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Abstract.  We study the dynamics of a high-energy laser pulse in 
dispersive optical media with large values of self-steepening. We 
consider the formation of soliton-like peaks at the front of the enve-
lope in such media with anomalous dispersion. We show the possi-
bility of realisation of a medium based on a photonic crystal wave-
guide with a very large absolute value of the self-steepening param-
eter in a certain frequency range. 

Keywords: shock waves of the envelope, high-power laser pulses, 
self-steepening, photonic crystal waveguides. 

1. Introduction 

The phenomenon of shock waves of laser pulse envelopes was 
first investigated by L.A. Ostrovskii almost 50 years ago 
[1, 2]. He showed that the dependence of the group velocity on 
the intensity of a high-power laser pulse propagating in a 
medium leads to a nonlinear transformation of its shape and 
to an increase in the steepness of its edge (leading or trailing 
edge as a function of the sign of the Kerr nonlinearity disper-
sion). As a result, a shock wave of the laser pulse envelope can 
be generated, which resembles the process of formation of 
shock waves in acoustics [3]. 

Dynamics of shock wave formation in nonlinear media 
has been considered in detail in many papers [4 – 12]. However, 
the appearance of new optical materials – photonic crystal 
fibres [13 – 15] and composite materials with giant nonlineari-
ties, producing conditions for plasmon resonance [16 – 18] –
makes it relevant to consider the dynamics of high-power 
laser pulses in media with a large self-steepening parameter. 
In waveguide systems of this type, self-steepening can take 
giant values as compared to ‘conventional’ optical materials 
(e.g. silica fibres). Furthermore, we will consider the problem 
of realisation of a waveguide having not only positive but also 
negative self-steepening, which leads to steepening of the 
leading edge of the laser pulse (unlike the case of a positive 
parameter when the trailing edge is deformed). 

Generation of shock waves with a very steep leading edge 
may be of considerable practical interest. Thus, in one of the 
first methods of high-power pulse shortening, the authors of 
[19, 20] suggested using conventional optical amplifiers as 
compressors in a strongly inverted active medium. The appli-
cation of this scheme proved difficult, because if the pulse has 
a sloping front, amplification of the leading edge of the pulse 
fed to the amplifier will not lead to its shortening, but on the 
contrary, can cause considerable broadening. In view of this, 
the amplifier is placed behind a device (such as a Kerr or a 
Pockels cell), which ‘cuts’ the front of the pulse fed to the 
amplifier. Thus, for a pulse to be shortened during the ampli-
fication process, it is highly desirable to cut off parts of its 
low-intensity leading edge so that they could not ‘deplete’ the 
active medium before the arrival of the envelope maximum. 
To this end, it is important to shape the rising edge of the 
pulse in the form of a step; then, the front part of the pulse 
will receive most of the energy stored in the amplifier. As a 
result, we can state that the possibility of formation of shock 
waves at the leading edge of the pulse is achieved without 
additional cut-off devices in the implementation of the regime 
combining amplification and temporal compression for high-
power laser pulses in the active medium. 

We should also mention the related phenomenon that has 
recently attracted a lot of attention – wave packets called 
rogue waves in the literature [21 – 24]. Their specific feature 
includes the deformation of the wave front (the so-called opti-
cal tsunami [25, 26]). All of the above-said demonstrates the 
importance of studying the dynamics of high-power laser 
pulses in media with a large self-steepening parameter, which 
can be both positive and negative. 

2. General model of shock wave formation 
in inhomogeneous optical fibres 

Propagation of a wave packet in an optical medium with the 
Kerr nonlinearity is described by the equation [27] 
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Here, E(z, t) is the electric field of the wave packet, which can 
be expressed in terms of the complex slowly varying ampli-
tude: E(z, t) = | A(z, t)|exp{i[( b(w, z) – b0)z – (w – w0)t]}; PL and 
PNL are the linear and nonlinear Kerr polarisation compo-
nents, respectively; b0 and w0 are the propagation constant 
and the carrier frequency of the packet; and m0 is the permeabi-
lity of free space. For wave packets with a duration t0 >> tNL 
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(in the case of a quasi-static nonlinear response), the expres-
sion for the nonlinear Kerr polarisation 
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is valid, where tNL is the characteristic time of the nonlinear 
response of the medium; c(3) is the Kerr dielectric susceptibil-
ity; and e0 is the dielectric constant of the vacuum. In the first 
order of smallness in the parameter tNL/t0, the nonlinear 
source in (1) is described by the expression [28] 
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Consider the radial field distribution U(r) in the waveguide in 
the plane perpendicular to the propagation direction [29] 

( , ) ( , ) ( , ) ( ) ( )cosrE t E z t U r U r mf j= =u  
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where m is the azimuthal mode index. The transverse profile 
of the mode field U(r) satisfies the wave equation 
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In the following we imply that we consider the propagation of 
the wave packet in a single-mode azimuthally symmetric case 
(m = 0). Through the distribution U(r) we define the parame-
ter Seff, i.e., the effective mode area: 
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In the general case, this parameter may be varied along the 
length of the waveguide. We also introduce the following 
notations, which we will use below: 
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Here, n is the linear refractive index; n(2)  is the cubic Kerr 
nonlinearity parameter; and R is the coefficient of nonlinear-
ity (in W–1 m–1), which can also depend on z. Using the stan-
dard procedure [27, 28], from the equation (1) we can obtain 
the equation for the slowly varying amplitudes A(z, t), which 
in the associated coordinate system moving with the group 
velocity ¶ ¶( ) ( / )u zg

1
0b w= w w=

-  has the form 
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is the time in the associated coordinate system, and  D(z) = 
¶ ¶( / )2 2 1

0b w w w=
-  is the group-velocity dispersion (GVD). The 

self-steepening parameter m will play below an important role. 
In the general case, this parameter also depends on the longi-
tudinal coordinate z, which can be written in the form [28, 30] 
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When the term related to this parameter is taken into account 
in (4), there appears a nonlinear correction to the wave group 
velocity, which is proportional to the second term in the 
expression 
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The dependence of the group velocity of the wave on its 
amplitude is a characteristic feature of the formation of a 
shock wave of the envelope. When m > 0, the maximum of the 
pulse envelope propagates with a velocity that is less than the 
group velocity ug of the wave packet in a medium, which 
means that the maximum is displaced to the tail of the wave 
packet, resulting in an increase in the slope of the trailing edge 
of the pulse. If m < 0, a shock wave can be produced at the 
leading edge of the pulse. 

Let us illustrate this by the well-known example [4], in 
which we neglect the dispersion effects. This approximation is 
quite correct for sufficiently long optical pulses with the spec-
tral width 
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We represent the solution of equation (3) in the form 
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where r and j are the real amplitude and the phase of the 
wave packet. Neglecting the dispersion term and separating 
the real and imaginary parts in equation (4), for the amplitude 
of the wave packet we obtain the equation: 
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We analyse the solution of the derived equation (7) by the 
example of an initial Gaussian pulse: 
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The solution to the equation for the amplitude r(t, z), which 
determines the shape of the pulse, can be written in the 
implicit form: 
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Given the definition of time in the moving coordinate system 
for the velocity of the wave packet envelope maximum um, the 
relation 
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is valid. In the general case, the value of um is a complex 
function of the coordinate z. In the particular case of a uni-
form fibre (i.e., when m = const, ug = const), the expression 
for the velocity of the envelope maximum takes the known 
form [4]: 
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It is obvious that in the linear approximation (i.e. for a low-
power pulse when mr0

2 ® 0) the velocity of the envelope maxi-
mum coincides with the group velocity of the pulse. 

To determine the shape of the pulse in a nonlinear ampli-
fying medium, relation (8) can be conveniently represented as 
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where the sign ‘–’ refers to the front of the pulse, and the sign 
‘+’ – to the tail. The steepening of the pulse front finally leads, 
at some length Lb, to the formation of the gap, to which the 
condition |¶ ¶/r t | ® ¥ corresponds, i.e., the shock wave of the 
envelope is produced. From (11) we can obtain an implicit 
relation of the length Lb of the shock wave formation with the 
parameters of the fibre and the pulse coupled into it: 
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In the case of a uniform amplifier ( m = const) from this rela-
tion we can obtain the well-known expression [28] 
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Note that all the above results can be also used for an active 
fibre with the gain G(z) described by the equation 
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In this case, equation (4) with the effective coefficients 
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remains valid for the amplitudes ( , )A z tu  related to the initial 
amplitudes as follows: 
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3. Formation of shock waves in waveguides 
with dispersion. Results of numerical simulation 

The above relations provide a simplified schematic picture of 
the formation of shock waves in optical waveguides. 
Meanwhile, the GVD has a significant impact on the trans-
formation of the pulse, which is described by equation (4). 
Even if at the initial stage the pulse duration was significant 
and the GVD effects could be ignored, with steepening of the 
front pulse, i.e., at ∂ |A| /∂t ® ¥, the dispersive spreading starts 
playing a major role: when a shock wave is produced, the 

spectral width of the pulse increases, which makes dispersion 
effects more significant. The spread in the velocity due to dis-
persion limits the slope of the pulse front. 

Known are the exact solutions of equation (4) with con-
stant coefficients that describe the propagation of kinks 
(‘steps’) [5] of radiation and soliton-like pulses in the limit m ® 0, 
undergoing a transition into fundamental solitons of the non-
linear Schrödinger equation (NSE) [6 – 8]. Exact analytical 
solutions for pulses with energies exceeding the energies of the 
fundamental soliton, i.e., in the case r0

2 > D/(Rt0
2) are 

unknown, and hence we have to restrict ourselves to the 
numerical solution of equation (4). We have performed the 
numerical analysis of the evolution of the initial pulse with the 
amplitude ( ) ( / )coshA t P0 0 0t t= , duration t0 = 25 ps and 
power P0 = 115 W in a waveguide with anomalous (D < 0) 
and normal (D > 0) dispersion. The results are shown in 
Figs 1 and 2. Note that in the simulation we used both posi-
tive and negative values of the self-steepening parameter | m| = 
10–14 W–1 m–1 s. The possibility of obtaining such large values 
of m of different signs in photonic crystal (PC) waveguides is 
discussed below in Section 4. We should also add that the 
parameters of nonlinearity R and dispersion D used hereafter 
are slightly higher than the standard values for silica fibres, 
but achievable in the PC waveguides. For comparison, we 
also present the results in the dispersion-free case. 

One can see from Fig. 1 that the pulse during its propaga-
tion becomes asymmetrical with a steep rising or falling edge, 
depending on the sign of m. The spectrum of the pulse (Fig. 2) 
considerably broadens towards higher or lower frequencies as 
a function of acceleration ( m < 0) or slowing-down ( m > 0) of 
the pulse maximum. The comparison of the spectrum with the 
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Figure 1. Formation of a shock wave: (a) change in the instantaneous fre-
quency and (b) pulse envelopes after propagation in a 10-m-long wave-
guide with the parameters R = 0.05 W–1 m–1, m =  ( 1 – 3 ) –10–14 and ( 1 ¢ – 3 ¢ ) 
10–14 W–1 m–1 s, D = ( 1, 1 ¢ ) 0, ( 2, 2  ¢ ) –7 ́  10–26 and ( 3, 3 ¢ ) 5 ́  10–26 s2 m–1. 
The dashed curve is the envelope of the initial pulse. 
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time-dependent instantaneous frequency (Fig. 1a) shows that 
the broadening of the spectrum is due to the shift of the fre-
quency of the steepest part of the pulse front. In the region of 
normal dispersion the front is shifted away from the initial 
centre of the pulse, but its frequency shift is smaller than that 
in the region of anomalous dispersion. In the case of anoma-
lous dispersion, the maximum frequency shift is observed 
near the pulse maximum, which is consistent with the analyti-
cal solutions of equation (4). It is known that the exact soliton 
solutions of this equation have a specific phase modulation 
[6 – 8] 

| ( )|A u
2
3 2\j m t D- +t ,

where Du is the difference between the velocity of the soliton 
and the group velocity of the wave. Thus, we can assume that 
in the region of anomalous dispersion at the pulse front soli-
ton-like frequency-modulated pulses are produced. 

Consider in more detail the formation of the shock wave 
front. Note that the spreading of the front in the case of nor-
mal dispersion can be approximately described by the relation 
for the velocity of the pulse envelope maximum (10). Indeed, 
the change in the velocity of this maximum due self-steepen-
ing Dum - 3mu2

gP0 is compensated for by the dispersion 
change in its velocity that occurs due to the broadening of the 
pulse spectrum: 
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of the steep front tf of the pulse in the case of normal disper-
sion: 
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Somewhat different is the steepening of the front in the 
case of anomalous dispersion. It is well known that propagat-
ing in a nonlinear medium with anomalous dispersion 
described by the NSE the pulse with an energy much higher 
than the energy of the fundamental soliton (N-soliton pulse, 
N >> 1) is transformed into a set of short pulses that are close 
to the fundamental solitons. This is one of the manifestations 
of the specific nonlinear process of the modulation instability 
[27]. If, by analogy with the NSE, equation (4) is analysed for 
the stability of a permanent solution A = A0exp(iRA2

0z) to 
small harmonic perturbations, one can obtain that the term 
proportional to the parameter m prevents the development of 
the modulation instability and stabilises the integrity of the 
pulse to some extent. Indeed, the expression for the gain of 
the small modulation at a frequency W = | w – w0 | can be writ-
ten in the form [31] 
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Thus, self-steepening reduces the modulation gain and decreases 
the modulation instability bandwidth. At m > (R|D|)1/2/A0 the 
frequency band of the modulation instability narrows down 
to zero. However, when the pulse propagates and reaches the 
values of ∂ |A|/∂t ® ¥ at its front, the pulse spectrum dra-
matically broadens (Fig. 2), and the approximation of small 
harmonic perturbation of the permanent solutions used in 
deriving previous relations becomes inadequate. As a result, 
at the junction of the pulse fronts, a region of the modulation 
instability is formed and a soliton-like pulse with a peak 
power of A2

s and duration Dt << t0 is generated. The quanti-
ties A2

s and Dt can be expressed through the approximate rela-
tion 
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which in the m ® 0 limit undergoes a transition into the defini-
tion of the fundamental soliton RA2

s = D/Dt2. 
These qualitative relations are confirmed by the numerical 

solution of equation (4) for different values of self-steepening 
m and anomalous dispersion (D < 0). Figure 3 shows the 
results of numerical simulations of the propagation of a pulse 
with an amplitude ( ) ( / )coshA t P0 0 0t t= , duration t0 = 25 ps 
and power P0 = 192 W in a waveguide with the specified val-
ues of the parameters D, m and R. 

The data of Figs 3a – c confirm the conclusion that when a 
pulse propagates in a waveguide with anomalous dispersion, 
large values of the nonlinearity dispersion prevent the devel-
opment of the modulation instability. At sufficiently large m, 
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Figure 2. Spectrum of a shock wave upon steepening of the leading 
edge of the pulse passing through a 10-m-long waveguide with the pa-
rameters R = 0.05 W–1 m–1, m = –10–14 W–1 m–1 s, D = ( 1 ) 0, ( 2 ) –7 ́  10–26 
and ( 3 ) 5 ́  10–26 s2 m–1. The dashed curve is the spectrum of the initial 
pulse.
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a characteristic multi-peak structure of the pulse is not 
formed; however, the envelope becomes asymmetric. At a cer-
tain propagation length one can observe on the steep edge of 
the pulse the formation of a single peak. Figures 3d – f show 
the structure of a pulse with a peak at different anomalous 
dispersions of the waveguide. One can see that the peak power 
and the energy of the emerging peak increase with increasing 
anomalous dispersion of the waveguide, which can be 
explained by the growth of the modulation gain. This eventu-
ally leads to an increase in the ratio of the peak pulse energy 
to the pedestal energy and at giant values of dispersion (| D | ~ 
10–23 s2 m–1) makes it possible to efficiently shorten the initial 
pulse. 

Note also the change in the propagation velocity of the 
envelope maximum in relation to the velocity at the edge of 
the pulse on which it is formed. With increasing power, this 
maximum accelerates (or decelerates, depending on the sign 
of m) and penetrates ‘inside’ the pulse. Thus, the front struc-
ture is formed. This process is illustrated by the simulation 
results given in Fig. 4. It is seen that for large values of 
∂| A|2/∂t, a modulation instability region is produced, with the 
highest value of the modulation gain being reached at the 
point corresponding to the slope maximum. Due to a lower 
velocity of the maximum, this region is shifted inside the 
pulse, leaving behind it a perturbed site. Depending on the 
ratio of the pulse and waveguide parameters, this process can 
either be stable or be accompanied by an increase in the fre-
quency range of the modulation instability and by a sharp 
spectral broadening of the pulse. Finally, the second variant 
leads to disintegration of the pulse. 

The analysis performed shows that the propagation of 
radiation pulses in waveguides with large values of the self-
steepening parameter m is of considerable practical interest. 
Such waveguides may serve as a basis in designing highly effi-
cient optoelectronic elements: compressors, broad-spectrum 
emitters and pulse generators with a high power gradient. In 
the next section we discuss the issues related to the possibility 
of fabricating such waveguides. 

4. Value of the self-steepening parameter 
in gradient waveguides 

As was shown above, the dynamics of the radiation pulse is 
largely dependent on the magnitude and sign of self-steepen-
ing m, characterising the waveguide medium. Typically, this 
parameter is assumed small and always positive with a very 
good degree of accuracy equal to ~2R/w0. Besides, it has little 
effect on the dynamics of the wave packet in the case when the 
pulse duration is much larger than 100 fs, whereas the peak 
power is much less than 1 MW. The above is indeed valid for 
silica step-index fibres or for recently widely used fibres with 
a W-shaped refractive index profile. On the other hand, in 
modern PC waveguides, radiation is localised due to the 
Bragg mechanism of radiation ‘locking’ in the fibre core 
rather than due to the total internal reflection. Obviously, in 
this case we deal with a strong dependence of the effective 
mode area and, as a result, of the self-steepening parameter 
and cubic (Kerr) nonlinearity on the carrier frequency. 

Expression (5) defining the self-steepening parameter can 
be rewritten as 

¶
¶

¶
¶

cS
n

S
k n

S
k n S2 ( ) ( ) ( )

eff eff eff

eff
2

0
2

2
0

2

m
w w= - +c bm l, (15)

where k0 = w0/c. Usually, in analysing the dynamics of the 
wave packet, the second and third terms in (15) are neglected, 
which is valid for the most common waveguides with a step or 
a W-shaped refractive index profile. On the other hand, 
Zolotovskii and Sementsov [30] showed that in Bragg fibres 
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Figure 3. Simulation results of pulse propagation in a waveguide of 
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with a one-dimensional refractive-index inhomogeneity one 
can obtain effective values of the self-steepening parameter, 
which exceed significantly the standard values. Also possible 
is the realisation of the waveguides with negative m. The 
effects of this kind, related to a sharp increase in the magni-
tude and a change in the sign of the self-steepening parameter, 
can be observed in the PC waveguides with a two-dimensional 
refractive index structure. In addition, as a waveguide medium 
with a large (in modulus) value of the self-steepening param-
eter we can single out the media with a strong Kerr-
nonlinearity dispersion, such as composite materials, 
described by the Maxwell – Garnett relation [18]. 

It should be noted that a strong dispersion of the mode 
area is associated with the instability of a propagating wave 
packet at which even slight fluctuations in the medium param-
eters lead to a dramatic increase in optical loss. Thus, the 
spectral ranges in which the self-steepening parameter has 
large values are, as a rule, not used due to their strong sensi-
tivity to parameter variations, resulting in significant optical 
loss. However, for PC media with large cubic nonlinearities in 
the respective ranges, the shape of the pulse envelope can be 
effectively controlled. 

Consider a typical case by the example of which we can 
demonstrate the significant dependence of self-steepening on 
the waveguide parameters – a waveguide with a parabolic 
profile. The refractive index of the core of a ‘standard’ wave-
guide is described by the relation [29] 

( ) , 0n r n r
r r r1

/g

1
0

1 2

0G GD= - b l; E , (16)

and the refractive index of the cladding – by the relation 

( ) (1 ) ,n r n r r/
1

1 2
0HD= - , 

where D = (n2
1 – n2

2)/n
2
1; and n1 and n2 are refractive indices of 

the fibre material. When g = 1, the waveguide has a triangular 
profile of the refractive index, and when g = 2, – parabolic. 
Larger values of g correspond to a step-index waveguide. 

To find the dispersion dependences of the fundamental 
mode parameters of the waveguide, we will solve the wave 
equation (3) in the Gaussian approximation [29]. The radial 
distribution of the mode field can be written as 

( ) /( )expU r r w22 2
= -6 @,

where w = (Seff /p)1/2 is the mode field radius. The propagation 
constant is related to the radial distribution of the mode and 
the refractive index by the expression 

3

3

( ) ( / )

d

d d d

U r r

k n r U U r r r
2

2

0

2 2 2 2

0b =
-6 @

y
y

, (17)

where k = k0n1. From the equation ∂b 2/∂w = 0, we obtain the 
dispersion dependence of the mode radius: 

D2 /( )w r k2
0= . (18)

Thus, the effective area of the waveguide mode  
D2 /( )S r keff 0p= . Evaluating the integrals in (17), we obtain 

an expression for the propagation constants of the LР01 
modes in a waveguide with a parabolic refractive index pro-
file: 

Dk
kr

1 2
/

0

1 2

b = -d n .

Since D << 1, then in solving the formulated problem we can 
assume that b = k0n1, and therefore the group velocity and 
GVD do not depend on the waveguide diameter and are con-
stant throughout its length. In this case, for the waveguide 
with a parabolic refractive index distribution we can write an 
expression for the Kerr nonlinearity coefficient 

D /(2 )R k n r( )
0
2 2

0p=

and the self-steepening parameter [according to (15)] 

D
¶

¶
r c

k n n n n( )
( )

0

0
1

2
0 1

2

pm w
w= -c

 – 
¶
¶

¶
¶n n n n( )

( )

0
2 1 0 1

2

w
w

w
wD
D

- m. (19)

Note that even in the case under study, the self-steepening 
parameter m may differ significantly from the standard value 
~2R/w0 due to the presence of dispersion terms. The sign of m 
can be either positive or negative. 

Unlike parabolic waveguides, the widely used step-index 
waveguides have a weak dispersion of the mode area. One can 
compare their dispersion characteristics by using Marcuse’s 
formula [32]. This formula accurately describes the depen-
dence of the waveguide mode radius w on the waveguide 
parameter V: 

r
w

V
A

V
B

V
C

/( ) /g0 2 2 3 2 6. + +
+

, (20)

where

( )V c
r n n /0

1
2

2
2 1 2w

= - .

For a step-index waveguide g ® ¥, and the numerical coeffi-
cients in (20) are defined as A = 0.65, B = 1.619 and C = 2.879. 
Its dispersion dependence is shown by the dotted curve in 
Fig. 5. One can see that in the region of ‘working’ values 
r0 > 2l for such waveguides w ~ r0. Comparing this result 
with (18), we note that the dispersion of the mode area in step-
index waveguides is virtually absent (the dependence of the 
mode area on k is absent). 

Consider now a waveguide with a cross-sectional struc-
ture that is typical of a PC waveguide. As is shown in [33], 
Marcuse’s formula (20) also describes the dispersion depen-
dence of the mode area. In this case, the waveguide parameter 
should be defined as 

( )V n n2 /
PCF eff1

2 2 1 2p
l
L

= - ,

where neff is the effective refractive index of the structured 
cladding of the waveguide. Consider a typical example of a 
PC fibre (see inset in Fig. 5). The central part of the fibre serv-
ing as its core is surrounded by a cladding with a hexagonal 
system of air holes with a diameter d, separated from each 
other by a distance L. Formula (20) with the coefficients APCF 
= 0.7078, BPCF = 0.2997, CPCF = 0.0037, and g = 8 provides a 
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high accuracy of approximation of the dependence of the 
ratio w/L on the parameter VPCF: 

w
V
A

V
B

V
C

/( ) /
PCF

PCF

PCF

PCF

PCF

PCF
g2 2 3 2 6.

L + +
+

. (21)

Figure 5 (borrowed from [34]) shows the dependences of 
the mode radius on the constant L for PC fibres with a hex-
agonal structure at different values of the d/L ratio. Note that 
the region of the dispersion dependence of the mode radius 
(w µ Ll, l ¹ 1) is within the admissible limits for modern PC 
waveguides implementing the radiation localisation through 
the Bragg mechanism. With increasing porosity of the clad-
ding structure, this region is displaced towards the L values of 
the order of wavelength at d/L ~ 0.5. Therefore, one should 
pay attention to the fact that in the spectral regions near the 
Bragg matching, the dispersion of the effective mode area can 
be very strong. Note also that on the left of the point corre-
sponding to the minimum area of the mode, there is a region 
of a large and thus negative dispersion of the mode area, i.e., 
–∂Seff/∂w >> Seff/w. Because of the strong change in the mode 
area and the associated sharp increase in optical loss, the cor-
responding spectral range is rarely used; however, as we see, it 
can be used to fabricate waveguides with a giant (in modulus) 
nonlinearity dispersion. In this range, the self-steepening 
parameter of PC waveguides can take both positive and nega-
tive values that are more than two-to-three orders of magni-
tude larger in modulus than the standard values. 

5. Conclusions 

We have studied the dynamics of optical pulses in waveguides 
characterised by a large value of the self-steepening parameter 
m. The urgency of this paper is related to the fact that the evo-
lution of the pulse envelope in such waveguides leads to the 
emergence of waves with a large power gradient, which are in 
demand for a wide range of applications. We have considered 
in detail the process of formation of the shock wave of the 
envelope at the leading edge (at m < 0) and the trailing edge 

(m > 0) of the pulse both in the absence and in the presence of 
normal and anomalous dispersion of the waveguide. We have 
shown that for a large self-steepening parameter the modula-
tion instability of pulses propagating in a nonlinear medium 
with anomalous dispersion decreases; however, in the region 
of the highest power gradient this nonlinear effect leads to the 
formation of soliton-like peaks. Thus, in the case of strong 
anomalous dispersion we can speak about effective shock 
compression of the pulse and the achievement of high peak 
radiation powers. The considered shock-wave mechanism can 
also find application in the generation of radiation with a 
broad spectrum. 

We have also shown the possibility of realising a wave-
guide regime with a large (in modulus) positive and negative 
self-steepening parameter. This regime can be obtained in PC 
waveguides at wavelengths close to the parameter of the PC 
fibre cladding structure. 
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