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Abstract.  The ring retroreflector system (RS) consisting of cube-
corner reflectors (CCRs) with a special coating of reflecting sur-
faces, intended for uniaxially Earth-oriented navigation satellites, 
is considered. The error of distance measurement caused by both 
the laser pulse delay in the CCR and its spatial position (CCR con-
figuration) is studied. It is shown that the ring RS, formed by the 
CCR with a double-spot radiation pattern, allows the distance mea-
surement error to be essentially reduced. 

Keywords: cube-corner reflector, ring retroreflector system, radia-
tion pattern, diffraction pattern, interference dielectric coating. 

1. Introduction

All modern navigation and geodesic space vehicles (SVs) 
carry panels of corner reflectors (CCRs), i.e., the so-called 
retroreflector systems (RSs) [1 – 6]. These systems are used to 
reflect the beam of the laser range finder intended for high-
precision measurement of the distance to the SV with the aim 
of correcting the orbit parameters and the refinement of the 
optical laser station coordinates, as well as calibrating the 
surface-based measuring radio aids.

Three types of retroreflector systems exist. The first type 
includes spherical RSs, i.e., collections of CCRs located at the 
surface of heavy metal spherical satellites, intended for the 
calibration of laser range finders, as well as for the investiga-
tion of the Earth’s geopotential (Etalon SVs, Larets, Lares, 
Lageos, etc). The second type includes the plane CCR panels 
that are installed at such satellites as GLONASS, Galileo, etc. 
The number of CCRs in such a retroreflector system is deter-
mined by the compromise between the necessary reflection 
coefficient and the permissible weight of the system on board 
of the SV. To make the distance measurement more precise 
they try to use symmetric panels. In this case the CCRs should 
be arranged in a compact way around the line, connecting the 
SV centre of gravity with the centre of the Earth. And, finally, 
the third type includes glass spherical satellites acting as a 
single lens reflector (Blits) [7]. 

As is known, a laser range finder measures the short (up to 
10 ps) laser pulse propagation time tmeas  which is a sum of the 

times of pulse propagation through the atmosphere, through 
the free space and within the particular CCR.

At present the international network of laser stations 
makes use mainly of the laser range finders operating in the 
so-called single-electron mode, the pulse repetition rate being 
able to achieve 10 kHz [3, 4]. This fact means that the system 
is able to receive not greater than one photon of reflected 
radiation from each pulse of the laser. Provided that the small 
interference and quantum effects are neglected, the given pho-
ton comes from a certain CCR of the panel. Since in the gen-
eral case the CCRs in the RS are located at different distances 
from the receiver, the distances being dependent on the light 
incidence angle, the times of arrival of different signal pho-
tons do not coincide. 

In the reception path of the laser range finder the signal 
photoelectrons from the collection of received pulses are 
‘stored’ in the similar temporal cells with the time shift of the 
pulses taken into account. A collection of photoelectrons 
stored during the measurement time that includes more than 
a thousand of pulses, forms the response continuous signal 
with the measured parameters, namely, the position of the so-
called centre of gravity (mathematical expectation) on the 
time axis, duration [root-mean-square (rms) deviation], etc.

The main goal of ranging is to determine the distance to  
the SV centre of gravity by analysing and processing the 
obtained signal. For this purpose it is necessary to take into 
account the delay of the laser pulse in the CCR, the shape 
distortion and centre of gravity displacement of the response 
pulse, as well as the refraction correction. 

The goal of the present work is to analyse the precision 
characteristics of the ring retroreflector systems (RRSs). The 
specific feature of these systems is that the CCRs are placed 
within a ring, the central part of the RRS being free of reflec-
tors. Provided that the specially designed reflectors are used, 
the RRS allows reduction of the ranging error.

2. Calculation of the distance to the chosen point 
of a particular reflector

Any retroreflector system is characterised by a systematic 
error, which will be understood as the displacement of the 
response pulse centre of gravity (mathematical expectation) 
and the rms, characterising the pulse broadening. The rms is 
determined by different delays of the laser pulse reflected 
from CCR in a RS with definite dimensions and symmetry. 

The systematic error is determined by the delay of the 
laser pulse in a particular CCR and any kinds of asymmetry 
of the RS parameters, e.g., the difference in polarisation char-
acteristics of particular segments of the RS. Besides it is neces-
sary to account for the fact that the spatial point for which the 
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distance is calculated does not coincide with the geometric 
coordinates of the satellite centre of mass that varies in the 
process of motion. 

In laser ranging it is common to characterise the energy 
potential of a single CCR, as well as that of the entire RS, by 
the equivalent scattering surface (ESS) which for navigation 
satellites must be no less than 60 ´ 108 m2. This allows the 
distance determination with the single-measurement rms not 
exceeding 1 cm at orbits ~20000 km high within the tilt angle 
range greater than 30° for the atmosphere transmission coef-
ficient 0.7 in the zenith and the precision of the SV orientation 
towards the Earth centre no worse than ±0.5°.

The systematic error caused by the pulse delay in the CCR 
may be calculated provided that the values of the tilt angle 
and the azimuth of SV are known; therefore, it is in fact a cor-
rection taken into account in the distance calculation. At least 
two equivalent methods of taking it into account exist. One of 
them is based on the concept of the cross section, i.e., the 
plane that could be reached by the pulse phase front during 
the total propagation time, divided by two. If the position of 
this plane depending on the incidence angle is known, one can 
calculate the distance to the SV centre of gravity. The other 
approach consists in calculating the correction to the value of 
the distance to some chosen base point of the SV and then 
recalculating (reducing) this value to the centre of gravity.

Let us consider both these methods. First let us derive the 
formula that determines the time of pulse propagation from 
the laser range meter to the base point S of a particular CCR. 
This value is the measured time interval between the centres 
of gravity of the transmitted and received pulses, i.e., between 
the mathematical expectations of the temporal distributions 
of the received photons for these pulses. In this case we shall 
not analyse the corrections related to the pulse delay in the 
atmosphere [1] and the signal distortions in the photodetector 
device [8].

Consider a particular CCR with the vertex S being the 
point the optical path to which determines the measurement 
time tmeas (Fig. 1). Assume that the impulse function of such a 
CCR is a delta-function, i.e., the shape and duration of the 
laser pulse in a single CCR are not distorted. 

The angle of incidence qi of the rays, forming the plane 
wave from the laser transducer, vary from zero (normal inci-
dence onto the input face of the CCR) to ~13°. Let us express 
the distance ZS from the laser transducer to point S in terms 
of the pulse propagation time

tmeas = 2tA +2tAS,	 (1)

where tA is the time of the ray propagation to point A; tAS is 
the time of the ray propagation between points A and S. 

Let us denote the time of pulse propagation to point S in 
vacuum by tS. The true distance sought for is 

ZS = tS c = ZN + hcosqi,	 (2)

where ZN is the true geometric distance of point N. Let us 
relate this quantity to tmeas. 

The distance between points A and S is ZAS = h/cosqt, 
where qt is the angle of refraction, and h is CCR height. The 
optical path of the ray inside the CCR depends on the incidence 
angle and the refractive index of the CCR material as DAS = nh/
cosqt. Note that one should account for the effects related to 
the difference between the phase and the group velocity in the 
CCR material. 

Multiplying both sides of Eqn (1) by the velocity of light 
and dividing by two we get the distance ZA of point A, equal 
to the difference between tmeasс/2 and the optical path length 
of the principal ray inside the CCR

ZA = tmeasс/2 – DAS = tmeasс/2 – hn/cos qt.	 (3)

The distance ZN of point N differs from the distance ZA of 
point A by the length of the segment BN = DBN, where point 
B is the foot of the perpendicular dropped from point A on 
ray 2:

ZN = ZA + DBN = tmeasс/2 – DAS + DBN.

Since AN = htan qt, we find than
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/2 sinZ c h nmeas iN
2 2t q= - - .

From Eqn (2) with Eqn (4) taken into account we obtain the 
sought-for true distance of point S

/2 cos sinZ h h nmeas i iS
2 2t q q= + - - .	 (5)

For the time of pulse propagation to point S the following 
formula can be written:
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Figure 1.  Scheme of distance measurement using a single CCR: S is the 
CCR point, the optical path length to which is equal to the optical path 
length of all beams that enter the CCR aperture; A is the entrance point 
of the ray, arriving at point S; N is the foot of the perpendicular, dropped 
from point S; SN = h is the geometrical height of the CCR; C is the 
point to which the distance is to be calculated; F is the cross section; 1, 
2 are the rays coming from the laser transmitter.
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/2 ( ) /cos sinc h h n cmeas i iS
2 2t t q q= + - - .	 (6)

The difference between tmeas /2 and tS determines the sys-
tematic error of the sought-for time of pulse propagation to 
base point S, introduced by the particular CCR

( ) /cos sinh n ci iS
2 2t q qD = - + - ,	 (7)

and the systematic error of the corresponding calculated dis-
tance 

/2 sin cosc Z h n hmeas i iS S
2 2t q qD = - = - - .	 (8)

The distance from point N at the input face of the CCR to 
the cross section is

/2 sinNF c Z h nmeas iN
2 2t q= - = - .	 (9)

3. Calculation of the RS base point distance

Let it be necessary to relate the SV distance measurement to 
auxiliary point C, given at the landing plane of the RS (see 
Fig. 1). Obviously, the geometric path length to any spatial 
point, including point C, can be determined from the vector 
relation

ZC = ZS + LSC.	 (10)

Here the vectors ZC  and ZS are directed from the laser trans-
ducer to points C and S, respectively; the vector LSC is directed 
from point S to point C; and |LSC| = l is the distance from 
point S to point C. To calculate | ZC | it is necessary to define 
the coordinate system, bound to the RS.

In the simplest case when point C is located at the perpen-
dicular NS, we get the true value of the distance to this point 

ZC = ZS + l cosqi = tmeasс/2 – DS+ l cosqi, 

from where the formula for the correction to the calculation 
of distance to point C follows

/2 ( )cos cosZ c l h lmeas i iC C St q qD D= - =- + = +

	 sinh n i
2 2q- - .	 (11)

This value must be added to the measured value of the 
distance tmeas /2. Let us perform numerical estimation of the 
quantity DC for h = 19.1 mm and l = 25.9 mm. The depen-
dence of DC on the incidence angle qi is presented in Fig. 2, 
from which it follows that the variation of the systematic 
error does not exceed 1 mm, and its mean value amounts to 
~16.2 mm.

In the general case the vector LSC is determined by the RS 
construction and is defined in the instrumental coordinate 
system, bound to the satellite. In the same coordinate system 
the transition from point C to the satellite centre of gravity 
can be performed. In this case the change in the centre of 
gravity position in the process of the SV flight should be taken 
into account. 

Let us calculate the distance LCF from point C of the land-
ing plane of the RS to the cross section. It is obvious that

/2 ( )cos sinL Z c h l h nmeas i iCF C
2 2t q q= - = + - - .	(12)

From the comparison of Eqn (12) and Eqn (11) it follows 
that LCF is exactly equal to the systematic correction DC in the 
calculation of distance to point C. This means identity of the 
considered above methods of correcting the ‘measured’ using 
a single CCR.

4. Correction of systematic and random errors 
of the pulse propagation time measurements, 
caused by the size and configuration of the RS

Let us consider the errors caused by the joint operation of 
CCRs in the RS. When a symmetric probe pulse is reflected 
from the RS in the general case the pulse is elongated, together 
with the distortion of its symmetry and the shift of its centre 
of gravity [8, 9]. We restrict our studies to three types of plane 
symmetric RSs, namely, the rectangular panel, the ring RS 
with uncoated CCRs, and the RS with the so-called double-
spot CCR of increased size (Fig. 3). Let us compare the dis-
tortions of the signal by these RSs in application to the satel-
lite-based laser rangers, in which the single-electron mode of 
response pulse reception is used.

Let us carry out approximate analysis, assuming that a 
single CCR does not distort the laser pulse, but only delays 
it according to Eqn (70), and the pulses reflected from CCRs 
are incoherent, i.e., their intensities are additive without tak-
ing the phase relations into account. In this case it is neces-
sary to account only for the individual displacements of the 
pulse along the temporal axis, introduced by each CCR. 
Assume that the zero individual displacement is attributed 
to the pulse reflected from the CCR located in the panel cen-
tre of symmetry. 

We define the coordinate system xyz with the origin at the 
symmetry centre of the RS, the axes x and y lying in the plane 
that passes through the vortexes Si of all CCRs, and the axis 
z directed perpendicular to this plane (see Fig. 3). For the ring 
RS we will also use the polar coordinate system (r, y).

Each CCR in both cases is characterised by the vector r 
lying in the plane and directed from the origin to point Si. The 
pulse delay time for the given CCR (with the sign both plus 
and minus) is determined by the projection of r  onto the sight 
line, i.e., the vector R directed from the laser transducer to the 
centre of the RS symmetry. Let us define this vector in the 
system xyz by the angles qi (the angle of incidence) and j (the 
azimuthal angle). Let us denote by ai the angle between the 
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Figure 2.  Dependence of the systematic correction to distance to point 
C on the angle of light incidence on the RS.
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vectors ri (rx, ry, 0) and R(sinq cosj, sinq sinj, cosq), then the 
projection of ri onto R expressed as |ri|cosai, = rxsinq cosj + 
rysinq sinj, and the corresponding time delay is Dti = 
|ri|cosai /c.

Consider first the plane panel consisting of 117 CCRs, 13 
rows parallel to the x axis and 9 rows parallel to the y axis. 
Each CCR is labelled by two subscripts, characterising its 
location in the panel, m along the x axis and n along the y 
axis. The zero values of x and y correspond to the CCR 
located in the panel centre. Let the distance d between points 
Si of the CCR equal, e.g., 50 mm (similar along the axes x and 
y). Then for the time delay of the pulse, reflected from the 
CCR with the coordinates m, n, with Eqn (7) taken into 
account, we get the following expression:

( )sin cos sinc
d m nmn St q j j tD D= + + .	 (13)

Using Eqn (13), let us determine the intensity of a single 
reflected laser pulse in the form of the Gaussian function with 
the width 2t at the level of 1/e of the maximal value
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The total reflected pulse is expressed as the sum of all 
Imn(t):

( ) ( )I t I tmn
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// .	 (15)

The result of summation is shown in Fig. 4 for different 
values of the angles j and q and for different duration of the 
pulses 2t. If the projection of the laser beam at the panel is not 
parallel to the axis x or y (j ¹ 0, 90°), then for a short (e.g., 1 
ps) incident pulse the reflected pulse has the shape of a trape-
zium. In the opposite (parallel) case the pulse is rectangular. 
The broadening of the incident pulse leads to smoothening of 
this shape. The shortening of the incident pulse duration leads 
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Figure 3.  Types of reflector systems: (a) planar rectangular panel, (b) 
ring retroreflector system (RRS) formed by uncoated CCRs, and (c) the 
RRS consisting of double-spot CCRs. It is shown how the radiation 
patterns for each CCR are oriented.
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to modulation of the reflected pulse, caused by the effect of 
individual CCRs of the panel. 

The centres of gravity of all curves possess similar shift 
along the temporal axis due to the pulse delay in a single 
CCR. Therefore, ideally the panel size and the incident ray 
azimuth do not give rise of ranging error. It is necessary to 
take only the systematic error correction Eqn (7) into 
account. 

Now consider the RRS consisting of three rows of CCRs 
with the uncoated faces. As is known, in the case of total 
internal reflection of light from the CCR faces the diffraction 
pattern of the reflected radiation in the far zone has one cen-
tral and six peripheral spots. By special turn of each CCR in 
the plane of the panel one can obtain the intensity ring, 
formed by the lateral spots of each CCR. Since the diffraction 
pattern of the RS is produced by all CCRs, the photons, 
reflected from all CCRs, arrive at the receiver. Let the RRS 
consist of three rows of CCRs, 36 pieces in each (see Fig. 3b), 
where n is the number of the CCR in the ring (n = 0, 1, . . . , 35); 
m is the number of the row (m = 0, 1, 2); and R is the radius of 
the RRS. Taking the ring symmetry of the RRS into 
account, one can put j = 0 without any loss of generality. 

The for the time delay of the pulse reflected from the CCR 
with the subscripts m and n with Eqn (7) taken into account 
we get the expression

(1 )sin cosc
R n dm

18mn S
pt q tD D=- + +` j .	 (16)

The total reflected pulse in this case is found from the 
expression

( ) ( )I t I tmn
nm 0

35

0

2

=
==

// ;	 (17)

it is presented in Fig. 5 for different values of the incidence 
angle q and durations of the initial pulses 50 and 100 ps at 
R = 230 mm and d = 40 mm.

From Figs 4 and 5 it follows that the centre of gravity of 
the distribution of the response pulse arrival times is shifted 

only by the value equal to the delay of the pulse in a single 
CCR. If the number of responses is large enough, then the 
mean time of photoelectron appearance in the receiving 
tract of the laser ranger coincides with the centre of gravity 
of the response pulse. In other words, the systematic error of 
measurements (temporal shift) caused by the dimensions of 
the panel equals zero, and the random error is equal to the 
root mean square duration of the response pulse. 
Conservation of the measurement accuracy requires an 
appropriate increase in the repetition rate of probe pulses. 
The so-called normal points are obtained by averaging the 
measurements over the temporal interval 300 s. The rms 
obtained using the normal point appear to be N  times 
smaller.

Thus, in the single-electron detection mode with the num-
ber of measurements N > 100 the systematic component of 
the range measurement error correction loses the dependence 
on the dimensions of the symmetric RS, but the required 
accuracy can be achieved only by averaging multiple mea-
surements. Practically, due to the influence of external factors 
(e.g., weather conditions) the number of measurements may 
be only 10 – 20, and then the RMS of a single measurement 
becomes important. 

5. Ring retroreflector system, consisting 
of double-spot CCRs of increased size

Consider the problem of reducing the single measurement 
random error upon an increase in the energy of the reflected 
signal in the direction of the receiver of the laser ranger. 

In order to increase the energy they make the ESS larger 
in the appropriate direction. As is known, the phenomenon of 
velocity aberration [1] in the process of the space vehicle 
motion leads to the deviation of the reflected ray in the plane, 
formed by the SV velocity vector and the sight line. This 
means that the reflected radiation pattern, or the dependence 
of the ESS on the angular coordinates, should be adapted to 
the SV with definite parameters and orbit height. The 
GLONASS satellites have only uniaxial orientation; there-
fore, the SV rotates in the plane, orthogonal to the direction 
towards the Earth. The angular aberration of velocity for 
these satellites is nearly equal to ~5 ¢¢.

One of the promising methods for solving the problem of 
enlarging the ESS is the use of a ring RS, consisting of double-
spot CCRs with greater size. The double-spot diffraction pat-
tern is formed due to the controlled variation in one of the 
dihedral angles (Fig. 6). The faces of such CCRs should be 
covered with a special dielectric coating, on the one hand in 
order to provide the appropriate radiation pattern, and on the 
other hand, to reduce its thermal distortions. 

The optimal radiation pattern is provided by the choice 
of the CCR size (42 – 48 mm) and the deviation 2.2 ¢¢ – 2.5 ¢¢ of 
the angle between the reflecting CCR faces from 90°. If the 
line connecting the spots also lies in this plane, then for the 
angular distance between the spots equal to twice the angle 
aberration one of the spots will hit the receiver of the 
reflected signal. This allows the energy loss reduction that 
arises if the diffraction pattern has the form of one or seven 
spots [6, 10]. 

However, the reasonability of using the RRS is not 
reduced to the ESS enlargement. Let us show that in this case 
it is possible to reduce the rms of a single measurement.

Let the orientation of the RRS be defined by the projec-
tion of the edge of the dihedral angle that differs from 90° 

0
0

0.2

0.4

0

0.2

0.6

0.8

0.4

0.6

–300 –200 –100

I (rel.units)

I (rel.units)

100 200 t/ps

0–300 –200 –100 100 200 t/ps

1

1

2

2

3

3

a

b

2t = 100 ps

2t = 50 ps

Figure 5.  Broadening of Gaussian pulses at different values of 2t; q = 
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onto the plane in which the bases of all CCRs lie. To provide 
reflection of light in the required direction by at least one 
CCR, one should rotate all CCRs in the panel by a certain 
angle with respect to each other; e.g., for 18 CCRs this angle 
equals 10°. The angular size of each spot with respect to the 
centre of the diffraction pattern depends on the CCR size: the 
larger the CCR the smaller this size (for example, for the CCR 
aperture diameter of 48 mm this is about 30° at half-maxi-
mum intensity level). In this way the adjacent spots add to 
form the ring-shaped diffraction pattern. 

The principle of operation for the RRS with turned two-
spot CCRs is the following. Consider the hypothetic situation 
when the tangent component of the SV velocity is zero and 
the angular aberration is absent. In this case the centre of the 
ring diffraction pattern at the surface of the Earth coincides 
with the receiver, and there is no reflected signal. If the satel-
lite moves with the velocity for which the angular aberration 
equals the angular size of the diffraction pattern, a certain 
part of the ring overlaps the receiver. This part is formed by 
one of the two spots from the CCR, definitely oriented in the 
RS. There can be several such CCRs.

Thus, the signal, reflected in the direction of the laser 
ranger located on the surface of the Earth is produced not by 
all CCRs, as, e.g., for the planar panel of uncoated CCRs [6, 
10], but by only a few of them, in the ideal case, by two identi-
cally oriented CCRs located at the opposite sides of the RRS 
(see Fig. 3). Using not one but two CCRs with the same ori-
entation, separated by a certain distance, allows the solution 
of the important problem of reducing the RMS of the single 
distance measurements. 

If 36 CCRs are used in the RRS, each of them being 
rotated by 10° with respect to the next one from each side of 
the RRS, then the signals of three adjacent CCRs are added. 
Generally, the choice of the optimal CCR size and their total 
number allows obtaining the maximal possible value of the 
ESS for such RRS independent of the azimuth and tilt angle 
of the SV observed.

Let us consider the single-measurement errors for two 
RRSs, consisting of uncoated CCRs (Fig. 5) and of double-
spot CCRs (Fig. 7). In the first case the RMS s of the single 
measurement is proportional to the panel size. If the signal 
has the duration 50 ps (at the 1/e level of the maximal value) 
then depending on the incidence angle q the following broad-
ening in the temporal scale arises: for q  = 5°, 10° and 15° the 
RMS is s = 54, 103 and 153 ps, respectively (see Fig. 5). With 
the fact that the delay of the pulse by 10 ps leads to the change 
in the distance by ~3 mm taken into account, for the rms of 
the distance single measurement we obtain 16, 31 and 46 mm, 
respectively. At the signal duration 100 ps the broadening val-
ues are 62, 108 and 156 ps.

In the case of the RRS consisting of double-spot CCRs 
(Fig. 7), in contrast with the planar panel and the RRS with 
uncoated CCRs, the reflected pulse does not broaden, but 
splits into two pulses that in the ideal case conserve the initial 
Gaussian shape. Every rms in determining the centre of grav-
ity of these two signals equals the square root of the sun of 
their rms squares (provided that the signal photons from the 
CCRs from both sides of the RS are present). For the dura-
tion of the initial pulse 50 ps this is 18 2 25=  ps, and for the 
duration 100 ps thi is 35 492 =  ps, independent of the angle 
of incidence. For the angle of incidence q = 15° and the pulse 
duration 50 ps the rms for double-spot CCRs with the aper-
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Figure 6.  Radiation patterns of (a) the double-spot CCR and (b) of the 
entire RRS.
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Figure 7.  Broadening of the Gaussian pulse at different values of 2t; 
q = 5° (solid curve), 10° (dashed line) and 15° (dot-dashed line).
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ture 48 mm is six times smaller than the rms for the uncoated 
CCRs with the aperture 28 mm.

6. Conclusions

The systematic error in measuring the distance to symmetric 
retroreflector systems by means of a laser ranger is deter-
mined by the delay of the laser pulse in a single corner reflec-
tor. At the same time the rms of single distance measurement 
is determined by the RS dimensions and CCR arrangement, 
as well as, generally, the CCR parameters, namely, the dimen-
sions, the angles between the CCR faces, the type of the face 
coating. The single-measurement rms is reduced if the ring 
retroreflector system is formed by double-spot enlarged 
CCRs. In this case the diffraction pattern is formed at the 
expense of the specified angle between the two reflecting faces 
and the special interference coating of the faces, providing a 
definite phase shift of the orthogonal components of the elec-
tric vector in the process of reflection. Theoretically the rms 
can be reduced by several times using the CCRs with the aper-
ture of 42 – 48 mm and the deviation of the dihedral angle by 
2.4¢¢. The advantage of such RRS is realised using short probe 
pulses (to 100 ps) and large angles of incidence of light onto 
the RRS (greater than 5°).
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