
Quantum Electronics  43 (12)  1143 – 1148  (2013)	 © 2013  Kvantovaya Elektronika and Turpion Ltd

Abstract.  We consider the application of the spectral method for 
measuring the beat length of birefringence in spun fibre. We have 
found that the beat length measured in spun fibres is the geometric 
mean of phase and group birefringence beat lengths. Temperature 
measurements of beat lengths and shifts of the entire spectrum as a 
whole make it possible to separate types of birefringence and to 
determine their dispersion. We have performed an experiment on a 
spun fibre and a linear polarisation maintaining fibre, drawn from 
the same preform. The experimental results confirm the theory. 

Keywords: spun fibre, HiBi fibre, birefringence, birefringent disper-
sion, helical structure model.

1. Introduction 

Linear birefringence in spun fibres is often measured by ana-
lysing the transmission spectra of a system consisting of two 
linear fibre polarisers and a spun fibre in question placed 
between them [1] (similarly to measurements in linear polari-
sation maintaining fibres, i.e., high birefringence fibres or HiBi 
fibres [2 – 5]). Rashleigh [3, 4] showed that the aim of such 
measurements in HiBi fibres is to determine the difference 
between the group velocities of orthogonally polarised light 
waves. Later, birefringence determined in such experiments 
was called group birefringence. The measurement error in 
these experiments can reach 20%, especially in fibres with a 
low beat length [3, 4]. 

In spun fibres, in addition to a different formula for deter-
mining the beat length [1], it was found that the dependence of 
the experimentally measured beat length on the phase and 
group birefringence is more complicated than in HiBi fibres. 
This paper considers the relations between the phase and 
group beat lengths in spun fibres. 

We have studied experimentally the temperature depen-
dences of the beat lengths of built-in linear birefringence for 
spun fibre of two types and for a HiBi fibre drawn from the 
same preform as the spun fibre, but without spinning. This 
made it possible to relate the purely group birefringence of 
HiBi fibre with mixed birefringence of spun fibre and to sepa-

rately determine the phase and group birefringence of these 
fibres. We have also carried out temperature measurements of 
the shifts of the beat spectrum as a whole. We have derived 
the relations of these shifts with the group and phase birefrin-
gence of spun fibres and calculated their values. We have esti-
mated the dispersion of the built-in linear birefringence of 
spun fibre. 

2. Theory 

2.1. Determination of the spatial frequency of rotation  
of the polarisation plane in the spun fibres 

The polarisation properties of a straight spun fibre with a 
helical structure of its built-in linear birefringence axes can be 
described according to [6] in a linear polarisation basis by the 
Jones matrix [7]: 
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The matrix elements have the form 

a11 = W cos xz cos Wz + x sin xz sin Wz,

a12 = –W sin xz cos Wz + x cos xz sin Wz,	
(2)

b11 = 1/2 D b cos xz sin Wz,

b12 = 1/2 D b sin xz sin Wz,

where D b = 2p/Lb is the rate at which the phase delay between 
waves with orthogonal linear polarisations increases with fibre 
length, z, because of the built-in linear birefringence with a 
beat length Lb; x = 2p/Ltw is the angular rotation rate of the 
helical structure of the built-in linear birefringence axes with 
a spin pitch Ltw during the propagation of light along the 
fibre; and the spatial frequency is defined as 

( / ) .2 2 2Tb xW = + 	 (3)

Evolution of the polarisation states on the Poincare sphere 
for a fixed excitation wavelength, when the spun fibre is 
excited by linearly polarised light, is presented in Fig. 1. One 
can see that the polarisation states oscillate relative to the 
equator, deviating in elliptical state with the ellipticity that is the 
greater, the higher the built-in linear birefringence. Spun fibre 
also exhibits the rotation of the plane of radiation polarisa-
tion, i.e., there is an evolution of the polarisation state along 
the equator, although the model does not take into account 
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the circular birefringence [8]. One can also see from Fig. 1 
that the stronger the built-in linear birefringence (less Lb), the 
greater the angle the plane of polarisation rotates in the spun 
fibre segments of equal length. The spatial period of rotation 
of the polarisation plane is determined by a complex number 
c at the fibre output:
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As shown in [7], the rotation angle q of the plane of polarisa-
tion (2q is the azimuth angle on the Poincare sphere) is given 
by the expression 
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At the input to the fibre we make use of a linearly polarised 
state with the azimuth a: 

Ex0 = E0 cos a,  Ey0 = E0 sin a.	 (6)

Substituting a11, a12, b11 and b12 from (2) and Ex0 and Ey0 
from (6) into formula (5), we obtain the dependences of q(z) 
on the fibre length. Omitting complex trigonometric trans
formations and introducing new spatial frequencies w– = 
= 2(W – x), w+ = 2(W + x), and 2x, we obtain 

tan 2q = 2{[ –1/4 x(W + x) sin w– z – 1/4 x(W – x) sin w+ z

	 + 1/2(D b2/4) sin 2xz] cos 2a + [ 1/2 W (W + x)

	 ´ sin (w– z + p/2) + 1/2 W (W – x) cos w+ z] sin 2a}

	 ´ {[1/2 x(W + x) cos w– z – 1/2 x(W – x) cos w+ z

	 + (D b2/4) cos 2xz] cos 2a + [–W (W + x) cos (w– z + p/2) 

	 + 1/2 W (W – x) sin w+ z] sin 2a}–1.	 (7)

At a = 0, when the polarisation vector is parallel to the bire-
fringence axis at the input to the fibre, the rotation angle of 
the polarisation plane at the output is 

2tan tan z
0

q w=-a= -

	
( )

/
sin
sin

sin
sin

z
z

z
z1

4 22

#
T

x
x

w
w

x x
b

w
x

W
W

W+
+
-

-
+-

+

-

= G

	
( )

/
.cos

cos
cos
cos

z
z

z
z1

4 22 1

#
T

x
x

w
w

x x
b

w
x

W
W

W-
+
-

+
+-

+

-

-

= G 	 (8)

At a = p/4, when the polarisation vector is directed at an 
angle of 45° to the birefringence axes at the spun fibre input, 
the rotation angle of the polarisation plane at the output is 
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We see from expressions (8) and (9) that the fundamental 
spatial frequency, which determines the rotation of the polar-
isation plane in spun fibres, is the ‘slowest’ frequency w– = 
2(W – x), the main contribution to which (in conventional 
spun fibres) is made by the built-in linear birefringence, repre-
sented by the value D b. Corrections, apart from their small-
ness (the values of W and x are close), also oscillate with high 
spatial frequencies w+ = 2(W + x) and 2x. 

2.2. Measurement of the group birefringence  
in spun fibres by the spectral method 

The most popular method for measuring the built-in linear 
birefringence in HiBi fibres (for example, ‘Panda’, ‘bow-tie’, 
and ‘elliptical core’) is the spectral method [2 – 4], which takes 
the readings of the interference spectrum by scanning its 
wavelengths in a fibre of length z, placed between two linear 
polarisers. After measuring the spectrum one can determine 
the spectral period D l of interference beats in the vicinity 
of  the working wavelength l and calculate the beat length 
Lb of the built-in birefringence by the formula 

a

b

Figure 1.  Evolution of the polarisation states on the Poincare sphere in 
a spun fibre of length L = 40 mm, having the parameters (a) Ltw = 3 mm, 
Lb = 12 mm and (b) Ltw = 3 mm, Lb = 6 mm. 
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Lb = (D l/l)z.	 (10)

In this case, the following problem arises. The spectrum is 
transmitted along a fibre at a group velocity, and an interfer-
ence pattern with a period D l is formed by using the phase 
relations. Rashleigh was the first to notice it in his papers 
[3, 4]. It turns out that by definition birefringence is the dif
ference between the effective refractive indices that characterise 
the phase velocity of propagation of two orthogonally polarised 
waves, whereas the difference in the refractive indices is measured, 
which characterises the group velocity of propagation of these 
waves. Therefore, the measured characteristic was called ‘group 
birefringence’ and can only be used to compare similar HiBi 
fibres, yielding an error of up to 20 % [4]. 

In HiBi fibres group birefringence is indeed measured. Let 
bx and by be the propagation constants of two orthogonally 
polarised modes. Their corresponding effective refractive indices 
are nx = bx /k and ny = by /k, where k is the wave vector in vacuum. 
Passing a fibre segment of length z, these modes will acquire 
the phase difference k(nx – ny)z, and as a result of their inter-
ference we obtain periodic beats at the wavelengths lm: 

2
m

p
l
 (nx – ny)m z = 2pm,	 (11)

wherein the beat length is 

Lb = l/(nx – ny).	 (12)

The phase difference 2p (on the Poincare sphere) between the 
beats at lm and lm + 1 leads to the equation 
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The spectral interval D l = lm – lm + 1 << lm; therefore, we can 
write 

(nx – ny)m + 1 = (nx – ny)m – 
( )
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Substituting (14) into (13) and neglecting the terms quadratic 
in D l/l, we have 
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The expression in square brackets in (15) is the group birefrin-
gence. Assuming that the group beat length Lb,gr = l/(nx – ny)gr, 
we obtain expression (10). 

Spectral measurements of the built-in linear birefringence 
in spun fibres are performed similarly to measurements in 
polarisation maintaining fibres; however, the processing of 
the results should be carried out according to the formulas 
obtained in [1]. The behaviour of light propagation in spun 
fibres is also different. Linearly polarised light in the course 
of propagation in spun fibre experiences the rotation of the 
polarisation plane, while in HiBi fibres the phase delay changes 
between the orthogonally polarised modes. The spatial fre-
quency of rotation according to expressions (8) and (9) is 
equal to 2(W – x). The condition for determining the period of 

polarisation beats for spun fibres [similar to expression (11) 
for HiBi fibres] has the form 

2(Wm + 1 – x) z – 2(Wm – x) z = 2p.	 (16)

Let us substitute in this equation the values of W from (3), 
transfer 2(Wm – x) z in the right-hand side and square it, then 
in terms of (13), equation (16) can be written as 
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The difference between the squares in the left-hand side of (17) 
can be represented as the product of the difference and the 
sum. Neglecting the terms quadratic with respect to D l/l, we 
express this part in the form 

( ) ( )
( )

.
d

d
L n n n n

n n
o2

m
x y m x y m m

x y
3
T T
l
l l

l l
l

= - - -
-

+ c m; E 	(18)

Here, the square brackets are used for the group birefringence 
and parenthesis – for the phase birefringence. We will denote 
below the group birefringence as (nx – ny)gr , and the phase 
birefringence as (nx – ny)ph . We will also assume lm to be the 
working wavelength and denote it as l. Unfortunately, we 
have failed to express the left-hand side of (17) only through 
the phase or only through the group birefringence. We will 
neglect 1/z2 in connection with a long fibre sample (a few 
meters), substitute (18) into (17), square it again and obtain 
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Thus, the equation for calculating the built-in linear bire-
fringence in spun fibres equally includes the phase and the 
group birefringence. A ‘mixed’ value of birefringence is obtained 
experimentally. In the case of negligibly small dispersion of the 
phase birefringence [d(nx – ny)/d l » 0], they coincide, and 
from expression (19) we obtain a biquadratic equation for a 
relatively unknown beat length: 
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The solution of equation (20) takes the form
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If the second term under the square root can be neglected, we 
have a relatively simple formula obtained earlier in [1]: 

Lb
2 » 

2
T
l
l  zLtw.	 (22)

Let us return to equation (19). If the spin pitch Ltw is so 
small that the second term in the right-hand side of expression 
(19) can be neglected, then 

L2
b,exp = Lb,ph Lb,gr » 2

T
l
l  zLtw .	 (23)

Thus, the experimentally determined value of the beat length 
Lb,exp in this approximation is equal to the geometric mean of 
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the phase Lb,ph and group Lb,gr beat lengths. Note that formu-
las (22) and (23) were obtained in the same approximations. 

The spectral method for measuring the linear birefrin-
gence in spun fibres (and in HiBi fibres) can be used only for 
comparison of birefringence of similar fibres. To accurately 
measure the built-in linear birefringence in spun fibres we 
should use a narrowband light source, for example, in a fibre 
twisted around its axis [6]. 

2.3. Temperature dependences of the phase and group 
birefringence 

Temperature investigations of the built-in linear birefringence 
in HiBi fibres exhibit two types of changes in the observed 
spectrum. Besides changes in the spectral period of D l measured 
in the vicinity of the working wavelength, the whole spectrum 
is shifted monotonically to longer wavelengths upon cooling, 
and to shorter wavelengths upon heating (see Section 3). The 
temperature coefficient obtained from changes in the spectral 
beat period D l with temperature is attributed to a change in 
the group birefringence, and the coefficient calculated from 
the temperature shift of the entire spectrum as a whole – to 
a change in the phase birefringence [9]. 

The latter is true for HiBi fibres; however, for spun fibre, 
as shown above [see (23)] the group and phase birefringence 
make the same contribution to the measured value of the beat 
length Lb,exp. Let agr, aph be the temperature coefficients of 
the group and phase birefringence, respectively; then, 

( ) ( )n n n ngr phx y x y- -  » ( ) .L T1
2
1

,expb
gr ph T

l a a+ +8 B 	(24)

The coefficient 1/2 at agr + aph was the result of extracting 
the root. In the case, when the birefringence dispersion is low, 
(nx – ny)gr » (nx – ny)ph. 

Consider now the dependence of the wavelength of a spe-
cific mth minimum of the interference spectrum on the fibre 
temperature. The shift of this minimum can be regarded as 
a phase delay D f. In fact, the experimental scheme records 
the azimuthal rotation D q relative to the polarisation plane 
specified by the analyser. These quantities are related as

D q = 2 D f.	 (25)

For HiBi fibres we will use formula (11), whereas for spun 
fibres – the expression 

2(Wm – x) z = 2p m.	 (26)

Both formulas yield the same result:
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where lm is the wavelength of the mth minimum; all quantities 
with the subscript ‘0’ are taken at a temperature T0. The 
minimum is shifted along the wavelength and therefore the 
birefringence dispersion cannot be neglected: 

(nx – ny)m = (nx – ny)0 + 
( )
d
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l
-
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	 + aph(nx – ny)0 (T – T0).	 (28) 

Substituting (28) into (27) and using (25) we obtain the wave-
length shift caused by the phase shift: 
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In the experiment, we obtain 

lm = l0 [1 + am(T – T0)].	 (30)

Then, the temperature coefficient of the wavelength of the mth 
minimum is 
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The coefficient 2 in formulas (29) and (31) appears from (25). 
From formula (31), if the temperature coefficients am and aph 
are experimentally determined, we can estimate the birefringence 
dispersion d(nx – ny)/dl. 

3. Experiment 

The experimental setup is shown in Fig. 2. As a broadband 
optical radiation source ( 1 ) we use a superluminescent erbium 
fibre emitter ESS-30-M-01 (IRE-Polus) with a spectral width 
of ~100 nm at the –60 dBm level. Light is polarised by a lin-
ear fibre polariser ( 2 ) with 40 dB extinction. The planes of 
light polarisation in the region of splices ( 3 ) and ( 6 ) are 
inclined at the angle of ~45° to the birefringence axes of the 
tested fibre ( 4 ), which is placed in a heat chamber ( 5 ), pro-
viding the desired temperature with an accuracy of ±0.2° in 
the range of –60 to +60 °C. As an analyzer ( 7 ) we use the 
second fibre polariser with 40 dB extinction. The interference 
spectrum is obtained with a Yokogawa AQ6370C optical spec-
trum analyser ( 8 ). 

The typical spectrum of radiation transmitted through the 
optical fibre in question is shown in Fig. 3. The beat spectrum 
is used to measure the wavelengths l1 and l2 of two neigh-
bouring minima in the vicinity of the working wavelength 
l = 1550 nm. Then, taking D l = l2 – l1 and l = ( l2 + l1)/2 into 
account, the formula [see (10)] 

L z2,b gr
2 1

2 1

l l
l l

=
+
- 	 (32)

helps to find the group beat length of the HiBi fibre. In studying 
the spun fibre use is made of formula (19) and formula (23) 

7
81

2

3

4

6

5

Figure 2.  Scheme of the setup for measuring the temperature dependence 
of birefringence in optical fibres of HiBi and Spun type: 	
( 1 ) broadband light source; ( 2 ) fibre polariser; ( 3 ) and ( 6 ) splices; ( 4 ) 
optical fibre under study; ( 5 ) heat chamber; ( 7 ) fibre analyser; ( 8 ) spec-
trum analyser. 
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determines the geometric mean of the phase and group beat 
lengths. 

During all temperature measurements virtually the entire 
fibre is placed in a quartz tube, coiled into a ring  20 cm in 
diameter. The splices are located outside the heat chamber. 
We studied spun fibres fabricated by the ‘elliptical core’ technol-
ogy, with beat lengths of the built-in linear birefringence, Lb ~ 8 
mm, and HiBi fibres drawn from the same preform, but with-
out spinning. The birefringence parameters for the fibres are 
listed in Table 1. 

In the experiment for each value of the temperature stabi-
lised by the heat chamber, we measured the beat period D l 
in  the vicinity of the working wavelength, and then by using 
formula (32) we calculated the beat length of the HiBi fibre and 
by using formula (22) – the beat length Lb,exp of the spun fibre. 

The results of measuring the dependences Lb(T) of the 
Spun I and HiBi I fibres are shown in Fig. 4. It can be seen 
that the plots of the temperature dependences are virtually 
parallel (aspun = 6.3 ́  10–4 deg–1, aHiBi = 6.4 ́  10–4 deg–1). Based 
on formula (24), we can conclude about the equality of the 
group and phase temperature coefficients: agr = aph. The beat 
length increases with temperature, i.e., the built-in linear bire-
fringence decreases. In the spun fibre the linear birefringence 
is 12 % less than in the HiBi fibre drawn from the same pre-
form (L ,

( )
expb
Spun  > L ,

( )
expb
HiBi , Table 1). The shape of the depen-

dences in Fig. 4 confirms the correctness of formula (23). If 
calculations for the spun fibre are performed by formula (10), 
we obtain Lb = 42 mm, which is six times greater than the 
measured beat length. A decrease in the built-in linear bire-
fringence by 12 % can be attributed, for example, to a small 
deformation of the s elliptical pun fibre core due to rotation 
of the preform. 

Moreover, the difference between the values Lb,exp and 
Lb,gr of the spun and HiBi fibres, respectively, can be explained 
using equation (23) if we assume that the values of the group 
birefringence in both fibres are identical [L ,

( )
b gr
Spun  = L ,

( )
b gr
HiBi  = 

7.09 mm] because the fibres are drawn from the same pre-
form. Then, the phase beat length in the spun fibre is 

Lb,ph = L2
b,exp /Lb,gr = 8.94 mm,	 (33) 

and the birefringence dispersion is 

( )
d

d n n
L L
1 1
, ,b ph b gr

x y

l
-

= - = –2.9 ́  10–8 nm–1.	 (34)

The difference between the values Lb,exp and Lb,gr in the spun 
fibre is determined most likely by two factors: the drawing 
technology and the influence of the phase birefringence. 

To measure the temperature shift of the entire beat spec-
trum as a whole, at each temperature the minimum wavelength 
lm was fixed. Next, we calculated the value of ( lm – l0)/l0 
[see  (29)], and determined the temperature coefficient am 
from the slope of the temperature dependences of this value 
(Fig. 5). The obtained values are listed in Table 1. It is seen 
that lm is in fact approximately twice lower than the cor
responding temperature coefficient aph. If the expression 
aph(T – T0) is neglected in the denominator of formula (29) 
with respect to unity, then 

Lb,ph = (aph /2am)Lb,gr ,	 (35)

and expression (23) can be used as the second equation to 
determine the unknown Lb,ph and Lb,gr. Thus, for the HiBi I 
fibre the experimentally determined beat length was Lb,gr = 
7.09 mm, and then using (35) we obtain Lb,ph = 8.73 mm, 
d(nx  – ny)/d l = –2.64 ́  10–8 nm–1. Similarly, for the spun I 
fibre, using (35) and (23) we have Lb,gr = 7.5 mm, Lb,ph = 
8.44 mm and d(nx – ny)/d l = –1.5 ́  10–8 nm–1. It follows from 

Table  1.  Basic parameters of birefringence in spun- and HiBi fibres.

Fibre Lb,exp / mm
T = 0 °C

Ltw  / mm aph / deg–1 am  / deg–1
Calculation by formula (23) 

L L,
( )

,
( )

b gr
HiBi

b gr
Spun

=

Calculation by 
formulas (23) and (25) ( )

d

d n nx y-

m
/nm–1

Lb,ph/mm Lb,gr/mm Lb,ph/mm Lb,gr/mm

Spun I
7.96±0.02  3.0  (6.3±0.1) ́  10–4  

(2.8±0.1) ́  10–4
8.94  7.09   

  8.44
 
7.50

–2.9 ́  10–8

–1.5 ́  10–8

Spun II 9.06±0.02 3.0  (7.3±0.1) ́  10–4  
(2.9±0.1) ́  10–4

–  –   
10.16

 
8.08

 
–2.5 ́  10–8

HiBi I 7.09±0.02 –  (6.4±0.1) ́  10–4
(2.6±0.1) ́  10–4

– 
 

–   
  8.73

 
7.09

 
–2.6 ́  10–8
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Figure 3.  Typical spectrum of interference beats (Dl = 2 nm in the vicinity 
of the working wavelength l = 1550 nm).
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Figure 4.  Experimental temperature dependences of the beat length 
Lb,exp for Spun I and HiBi fibres. The temperature coefficients for Spun I 
and HiBi, aph = 6.3 ́  10–4 deg–1 and aph = 6.4 ́  10–4 deg–1, were obtained 
at minimal mean-square deviation from the experimental points. 
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Table 1 that the birefringence dispersion is low and lies in the 
ranges (1.5 – 2.9) ́  10–8 nm–1. 

In conclusion, we emphasise that the measurement of the 
temperature dependence of the beat length of the built-in 
linear birefringence spun fibre makes it possible to determine 
the phase and group birefringence, as well as to evaluate the 
dispersion of birefringence. Parallel temperature dependences 
for HiBi fibres and spun fibres drawn from the same preform 
confirms the validity of formula (22) derived based on the 
model of the helical structure of the linear birefringence axes 
in the absence of the built-in circular birefringence. 
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The temperature coefficient is am = 2.8 ́  10–4 deg–1.


