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Abstract.  We have analysed self-similar solutions to the propaga-
tion problem of a slit beam with a plane wavefront in a linear 
medium and in a photorefractive crystal with diffusion nonlinearity. 
It is shown that in the latter case, despite the presence of the nonlin-
ear term in the wave equation, the linear superposition principle 
holds true for the solutions of this class due to saturation. At the 
same time, the mirror symmetry violation of the wave equation for 
the transverse coordinate in the nonlinear case and the requirement 
to the spatial localisation modify one of the localised partial solu-
tions (Airy beam) to the corresponding linear problem and prohibit 
the existence of other solutions of this class. 

Keywords: wave equation, Airy beam, photorefractive crystal, dif-
fusion nonlinearity, propagation problem, self-similar solution. 

1. Introduction 

Propagation of a so-called slit radiation beam in a photore-
fractive crystal (PRC) with diffusion nonlinearity in the ‘1 + 1’ 
dimensional approximation is described by a truncated wave 
equation [1] 
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In deriving expression (1) substitution E(x, z) = ef(x, z) exp(ikz) 
allows one to single out a slow envelope f(x, z) of the light 
wave field E(x, z) with the polarisation vector e, which is 
directed along the x axis. By substituting the variables s = x/x0 
and x = z/(kx02), where x0 is an arbitrary scale factor, we 
introduce the dimensionless coordinates. Here, k = k0ne is the 
wavenumber; k0 = 2p/l0; l0 is the wavelength of radiation in 
vacuum; ne is the refractive index of an extraordinary wave in 
the PRC; /k x n r K T e2e B0

2
0

4
33 0g = ^ ]h g; r33 is the matrix compo-

nent of the linear electro-optic effect, working in the chosen 
geometry (optical axis c of the PRC SBN is directed along the 
axis of the vector e and axis x); KB is the Boltzmann constant; 
T is the temperature; and e0 is the electron charge. Christo-
doulides and Carvalho [2] analyse the case of the diffusion 

nonlinearity [2], in which background illumination of the 
PRC is assumed negligibly small. The last approach is not 
fully correct and violated at those points of the x axis, where 
the diffusion field is zeroed. 

Christodoulides and Coskun [1] have shown that equation 
(1) has an exact particular solution: 

, / /2exp expAi is 4 2 120
2 2f x f eh g gh eh x x= + - +] ^ ^ ^g h h h7 A,	 (2)

where h = s – (ex2/4); f0 is an arbitrary constant; Ai(x) is the 
Airy function [3]; and e = ±1 at positive and negative g, 
respectively. The emergence of e in the expression for g is 
related to the requirement of exponential factor decay in (2) 
at the oscillating tail of the Airy function. 

It is easy to make certain that 
1) unlike self-consistent solutions for the cases of Kerr 

and most other types of nonlinearity, the amplitude of the 
solution of (2) is arbitrary; 

2) as for other soliton-like solutions, in the intensity dis
tribution the diffraction manifestations are absent and 

, expAis 4 42 2
0
2 2 2f x f h f eh g gh= = + -] ^ ^ ^g h h h; 

3) the profile of the distribution |f(s, x)|2 experiencing no 
diffraction scattering is moving in the PRC along a parabolic 
trajectory s = (ex2/4) + const; 

4) the wavefront in this movement changes the slope 
(cross term in the phase) and is always (at fixed values of x) 
flat (the phase linearly depends on s and h); 

5) forced removal of the nonlinearity (transition to limit 
g ® 0) does not eliminate the solution of ( 2) and transforms it 
to the form known from Berry’s work [4] 

, / /expAi is 12 20
2f x f eh eh x x= +] ^ ^g h h7 A.	 (3)

However, in contrast to [4], e in (3) can take either of two 
values e = ±1, which reflects the symmetry (1) with respect to 
the transformation s « –s at g = 0 and the resulting existence 
of two mirror-symmetrical solutions in the form of Airy 
beams. In this limit the wave equation transforms into the 
standard form: 
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Note that the study of the peculiarities of self-similar solu-
tions in the form of Airy beams, including some of the less 
idealised and more realistic (in terms of the practice) situa-
tions has attracted in recent years more and more attention of 
researchers [5 – 11].

With the above-mentioned taken into account, three main 
questions arise. First of all, why is the diffusion nonlinearity 
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so remarkable that its emergence, in fact, only slightly mod-
ifies some class of particular solutions of the corresponding 
linear problem (4)? Second, why does this modification 
occur? And finally, what general properties characterise this 
class of particular solutions? We will show that, despite the 
presence of the nonlinear term in (1), the linear superposi-
tion principle holds true for partial solutions of a certain 
class and that this class includes not only solutions (2) and 
(3), but also some other well-known private solutions of 
(1) and (4) [12]. 

2. Linear medium 

We begin our analysis with a linear problem (4) and rewrite 
the solution in the form 

, , , ,exp is Ff x f h x h x j h x= =] ^ ^ ^g h h h6 @,	 (5)

where h = h(s, x) and x play the role of the transverse and lon-
gitudinal coordinates, respectively; and F(h, x) , h(s, x) and 
j(h, x) are some unknown functions. Then on the trajectory s 
= s(x), described by the equation  h(s, x) = h0 = const, F 2(h, x) 
= F 2(h0, x) and j(h, x) = j(h0, x) in (5) will depend only on x, 
which describe the ‘soliton-like’ (independent of x) and diver-
gent/convergent (dependent on x) beams that not necessarily 
propagate along a straight line. 

Substituting (5) into (4) and dividing the real and imagi-
nary parts, we find 
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Note that system (6) is exact and completely equivalent to (4). 
Next we need to make some assumptions and single out a cer-
tain class of solutions of (6). 

We restrict ourselves to self-similar solutions, which, 
propagating (change in x), do not change the functional 
nature of the intensity distribution F 2(h, x) in the transverse 
coordinate. Note that this requirement does not limit the 
analysis to soliton-like solutions only [13, 14], because the 
replacement s ® h(s, x) admits x-dependent changes in the 
scale s. Hence, F(h, x) ® F(h) and ¶ ¶ ¶ ¶( , ) / ( ) /F F 0" /h x x h x , 
given the fact that (6) can be rewritten in the form 

¶
¶

¶
¶

¶
¶

¶
¶, , , ,

F
s

2 2
2

h
h

j h x
x

h x
x

j h x
h

j h x
+ +^

^ ] ^ ^
h

h g h h< F)

´ 
¶

¶
¶

¶
¶

¶, , ,
0,

d
d

d
d

s
s F

s
s F

s
s2

2

2

2

2 2h x
h
h h x

h
h h x

- - =
] ^ ] ^ ]g h g h g; ;E E1 	 (7a)

¶
¶

¶
¶

¶
¶

¶
¶, , , ,

F
s
s

s
s

2

2

2

2 2

h
h

j h x h x
h

j h x h x
+^

^ ] ^ ]
h

h g h g; E) 3

	 + 
¶

¶
¶

¶
¶

¶
2

, , ,
0.

d
dF s

s
s 2

h
h

x
h x

h
j h x h x

+ =
^ ] ^ ]h g h g; E( 2 	 (7b)

We now note that soliton-like solutions should have a 
plane wavefront, which, however, can be inclined relative to 
the normal to the transverse coordinate h. This inclination 
may depend on x, changing with propagation. Consequently, 

( , ) ( ) ( ) ( , )sj h x a x b x h x= + 	 (8)

and

,
2

2
h

j h x
b x=

^
]

h
g, 

¶
¶ ,

,
d
d

d
d

s
x

j h x
x

a x
x

b x
h x= +

^ ] ]
]

h g g
g,

where a(x) and b(x) are some unknown functions. By substi-
tuting the corresponding expressions into (7), we find 
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We now require that for the desired class of solutions  
¶ ¶( , ) /s s 02 2h x = , whence 

,s sh x m x n x= +] ] ]g g g ,	 (10)

where m(x) and n(x) are some unknown functions. Condition 
(10) reflects the self-similar nature of the desired solutions, 
allowing for them a x-dependent transverse shift and an s uni-
form (for a given value of x) scaling factor. Note that restric-
tion (10) is very efficient because it removes the term with the 
first derivative dF(h)/dh in (9a) and the term proportional to 
F(h) in (9b). The family of motion trajectories of points of 
equal intensity F 2(h0) in this case is given by the expression 

/s 0h m x n x= - ] ]g g6 @ , where h0 is a constant. Substituting (10) 
into (9b), we find that 
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( ) const0n x n= = ,	 (12a)

0
d
d

0
2

x
m x

n b x+ =
]

]
g

g .	 (12b)

It is easy to see that the motion trajectories of points of 
equal intensity for this class of solutions are similar and sim-
ply shifted by s relative to each other. It follows from (9a) that 



933An Airy beam as a self-similar solution to the problem of slit laser beam

d
d F

F 2
2

2
2

0
2h

h
h b x

n
- - +

^
^ ]

h
h g'

	 ´ 
d
d

d
d

d
d

s2 0
0x

a x m x
x

b x
n x

b x
+ + =

] ]
] ]g g
g g< F 1 ,	 (13)

and we can draw an important conclusion. Because according 
to the initial assumption that the function F(h) cannot explic-
itly depend on the longitudinal coordinate x (the required 
solution is a self-similar solution), the coefficient in curly 
brackets at F(h) in this equation must be reduced to a certain 
function of the transverse coordinate h, i.e., the condition 

d
d

d
d

d
d

s H2 22

0
2 0

b x
n x

a x m x
x

b x
n x

b x
h- + + + =] ] ]

] ]
^g g g

g g
h< F

must be met, where H(h) is some unknown function. Taking 
into account condition (10) and the linearity of the left-hand 
side of the relationship derived with respect to s, this require-
ment can be satisfied only in two cases: constH ?h h +^ ^h h
and (13) is reduced to the equation for the Airy function [3], 
or constH h =^ h  and (13) transforms into the equation of 
undamped harmonic oscillations. We emphasise again that 
these two possibilities exhaust the class of self-similar solu-
tions in question. 

We now require, for example, that equation (13) trans-
forms into the equation for the Airy function [3]. To this end, 
the condition 
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where a0, b0 and m0 are the integration constant. As a result, 
the found self-similar solution is described by the expressions 
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, ,expAi is 0f x f h j h x=] ^ ^g h h6 @.	 (15c)

Equations (15a) and (15b) can be significantly simplified. 
Thus, the requirement that in the plane x = 0 the wavefront 
coincides with the s axis, determines the value of b0 = 0. The 
choice of the point location s = 0 suggests that m0 = 0. And 
finally, the value of the constant a0, renormalising the phase-
shift velocity in x, also can be zeroed by an appropriate choice 
of the wave vector projection on the axis. Therefore, finally, 
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which, in principle, coincides with the solution of Berry [4]. 
However, it follows from (16a) that, as in (3), the ability to 
change the sign n0 ® – n0 determines the existence of two mir-
ror-symmetric (with respect to the x axis) families of motion 
trajectories of points of equal intensity specified by the expres-
sion [ / ]s 20

1
0 0

2 2n h n x= +- ^ h .
Other unconsidered self-similar solutions should corre-

spond to the situation when (13) is reduced to the undamped 
oscillation equation. To this end, it is necessary to fulfil the 
condition 
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As a result, one more solution found is described by the 
expressions 
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, ,cos exp is 0 0f x f w h j h x=] ^ ^g h h6 @.	 (18c)

Expressions (18a) and (18b) can be also simplified by 
selecting the values of the integration constants. It is easy to 
see (18b) that now the wavefront retains its orientation in 
space and the case, when it coincides with the s axis, corre-
sponds to two possibilities. In the first one (the most interest-
ing)  b0 = 0, and at an appropriate choice of the point position 
s = 0 and the initial phase (a0 = 0 and m0 = 0) 

( , )s s0h x n= ,	 (19a)

,
2
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2

0
2j h x n w x=-^ h ,	 (19b)

which corresponds to the interference pattern of two plane 
waves propagating symmetrically at some angle to the x axis. 

In the second case we will have to assume that n0 = 0, and 
the solution 

( , )s 0h x m= ,	 (20a)

, 0 0 0j h x a b m= +^ h 	 (20b)

corresponds to propagation of a plane wave with a complex 
amplitude sin0 0 0 0f f m w=u ^ hexp i const0 0 0a b m+ =^ h6 @  strictly 
along the x axis.
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3. Photorefractive crystal with diffusion 
nonlinearity 

Let us turn to the case of slit beam propagation in the 
PRC. After the substitution of the same form of the self-simi-
lar solution , ,exp is Ff x h j h x=] ^ ^g h h6 @, the term responsible 
for the diffusion nonlinearity in the wave equation (1) takes 
the form 
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Therefore, the entire chain of preceding arguments is sound 
up to equation (13 ), and only in (21) there is an additional 
term proportional to dF(h)/dh and responsible for the expo-
nential decay/increase (depending on the sign of g) in the 
transverse coordinate 
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Because solution (15) found previously in the form of an Airy 
beam is localised in h and, depending on the sign of n0  expo-
nentially decreases either at h ® +¥ or at h ® –¥, we can 
expect that the exponentially increasing/decaying tail (at a 
reasonable rise/fall rate), which appears at the expense of an 
additional member, will not prevent the existence of a corre-
sponding localised solution. 

One can see that the account for a purely diffusion nonlin-
earity due to saturation retains the linearity of the problem 
for the considered class of self-similar solutions. Now, how-
ever, due to the appearance of the of term proportional to 
dF(h)/dh in (22), the mirror symmetry of the problem of prop-
agation along the transverse coordinate turns violated, as the 
replacement s « –s modifies the wave equation.

Equation (22) can easily be found by using the standard 
replacement of variables expF G"h h sh^ ^ ^h h h, where s = 
–2g/n0, which determines the final form of the equation to be 
solved 
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As before, after the condition 
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is met, expression (23) is again reduced to the equation for the 
Airy function, which implies that 
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and the self-similar solution found is described by the expres-
sions 
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Equations (25a) and (25b) can also be simplified by select-
ing the values of the integration constants. The case, where 
for x = 0 the wavefront coincides with the s axis, corresponds 
to the two possibilities. In the first one, b0 = 0, and at an 
appropriate choice of the point position s = 0 and the initial 
phase (a0 = 0 and m0 = 0) 
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which in view of the arbitrariness of the amplitude (due to the 
linearity of the problem ) corresponds to the solution in the 
form of a modified Airy beam, given in [1]. 

In contrast to the case of propagation in a linear medium 
considered in the previous section, the mirror symmetry is 
now absent in the problem because requirement of the spatial 
localisation of the desired self-similar solutions over the 
transverse coordinate uniquely determines the sign of n0 
(through the sign of s = –2g/n0). The same requirement of 
spatial localisation of the field leads to a ban on all other 
above-considered possibilities at which either n0  = 0, or equa-
tion (23) is reduced to the equation of oscillations, because all 
such solutions will be infinitely growing in the field amplitude 
either at s ® +¥, or at s ® –¥. 

4. Conclusions 

We have shown that a slit Airy beam is localised over the 
transverse coordinate by a self-similar solution to the linear 
problem of propagation of a radiation beam with a plane 
wavefront. This class of solutions may also include the known 
non-localised solutions: a plane wave propagating along the 
longitudinal coordinate and interference structures formed by 
a pair of plane waves symmetrically propagating at an angle 
to the longitudinal axis. All other interference structures that 
can be constructed based on the linear superposition principle 
will not apply to this class of solutions due to different projec-
tions of the wave vector in the propagation direction. The 
deviation of the motion trajectories of points of equal inten-
sity from the longitudinal axis is determined for the Airy 
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beam in this case up to a sign, which reflects the mirror sym-
metry of the wave equation over the transverse coordinate. 

The appearance of the diffusion nonlinearity retains the 
linearity of the propagation problem for the considered class 
of self-similar solutions. However, the presence of nonlin-
earity of this type violates the mirror symmetry of the propa-
gation problem over the transverse coordinate (replacement 
s « –s changes the wave equation). At the same time, taking 
into account the requirements of the spatial localisation, of 
the two possible localised self-similar solutions with a plane 
wavefront the diffusion nonlinearity singles out only one and 
deforms (modulates by an additional exponential factor) the 
profile of the intensity distribution in the transverse coordi-
nate, corresponding to the Airy beam. Solutions of this class 
in the form of plane waves and interference structures formed 
by plane waves symmetrically propagating at angles to the 
longitudinal axis are thus prohibited. 
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