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Abstract.  Interaction of coupled waves propagating in a system of 
waveguides with alternating positive and negative refractive indices 
is studied theoretically. The zigzag configuration of the waveguides 
in the array allows communication not only between the nearest 
neighbours, but also with the waveguides beyond them. It is shown 
that the spectrum of linear waves in such a waveguide system has a 
bandgap. Partial solutions are found to the system of coupled waves 
corresponding to a stationary electromagnetic field pulse that prop-
agates along the array of tunnel-coupled waveguides as a whole. 
Investigation of the interaction of nonlinear solitary waves has 
demonstrated numerically the stability of their relatively weak dis-
turbances and collisions with each other. 

Keywords: tunnel-coupled waveguides, negative refraction, forward 
and backward waves, optical solitons. 

1. Introduction 

A new branch has recently appeared in applied optics, termed 
‘transformation optics’ [1 – 6]. In many ways, transformation 
optics owes its origin to the construction of artificial media, 
i.e. metamaterials, which feature unusual electrodynamic 
properties [7 – 10]. In particular, metamaterials are character-
ised by ‘negative refraction’. It is sometimes said of a negative 
refractive index for electromagnetic waves in such media. 
Media with negative refraction, designed for the optical (more 
precisely, IR) range [11], allow one to control the light flux in 
both micro- and macroscopic scales [4, 5]. It is predicted that 
the methods of transformation optics can make it possible to 
curve rays arbitrarily, thereby forming any desired electro-
magnetic field distribution in space. However, even in tradi-
tional fields of optics, metamaterials can be useful. For exam-
ple, the properties of the negative index media can be used in 
the construction of new optical components for the integrated 
or fibre optics. 

It is known that the unusual properties of negative index 
materials manifest themselves upon refraction or localisation 

of electromagnetic waves near the ordinary medium – nega-
tive index medium interface [12 – 14]. The authors of papers 
[15, 16] considered a similar case when the waves propagate in 
the closely spaced waveguides, one of which is made of a non-
linear positive index material, and the other – of linear or 
nonlinear negative index material, and their coupling is due to 
frustrated total internal reflection. It was found that in such 
an extended nonlinear anti-directional coupler (NADC), a slit 
soliton – a stationary electromagnetic field momentum that 
runs in both waveguides as a single solitary wave – can propa-
gate. In addition to a double waveguide NADC, the authors 
of [17, 18] discussed the array of tunnel-coupled waveguides 
with alternating signs of refractive indices and showed that 
the spectrum of linear waves has under certain conditions a 
bandgap. 

In a system of tunnel-coupled waveguides, when the fields 
are strongly localised in the waveguides themselves, only the 
interaction between nearest neighbours is essential [19]. 
Efremidis and Christodoulides [20] proposed a configuration 
of a waveguide array, in which the interaction between the 
next-to-nearest neighbours can be just as strong as the inter-
action between the nearest neighbours. To do this, above an 
array of waveguides periodically arranged in the same direc-
tion a second array of similar waveguides is placed, which is 
shifted by half a period with respect to the first one (Fig. 1a). 
The numbering of the waveguides can be chosen so that, for 
example, even numbers indicate the lower row of the wave-
guides, and the odd numbers  –  the upper row. 

In this paper we investigate the waveguide configuration, 
similar to that described in [20], but with the difference that 
the refractive indices of the first and second waveguide arrays 
differ in sign (Fig. 1b). We determine the spectrum of linear 
waves in this system and consider the formation of a station-
ary solitary wave in an extended asymmetric (i.e., only a con-
ventional optical waveguide has nonlinear properties) zigzag 
array. The numerical solution of the corresponding equations 
demonstrates the stability of the solitary waves. 
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Figure 1.  Schematics illustrating the system of the waveguides: (a) an 
array of identical waveguides [20] and (b) an array of alternating posi-
tive and negative index waveguides. 
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2. Basic equations of the model 

Assuming that the waveguide with the number n has a posi-
tive refractive index and neighbouring waveguides with num-
bers n – 1 and n + 1 have a negative refractive index for the 
spectral region in question, we can write the system of equa-
tions for the fields in the waveguides: 

¶
¶

¶
¶ ( )i e c e en n n1 1 1z t+ + ++ -c m

	 +  ( ) | | 0c e e r e en n n n2 2 2
2

+ + =+ - ,	 (1)

¶
¶

¶
¶ ( ) ( ) 0i e c e e c e en n n n n1 1 2 3 3 1z t- + + + + + =+ + + -c m ,	 (2)

where en is the normalised electric field strength of a quasi-
harmonic wave localised in the nth waveguide [19]. The details 
of the derivation of these equations with the nonlinearity 
taken into account can be found in [17, 21]. Single-mode, 
polarisation-maintaining waveguides are considered as a sim-
ple common example of discrete optical systems [22 – 24]. 

In equations (1) and (2), nonlinearity is taken into account 
only for waves propagating in positive index waveguides and 
is characterised by the coefficient r. The relationship between 
the fields in neighbouring positive index waveguides is deter-
mined by the constant c2, the coupling constant c3 character-
ises the interaction between neighbouring negative index 
waveguides and c1   –   between positive and negative index 
waveguides. This configuration is called an asymmetric non-
linear optical waveguide zigzag array (ANOWZA). 

3. Linear properties of the waveguide system 

In the linear approximation, the equations describing the 
propagation of the waves in an asymmetric waveguide zigzag 
array have the form: 

¶
¶

¶
¶ ( ) ( ) 0i e c e e c e en n n n n1 1 1 2 2 2z t+ + + + + =+ - + -c m ,	 (3)

¶
¶

¶
¶ ( ) ( ) 0i e c e e c e en n n n n1 1 2 3 3 1z t- - + - + =+ + + -c m .	 (4)

To find the spectrum of the linear waves, we must search, as 
usual, for a solution to this system in the form of a travelling 
wave with constant amplitudes of its components 

( )exp i i ie A q nn wt z f= - + + ,

[ ( 1)]exp i i ie B q nn 1 wt z f= - + + ++ .

Substitution of these expressions into (3 ) and ( 4) leads to 
a system of uniform linear equations for the amplitudes A and 
B, a non-trivial solution of which is possible only if its deter-
minant 

det
q

q
2

1

1

3

w g
g

g
w g

- - -

+ +
e o

is equal to zero. Here we introduced the following parame-
ters: 

2 , 2 2 , 2 2cos cos cosc c c1 1 2 2 3 3g f g f g f= = = .

The requirement that the determinant is zero leads to the 
equation 

( ) ( )q q0
2

1
2

0
2w w g+ = + - ,

where 

, 2q2 0 2 3 0 2 3w g g g g= + = - .

Thus, we obtain a spectrum of linear waves in the ANOWZA 
with the alternating sign of the refractive index: 

( ) ( )q q q( )
0 1

2
0
2!w w g=- + -

! .	 (5)

One can see that the spectrum of the linear waves has a gap of 
width Dw = 2g1 and that the spectrum is shifted with respect 
to the frequency and wavenumber scale. The rest of the spec-
trum is the same as in the waveguide array [17, 18]. The gap-
less spectrum is possible only under the condition f = p/2. In 
this case, the radiation propagates along the waveguides with 
the same sign of the refractive index and the neighbouring 
waveguides do not exchange energy. 

4. Nonlinear waves in the ANOWZA 

The simplest approximate solution, which allows us to con-
sider analytically the propagation of the waves in the 
ANOWZA, described by equations (1) and (2) has the form: 

( , ) ( , ) ( ), ( , ) ( , ) [ ( 1)]exp expi ie A n e B nn n 1z t z t f z t z t f= = ++ .

In the linear approximation, A and B were the amplitudes of 
the quasi-harmonic waves. Here, these quantities are the 
envelopes of the quasi-harmonic waves. The system of equa-
tions (1) and (2) yields the equations for these envelopes: 

0A =¶
¶

¶
¶ | |i A B A r A1 2

2

z t
g g+ + + +c m ,	 (6)

¶
¶

¶
¶ 0i B A B1 3z t

g g- - - =c m .	 (7)

When f = p/2, the system is uncoupled into two indepen-
dent equations, one of which is linear and the other  –  nonlin-
ear. When f = p/4, the system of equations (6) and (7) reduces 
to that discussed previously in [15, 16]. Both of these cases will 
not be considered here. 

The system of equations (6) and (7) can be represented in 
a real form by setting ( )exp iA a1 1j=  and ( )exp iB a2 2j= :

¶
¶

¶
¶

¶
¶

¶
¶, ,sin sina a a a1 1 2 2 1 1z t

g
z t

gF F+ = - =c cm m

¶
¶

¶
¶ cosa

a ra1 1
1

2
2 1

2

z t
j g gF+ = + +c m ,
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¶
¶

¶
¶ ,cosa

a
2 1

2

1
3z t

j g gF- =- -c m

where F = j1 – j2.

4.1. Stationary waves 

Among the variety of the waves we can single out the station-
ary waves (sometimes referred to as travelling waves). The 
solutions of the equations, which depend only on one vari-
able, correspond to these waves. Let the variable in this case 
have the form 

1
1 2

x g
b

z bt
=

-

+ ,

where b is the parameter determining the speed of the wave’s 
propagation. If we introduce new envelopes u1 and u2, such 
that   ,u a u a1 11 1 2 2b b= + = - , then u1, u2 and F will be 
determined by the system of equations: 

¶
¶

sin
u

u1
2x

F= ,	 (8)

¶
¶ sinu u2

1x
F= ,	 (9)

¶
¶ cosu

u
u
u

2

1

1

2
1
2

x
d JF F= + + + ub l ,	 (10)

where we have introduced two parameters 

( )
,r

1 1
1

1
1

1
1

1 1

3

1

2J
g b b

b
d g

g
b
b

g
g

b
b

=
+ +

-
=

-

+
+

+

-d n.

From equations (8) and (9) it follows that the first integral 
of the system is

constu u C1
2

2
2

1- = = .	 (11)

If we multiply both sides of equation (10) by u1u2cosF and 
use again (8) and (9), we can obtain the second integral 

cos constu u u u C
2 41 2 1

2
1
4

2
d JF + + = = .	 (12)

Depending on boundary conditions there can exist differ-
ent solutions to equations (8) – (10) describing stationary 
waves. 

4.2. Solitary waves 

Stationary solitary waves correspond to solutions of equa-
tions (8) – (10), provided that the 0u ,21 "  for | |" 3x . In this 
case, the values of the constants C1 and C2 in (11) and (12) can 
be calculated, so that 

0, 0, 1cosu u u
2 41

2
2
2

1
2 !a d J aF- = + + = = .

The system of equations (8) – (10) using the equality u2 = 
au1 reduces to the system: 

¶
¶ sinu u1

1x
a F= ,

¶
¶ 2 cos 1

2

x
d a JF F= + + u .

Taking into account the second integral of motion, the equa-
tion for u1 can be written as 

¶
¶u u u1

2 4
1
2

1
2

1
2
2

x
d J

= - +c bm l; E.

The substitution u1 = v –1/2 and some simple transformations 
lead this equation to the form 

¶
¶ 4 ( )( )

2
2

1 2x
v v v v vD= - +c m ,

where

1 ;
( / )

;
( / )4 4 1 2 4 1 2

2
2

1 2
d v

d
J v

d
JD = - =

-
=

+
.

The equation for v  can be integrated (as in [16]); as a result, 
we obtain 

[2 ( )]cosh0 3 0v v v x xD= + - ,

where x0 is the integration constant; 

( / )
;

( / )4 1 4 4 1 4
0 2 3 2v

d
dJ v

d
J

=
-

=
-

.

Returning to the original variables, we can write the relation 

( ) ( )
[ ( )] /

/ | |
cosh

u u
2 2
4

1
2

2
2

0

2

x x
x x d

J
D

D
= =

- +
.	 (13)

Thus, the real envelopes of a solitary wave propagating in 
the waveguide system under study are given by the expres-
sions: 

( )
| | ( ){ [ ( )] / }cosh

a
1 2 2

4
1
2

0

2
x

J b x x dD
D

=
+ - +

,	 (14)

( )
| | ( ){ [ ( )] / }cosh

a
1 2 2

4
2
2

0

2
x

J b x x dD
D

=
- - +

.	 (15)

The solutions found are a generalisation of the solutions 
obtained in [16]. The phase difference F varies according to 
the expression 

( ) ( ) ( ) ( /2,2 ( ))sgn S 03x J d x xF F D= - + - ,

where we used the function 

( , )
1

(1 )
arctan

e
e

S y
/

y

y2 1 2

r
r

r
=

+

- .

The value of   ( )3F -  should be chosen so that when x tends 
to 3- , the derivative ¶ ¶/u1 x  is positive. 

4.3. Solitary waves of algebraic type 

The above-found solutions to equations (8) – (10) are charac-
terised by exponentially falling edges; however, sometimes 
there arise the situations when the edges of the solitary waves 
decay to zero more slowly, such as ~1/x2.

The solutions to (14) and (15) contain the parameter D, 
which vanishes in the limit | | 2"d . Therefore, the solutions 
make sense when –2 < d < 2, but on the boundaries of this 
interval, the behaviour of a solitary wave can be quite differ-
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ent. To clarify the possible solutions we can consider the 
behaviour of u 2 for small values of D. From (13) it follows 
that if D << 1

( )
( ) /

/u
1 2 2

42
2

0
2

2
.x

x x d
J

D
D

+ - +

	 = 
/ ( / ) ( )

( / )4
1 2 2 1 4

1 4
2

0
2

2

J d d x x
d

+ + - -

-= G

	 = 
( / ) ( / ) ( / ) ( )

( / ) ( / )4
1 2 2 1 2 1 2

1 2 1 2

0
2J d d d x x

d d
+ + - + -

- += G

	 = 
( / ) ( )

/4
1 2 1 2

1 2
0
2J d x x

d
+ - -

-; E.

Near the left boundary of the interval of admissible values of 
the parameter d, we can find the function u2 by setting d = –2 
+ e, where e << 1*. Then 

0"e
( ) limu 42 x

J
=

( / ) ( )
/

[ ( ) ]1 2 2 2
2 2

1 4
8

0
2

0
2e x x

e
J x x+ - -

- =
+ -

; E .

Near the right boundary of the interval of admissible values 
of the parameter d, we can find the function u2 by setting 
d = 2 – e. Then 

0"e
( ) limu 42 x

J
=

( )
/

1
2 0

0
2e x x

e
+ -

== G .

Thus, in approximating the parameter d to the value –2, 
the solutions to equations (8) – (10) transform into an alge-
braic soliton: 

( )
( ) [ ( ) ]

a
1 1 4

8
1
2

1 0
2x

J b x x
=

+ + -
,	 (16)

( )
( ) [ ( ) ]

a
1 1 4

8
2
2

1 0
2x

J b x x
=

- + -
.	 (17)

Here, b1 corresponds to d = –2. If  d tends to +2, the ampli-
tude of the solutions to equations (8) – (10) vanish. 

4.4. Restrictions on the velocity parameter b 

Since the parameter d is limited, the associated velocity  
parameter b is also limited. Given the definition of the param-
eter d, we can introduce the function 

( )F 1
1

3

1

2m g
g

m g
g

m= + ,

whose argument is 

1
1

m
b
b

=
-

+ .

This is an odd function of m. Therefore, the condition | d | G 2 
will be performed at intervals m– G m G m+ and – m– H m H – m+, 
where m– and m+ are the positive real roots of the equation 
|F ( m)| = 2. Real roots exist if minF( m) G 2 for positive m. It can 

be shown that this function reaches a minimum* at  
/2 3m g g=+ , the value of the function itself at a given point 

being equal to 2 2 3g g . Thus, the condition for the existence 
of solitary waves is expressed by the inequality 

| |2 3 1Gg g g .

From the definition of the parameters g1, 2, 3 it follows that 
g2g3  = 4c2c3cos22f. In the coupled-wave model the coupling 
coefficients c1, 2, 3 can always be chosen positive. Therefore, 
the product g2g3 is also positive or zero at f = p/4.

The expression for the parameter d can be rewritten as 

cos
cos

c
c

c
c

1
1

1
1 2

1

2

1

3d
b
b

b
b

f
f

=
-

+
+

+

-d n .

It follows that the sign of this parameter is determined by the 
phase shift of the waves in the neighbouring waveguides. 
Consequently, d is negative in the intervals p/2 < f < p and 
3p/2 < f < 2p.

The roots of the equation F( m) = 2 in the region of posi-
tive m are given by the expressions: 

| |
| |

1 1
2

1

1
2
2 3m

g
g

g
g g

= - -- d n,

| |
| |

1 1
2

1

1
2
2 3m

g
g

g
g g

= + -+ d n.

The parameters of the velocity of a stationary solitary wave b±, 
which are the boundaries of admissible values, are defined as 

1
1

2

2

b
m
m

=
+

-
!

!

! .

For example, suppose that g2 = g3 = 0.5g1. Then 

3.73, 0.866, 0.266, 0.865. . . .m b m b -+ + - - .

In the absence of interaction with next-to-nearest neighbour-
ing waveguides the stationary solitary waves exist at |b| < 1 
[16]. 

5. Numerical simulation of the interaction 
of solitary waves 

To investigate the stability of solitary waves, which are the 
solutions to the system of equations (6) and (7), we simulated 
the collision of these waves with each other and with the 
localised harmonic wave packet. As initial pulses we used 
those corresponding to the solutions in the form of solitary 
waves whose amplitudes are determined by expressions (14) 
and (15); the phase component of the waves in positive and 
negative index waveguides were chosen as follows: 

j( , ) ( ) (0,2 )sgn S
2
3

j1j z t J x= ,

j( , ) ( ) (0,2 )sgn S
2 2

1
j2

pj z t J x=- + .

* The direct solution of equations (8) – (10) for d = –2 gives the same re-
sult.

* Extremes F( m) exist at points /2 3!m g g= , but at positive m this is the 
minimum, and at negative  –  the maximum.
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Here, [ ( )] (1 ) /j j j1
2 1 2x g z b t t b= - - - , and the parameters zj 

and tj  define the initial location of input pulses. 
In studying the stability with respect to the collisions, we 

used stationary pulses characterised by the parameters b = 0.4 
and –0.4. The pulse with b = 0.4 is set at the output from the 
waveguide system (for z = 50) and the pulse with b = – 0.4 is 
set at the input of the waveguide system (for z = 0). The value 
of the coupling g1, determining the interaction between the 
nearest positively and negatively refracting waveguides is 
equal to unity, and the interaction between identical wave-
guides (positively or negatively refracting), characterised by 
constant g2 and g3, is assumed the same, i.e., g2 = g3. 

In the absence of coupling between identical waveguides 
(g2 = g3 = 0) the collision between pulses occurs elastically, as 
illustrated in Fig. 2 (see also [16]). By varying the magnitude 
of the coupling between identical waveguides we found that in 
the range g2 = g3 = 0.001 – 0.0075, the collision between the 
counterpropagating pulses is also almost elastic. 

In the range 0.0075  to 0.01 the collision between the pulses 
is accompanied by the formation of a weak harmonic wave 
(Fig.  3), and in the range 0.01 to 0.021, this linear wave 
increases with increasing coupling between identical wave-
guides. 

A further increase in the coupling between identical wave-
guides (range g2 = g3 = 0.0215 – 0.03) leads to the fact that the 
propagated linear wave decays, merging with the transmitted 
fundamental wave (Fig. 4) and starting with g2, 3 = 0.02 there 
appears a reflected wave which emerges as a result of the 
reflection of the initial pulse with b = – 0.4 from the pulse with 
b = 0.4, moving from the opposite side of the waveguide sys-
tem. 

The reflected wave is first amplified in the range 0.025 to 
0.07, then decreases (Fig. 5) and nearly disappears at  g2, 3 = 
0.075. In the range 0.08 to 0.135, pulses interact without for-
mation of a reflected and a transmitted linear waves; only the 
nature of the collision changes, which leads to a significant 

variation in the velocity of pulses emerging due to collisions, 
as compared with the initial velocity (cf. Fig. 6). 

In the range 0.14 to 0.15 a linear transmitted wave reap-
pears, decaying in the range 0.151 – 0.16 (this linear wave 
merges with the transmitted wave) (Fig. 7). In the ranges 0.17 
to 0.2 and 0.31 to 0.34, part of the pulse with b = – 0.4 is 
reflected in a collision with a counterpropagating pulse ( b = 
0.4) and a reflected wave appears (Fig. 8). In the range g2 =  g3 
= 0.21 – 0.3, collisions between pulses do not produce linear 
waves, but the nature of these collisions is different. Thus, if 
g2 = g3 » 0.22, pulses move along trajectories that are close to 
initial, i.e., the exchange of pulses in a collision is small, and if 
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Figure 2.  Collision between pulses at g2 = g3 = 0 for (a) positive index 
and (b) negative index waveguides. 
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Figure 3.  Collision between pulses at g2 = g3 = 0.01 for (a) positive in-
dex and (b) negative index waveguides. 
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Figure 4.  Collision between pulses at g2 = g3 = 0.022 for (a) positive in-
dex and (b) negative index waveguides. 
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g2 = g3 » 0.25, the trajectories of the pulses after the collision 
are very different from those before the collision. 

In simulating the collision of a pulse with b = 0.4, moving 
from the output (z = 50) of the waveguide system, with a 
counterpropagating localised harmonic perturbation 

(0, ) ( /2) ( ) ( )tanh tanh sinf A 40 70mod modt t t w t= - - -6 @ ,

specified at the input to the waveguide system at z = 0, we 
found that the result of collisions for small values of g2 = g3 
lying in the range 0.001 – 0.05 does not differ much from that 
obtained in the case when the coupling between identical 
waveguides is absent (g2 = g3 = 0). The simulation was per-
formed for the case when the perturbation amplitude Amod 

was taken from the range 0.1 to 3, and the frequency of the 
periodic modulation wmod was chosen to be 0.7 or 3. 
Interaction of a solitary wave with this perturbation leads to 
the fact that the pulse is refracted in a space filled with a mod-
ulated wave packet. This refraction the stronger, the greater 
the modulation amplitude and frequency (for frequencies 
lying in the range 0.7 – 3). At the output from the modulated 
region, the pulse propagated in the form of a solitary wave at 
a velocity different from the initial one. 

6. Conclusions 

Localisation of the fields in the waveguides leads to an 
increase in the strength of electric and magnetic fields. This 
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Figure 5.  Collision between pulses at g2 = g3 = 0.06 for (a) positive in-
dex and (b) negative index waveguides. 
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Figure 6.  Collision between pulses at g2 = g3 = 0.08 for (a) positive in-
dex and (b) negative index waveguides. 
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Figure 7.  Collision between pulses at g2 = g3 = 0.13 for (a) positive in-
dex and (b) negative index waveguides. 
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Figure 8.  Collision between pulses at g2 = g3 = 0.2 for (a) positive index 
and (b) negative index waveguides.



813Nonlinear waves in an array of zigzag waveguides

makes inevitable both self-action and nonlinear interaction 
between the spectral and spatial components of the localised 
fields. In this paper we have analysed the propagation of an 
electromagnetic pulse in the array of the waveguides with 
sign-alternating refractive indices. In contrast to previous 
studies, we have taken into account the interaction with the 
next-to-nearest neighbours. The zigzag configuration allows 
for this type of coupling between the waveguides. Because of 
the alternating sign of the refractive index, the spectrum of 
linear waves has a bandgap. This property of the considered 
model makes it different from that studied in [20]. 

Nonlinear wave have been studied in our model for the 
case when only positive index waveguides have nonlinear 
properties. The assumption of a linear dependence of the 
phase of the coupled waves on the waveguide number has 
allowed us to find a particular solution to the corresponding 
coupled wave equations. We have shown that in addition to 
solitary waves with exponentially falling edges there is a wave 
the rising and falling edges of which fall slower. This is a soli-
tary wave of algebraic type that exists only for certain values 
of the parameters of the waveguide system. 

It should be emphasised that in the case of an array of the 
waveguides coupled only with their nearest neighbours, the 
known nonlinear solitary waves are gap solitons of standard 
form, i.e., their envelope is described by a hyperbolic secant, 
like solitons in optical fibres with Kerr nonlinearity. 

For an undeformed waveguide array the angle Jb between 
the lines connecting the neighbouring waveguides is equal to 
p. In this case, the coupling with the next-to-nearest wave-
guides is negligible. (It is assumed that the radiation is 
localised in the waveguide.) If the array is deformed, so that 
the angle Jb  is reduced, we obtain a zigzag waveguide array. 
Therefore, by changing the angle Jb , one can control the 
value of the coupling between the next-to-nearest neighbours 
of the waveguides [20].

The numerical solution of nonlinear coupled-wave equa-
tions has shown that interaction of solitary waves is inelastic. 
After the collision, the velocity of solitary wave propagation 
changes, and one of them can be even destroyed and turned 
into a wave packet of linear waves. Changing the velocity, as 
shown by numerical calculations, depends on the angle Jb  of 
deformation of the waveguide array, which allows the angle 
to be treated as a control parameter. 

If the ANOWZA is formed of two arrays of waveguides 
(Fig. 1b), the displacement of the upper array relative to the 
lower one makes it possible, within certain limits, to control 
the coupling parameter c1. Thus, displacement in the vertical 
direction changes the value of this parameter, and hence mag-
nitude of the gap in the spectrum. The displacement in the 
horizontal direction breaks the symmetry with respect to the 
replacement of the right waveguide by the left one. There 
appears a nonzero energy flow along the waveguide array 
either from right to left or from left to right. 

Thus, the ANOWZA has great potential to control the 
distribution of the electromagnetic field at the output from 
the array as compared with the conventional linear array. 
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