves (as com-
pared with the corresponding coefficients of homogeneous coatings 
|R(u)|2hs and |R(u)|2hp we present in the Figure auxiliary curves |R(u)|21s 
and |R(u)|21p determining the reflection coefficients of gradient coatings 
as |R(u)|2gs = 0.09|R(u)|21s, |R(u)|2gp = 0.12|R(u)|21p. 
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To compare the coefficients Rs and Rp for homogeneous and 
gradient films at a given frequency, we should substitute into 
formula (20) – (22) the values of t = tan(wdr1/c) expressed 
through u and Um: 
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We note the essential features of the spectra of reflection 
from gradient nanofilms with the refractive index profile U1(z) 
(Figs 1a and 1b): 

(i) the dispersion of the film caused by the inhomogeneity 
of the refractive index determines the characteristic frequency 
W differentiating the spectral intervals of high and low fre-
quencies, to which correspond different spatial structures of 
the fields inside the film (the frequency W is the same for s- 
and p-waves); 

(ii) in a wide spectral range the reflection coefficient of 
gradient films with respect to the power is an order of magnitude 
less than the same coefficient for a uniform film at the same 
frequencies and polarisations of the incident waves and coin-
ciding values of film thicknesses and refractive indices n0 and n; 

(iii) gradient coatings with the profile U1(z) may signifi-
cantly reduce reflection though their thickness may be less than 
the wavelength of the reflected wave. Using the definition of 
the variable u (15), we can write the ratio between the wave-
length l and thickness d, corresponding to any value of the 
variable u:

4
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According to Fig. 1a at a frequency u = 1.5 the reflec-
tion coefficient of the s-wave from the gradient nanofilm is 
|R(u)|2 = 0.0165. This means that the above value of |R(u)|2 
characterises reflection of the waves from various structures, 
whose parameters satisfy relation (23). Thus, for the parameters 
corresponding to Fig. 1, it follows from (23) that d = 0.007 l; 
in this case, incidence of IR radiation ( l = l0 = 14.28 mm) at 
an angle d = 45° on a gradient film of thickness d = d0 = 100 nm 
is characterised by the reflection coefficient |R(1.5)|2 = 0.0165. 
The same value of |R(u)|2gs determines the reflection coefficient 
of the wave with l = ml0 from the film of thickness d = md0, 
where m is an arbitrary positive number. Replacement of this 
gradient film by a uniform film of the same thickness accord-
ing to Fig. 1a will increase the reflection coefficient by an 
order of magnitude. Such gradient films are of interest for the 
development of non-reflective nanocoatings for the IR range. 

The fields of s- and p-waves in the film with an exponen-
tial refractive index profile U2(z) (12) are described by the 
same equation (14) as in the model for U1(z), but unlike the 
latter use is made of other parameters: 
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z q n L l L

s
2 0

2
2

2w w d
= - = =c c` ` `j j j 	 (25) 

It should be emphasised that the value q2 (25) correspond-
ing to the model U2(z) is always positive as compared to the 
model U1(z), where q2 is always negative. Because of this dif-
ference, linearly independent solutions of equation (14) are 
represented by Hankel functions Hl

(1,2) = Jl ± iNl (where Jl 
and Nl are the Bessel and Neumann functions [6]), and the 
generating functions for s-waves in the model can be written 
in the form 

Ys = Hl
(1)(z) + QsHl

(2)(z),  z = qx,	 (26)

The generating function for the p-wave is different from (26): 
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The variable z in the function Yp is defined in (26). The reflec-
tion coefficients are calculated by substituting the functions 
Ys and Yp in the boundary conditions (11) and by using 
numerical methods for the calculation of expressions contain-
ing Hankel functions with arbitrary real indices.

However, as is well known [6], Hankel functions Hl
(1, 2) at 

half-integer values of l are expressed in terms of elementary 
functions. Minimum possible half-integer values of ls and lp 
are 1/2 and 3/2, respectively. In these cases, the calculations 
are simplified, thereby revealing an important physical result 
that expands the scope of application of the well-known 
Brewster law. 

3. Analogy of Brewster’s law for s-waves  
in a gradient film 

Consider the simple case of s-wave reflection from a film with 
an exponential index profile U2(z) at ls = 1/2. The generating 
function Ys in this case can be written as 

[ ( ) ( )]
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where A is a constant. The equation defining Rs follows from 
the boundary conditions (11): 

[ ]
[ ]

, .
cos sin sin cos

cos sin
cot

i
R
R

q q q Q q q q
B q Q q

B
1
1

2 2s

s d
-
+

=
+ + -

+
= 	(29) 

The value of the constant B (29) is obtained from the 
expression for B (19) at ls = 1/2. The parameter Q in (29) is 
calculated from the boundary conditions at the boundary z = d: 
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By substituting (30) and (31) into (29) we can obtain an 
explicit expression for Rs.

It is important that at a certain set of parameters of the 
film and substrate the found reflection coefficient Rs may 
vanish. Thus, when a 800-nm s-wave is incident on a gradient 
nanofilm (n0 = 2.255, d = 20 nm) with a refractive index profile 
U2(z), deposited on a substrate with n = 1.53, the reflection 
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coefficient at an angle of incidence d0 = 70° vanishes, i.e., such 
an s-wave passes through the nanofilm without reflection 
and refraction. In contrast, a similar effect for the s-wave 
in  uniform films, as seen from the definition of Rs (20), is 
impossible: the condition Rs = 0 is not met at any values of the 
angle d. Non-reflective propagation of p-waves through uni-
form films, as seen from equation (21), is possible for the 
angles of incidence dB, determined by the condition Rp = 0: 
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.tan
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nn
B

2
2

0
2

0
2

0
2

d =
+ -
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In a particular case of n0 = 1 corresponding to the incidence of 
a wave from air to a homogeneous medium, expression (32) 
transforms into the well-known formula for the Brewster 
angle: tan dB = n [7]. 

Note that non-reflective propagation of s-waves through 
gradient films is possible even at other refractive index profiles 
U(z). Consider, for example, a more complex monotonic pro-
file (13) (Fig. 2) containing, in contrast to (12), three free 
parameters L, M and g. Curves ( 1 ) and ( 2 ) in Fig. 2 show 
how, preserving the depth and width of the U2(z) distribution, 
we can change the slope of the distribution. The solution to 
the wave equation (6) for distribution (13), which requires 
special transformations, is given in the Appendix. We present 
here the results of the solutions which show the possible 
non-reflective propagation of s-waves through the gradient 
layer (13). Thus, when a wave is incident from a dielectric 
medium with n1 = 1.433 at angle d = 60° on a nanofilm with 
profile (13) (thickness d = 100 nm, n0 = 1.9, M = 0.9632, 
g = 2.1), deposited on a substrate with n = 2.28, reflection 
disappears for a wave with l = 485 nm. In another case when 
the s-wave is incident from air (n1 = 1) at angle d = 45° on a 
nanostructure with parameters n0 = 1.9, M = 0.9632, g = 1.3, 
n = 2 and d = 100 nm, a non-reflective regime arises for a wave 
with l = 693 nm. 

4. Conclusions 

Note the essential features of the discussed reflection spectra, 
depending on the distribution of the refractive index in the 
film thickness. 

1. In gradient films the characteristic frequency W is formed, 
which is absent in uniform films; however, the spatial struc-

tures of high-frequency (w > W ) and low-frequency (w < W ) 
fields inside the film are different. Thus, for s(p)-waves the 
spatial structure of the field at w > W is formed monotonic 
(oscillating) changes in the amplitudes of the waves, and at 
w < W an opposite situation arises – fields are formed by 
oscillating (monotonic) modes. 

2. Non-reflective propagation of an s-wave through a gra-
dient film can be considered as an analogy of the Brewster 
effect, i.e., non-reflective propagation of p-waves through the 
interface of homogeneous media. 

3. The nanofilms in question, characterised by a low reflec-
tion coefficient, may be of interest for the synthesis of broad-
band non-reflective coatings. 

Appendix 

To solve equation (6) with the refractive index profile (13), we 
introduce a new variable h and pass to a normalised variable z: 

z
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The function W(z) (13) is expressed through the variable z:

( ) ,coshW
M1 2

z z
=

+
  W(z0) = W(–z0) = 1.	 (A4) 

By substituting the distribution U2(z) into the wave equa-
tion (6), by introducing a new function f = Y W  and using 
the variable z, we write the equation for f in the form

,
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The general solution of equation (A5) can be expressed in 
terms of hypergeometric functions [8], but here we restrict 
ourselves to a special case of L = 0. Then equation (A5) is 
reduced to a simple form 
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-= G 	 (A8)

Consider the case q2 > 0 when solutions to equation (A8) are 
described by forward and backward waves in the z-space; in 
this case, the generating function Ys is expressed in terms of 
elementary functions: 
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Figure 2.  Profiles of the dielectric constant u2(z/d) of a non-reflective 
gradient film at M = 0.9632, g = 1.1 ( 1 ) and M = 3.3627, h = 2.1 ( 2 ).
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[ ( ) ( )] .cos sin exp expi iL
z M L

z q Q q
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1 2

z zY = + + -` `j j8 B 	 (A9) 

By substituting the function Ys into the boundary condi-
tions (11), we calculate the complex reflection coefficient: 
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Values of z0 and q are defined in (A3) and (A8), respec-
tively. By calculating the parameter Q from the boundary 
conditions on the plane z = d, we can write the formula for Rs 
in the form: 
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To find the conditions for non-reflective (Rs = 0) propaga-
tion of a wave through a coating, we put in (A11) s1 = s2 = 0; 
this condition is satisfied for the frequencies and angles related 
by the expression 

BB1 = M2 + 4q2(1 + M2).	 (A12) 

By substituting the quantities B (A10) and B1 (A11) into 
(A12), we obtain 

( ) .arctan
cos sin

d M
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1
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d d
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c e o 	 (A13) 

The right-hand side of equation (A13), which is independent 
of the frequency w and gradient coating thickness d, is deter-
mined by the coating parameters (n0, M, L and g), refractive 
indices of homogeneous media surrounding the film (n1 and n) 
and the angle d of wave incidence. By setting these parame-
ters we can find the dimensionless quantity wdc–1 (A13), and 
knowing this value we can calculate the film thickness d pro-
viding non-reflective propagation of an s-wave with a frequency 
w, incident on this nanostructure at angle d. Examples of gra-
dient film parameters calculated by these formulas and corre-
sponding to non-reflective propagation in the case of incidence 
from a dielectric medium and from air are presented at the end 
of Section 3. Use of thicker films while preserving the values 
of all the parameters in the right-hand side of (A13) will lead 
to a shift in the frequency of non-reflective propagation to the 
IR region of the spectrum. 
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