PACS numbers: 42.55.Rz; 42.60.Jf; 42.60.Lh DOI: 10.1070/QE2013v043n09ABEH015258

## Lasing characteristics of ZrO<sub>2</sub>-Y<sub>2</sub>O<sub>3</sub>-Ho<sub>2</sub>O<sub>3</sub> crystal

M.A. Borik, E.E. Lomonova, A.A. Lyapin, A.V. Kulebyakin, P.A. Ryabochkina, S.N. Ushakov, A.N. Chabushkin

Abstract. The spectral dependences of the gain cross section of the  ${}^{5}I_{8} \rightarrow {}^{5}I_{7}, {}^{5}I_{7} \rightarrow {}^{5}I_{8}$  transition of Ho<sup>3+</sup> ions in the ZrO<sub>2</sub>-13.6 mol % Y<sub>2</sub>O<sub>3</sub>-0.4 mol % Ho<sub>2</sub>O<sub>3</sub> crystal are calculated at different relative population inversions using the absorption and luminescence spectra of the  ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$  and  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  transitions of Ho<sup>3+</sup> ions at T = 300 K. Lasing of these crystals at the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  transition is obtained for the first time under pumping by a Tm : YLiF<sub>4</sub> laser ( $\lambda_{p} = 1.905 \ \mu$ m). The lasing wavelength is 2.17  $\mu$ m.

## *Keywords:* absorption spectrum, luminescence spectrum, lasing, $Ho^{3+}$ ions, $ZrO_2 - Y_2O_3 - Ho_2O_3$ crystals.

The disordered structure of zirconium dioxide crystals stabilised with yttrium leads to a considerable inhomogeneous broadening of the absorption and luminescence lines of rareearth dopants. This allows one to consider these crystals as active media of tunable lasers and as promising materials for development of pico- and femtosecond lasers.

The spectral and luminescent characteristics of stabilised zirconium dioxide crystals doped with Nd<sup>3+</sup> and Yb<sup>3+</sup> ions were studied in [1, 2]. The authors of [3, 4] published the results of laser experiments with  $ZrO_2-Y_2O_3-Yb_2O_3$  crystals. In [5], we obtained two-micron lasing at the  ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$  transition of Tm<sup>3+</sup> ions in the  $ZrO_2-Y_2O_3-Tm_2O_3$  crystals under diode laser pumping of the  ${}^{3}H_{4}$  level of Tm<sup>3+</sup> ions.

Lasers emitting in the two-micron spectral region are of interest for application in medicine and lidars. Laser radiation in this spectral region is obtained at the  ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$  transition of Tm<sup>3+</sup> ions and the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  transition of Ho<sup>3+</sup> ions in various oxide and fluoride crystals. The characteristics of two-micron lasers based on oxide and fluoride materials doped with Tm<sup>3+</sup> and Ho<sup>3+</sup> ions are presented in review [6]. Investigation of the spectral and luminescent characteristics of various crystals and glasses doped with Ho<sup>3+</sup> ions [6–8] show that the longest wavelength of laser radiation at the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  transition of Ho<sup>3+</sup> ions is obtained in Ho:Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> [6] and Ho:Lu<sub>2</sub>O<sub>3</sub> crystals (2.12 µm) pumped by diode lasers and a thulium fibre laser [8]. Papers [9–12] report the devel-

A.A. Lyapin, P.A. Ryabochkina, A.N. Chabushkin N.P. Ogarev

Received 3 June 2013 *Kvantovaya Elektronika* **43** (9) 838–840 (2013) Translated by M.N. Basieva opment of two-micron fibre lasers with the longest wavelength of 2.15  $\mu$ m.

In the present work, using the spectral dependences of the absorption and luminescence cross sections of the  ${}^5I_8 \rightarrow {}^5I_7$  and  ${}^5I_7 \rightarrow {}^5I_8$  transitions of Ho<sup>3+</sup> ions in the crystals of the composition ZrO\_2-13.6 mol % Y\_2O\_3-0.4 mol % Ho\_2O\_3, we obtained the spectral dependence of the gain cross section of the  ${}^5I_7 \rightarrow {}^5I_8$  transition of Ho<sup>3+</sup> ions in these crystals and performed laser experiments under pumping by a Tm:YLiF\_4 laser.

The zirconium dioxide crystals stabilised with yttrium dioxide and doped with Tm<sup>3+</sup> were grown in a 'Kristall-407' apparatus. The crystals of the composition  $ZrO_2-13.6 \text{ mol }\%$   $Y_2O_3-0.4 \text{ mol }\%$  Ho<sub>2</sub>O<sub>3</sub> were synthesised in a cold container 130 mm in diameter with a growth rate of 10 mm h<sup>-1</sup>. The grown crystals were 40–50 mm long and 10–20 mm in cross section. From these crystals, we cut plane-parallel plates for spectral and luminescent investigations and active elements in the form of rectangular parallelepipeds for laser experiments. The concentration of Ho<sup>3+</sup> ions in the crystals was  $2.1 \times 10^{20} \text{ cm}^{-3}$ .

The absorption spectra of  $Ho^{3+}$  ions were recorded with a Lambda 950 (PerkinElmer) spectrophotometer. The spectra of luminescence from the <sup>5</sup>I<sub>7</sub> level of  $Ho^{3+}$  ions were recorded using a computer-assisted setup based on an MDR-23 mono-chromator upon excitation to the <sup>5</sup>S<sub>2</sub> level of  $Ho^{3+}$  ions by the second harmonic (532 nm) of a Nd: YVO<sub>4</sub> laser. As a detector, we used a PbS photoresistor.

An important characteristic of active laser media is the spectral dependence of the gain cross section  $\sigma_g$  of the laser transition of the rare-earth dopant ion. This characteristic allows one to estimate the wavelength region of laser radiation at this transition and is determined by the formula

$$\sigma_{\rm g} = p\sigma_{\rm em} - (1 - p)\sigma_{\rm ab},\tag{1}$$

where  $\sigma_{\rm em}$  is the luminescence cross section at the chosen wavelength,  $\sigma_{\rm ab}$  is the absorption cross section at the same wavelength,  $p = N_{\rm ex}/(N_{\rm ex} + N_{\rm f})$  is the relative population inversion,  $N_{\rm ex}$  is the population of the upper laser level <sup>5</sup>I<sub>7</sub> of Ho<sup>3+</sup> ions, and  $N_{\rm ex} + N_{\rm f}$  is the total number of particles (concentration of active ions).

The spectral dependence of the absorption cross section for the  ${}^5I_8 \to {}^5I_7$  transition of Ho  $^{3+}$  ions was found by the formula

$$\sigma_{\rm ab} = k(\lambda)/N,\tag{2}$$

where  $k(\lambda)$  is the absorption coefficient for the wavelength  $\lambda$ , and *N* is the concentration of Ho<sup>3+</sup> ions.

M.A. Borik, E.E. Lomonova, A.V. Kulebyakin, S.N. Ushakov A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991 Moscow, Russia;

Mordovian State University, ul. Bol'shevistskaya 68, 430005 Saransk, Russia; e-mail: andrei\_lyapin@mail.ru, ryabochkina@freemail.mrsu.ru

The spectral dependence of the luminescence cross section of the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  laser transition of Ho<sup>3+</sup> ions was calculated by the Füchtbauer–Ladenburg formula

$$\sigma_{\rm em}(\lambda) = \frac{\lambda^5}{8\pi cn^2} \frac{1}{\tau_{\rm rad}} \frac{I(\lambda)}{\int \lambda I(\lambda) \, \mathrm{d}\lambda}.$$
(3)

Here,  $\tau_{rad}$  is the radiative lifetime of the  ${}^{5}I_{7}$  level of Ho<sup>3+</sup> ions, *n* is the refractive index of the material, and *I* is the luminescence intensity in relative units. Assuming that the probability of nonradiative relaxation from the  ${}^{5}I_{7}$  level of Ho<sup>3+</sup> ions is low, we used the value  $\tau_{rad} = 1/A = 14.7$  ms, where

$$A = \frac{8\pi n_{\lambda}^2 c}{N\lambda^4} \frac{2J^{(1)} + 1}{2J + 1} \int k(\lambda) \,\mathrm{d}\lambda \tag{4}$$

is the probability of the radiative transition from the level  $[J^{(1)}]$  and J are the total angular momenta of 4f electrons in the ground and excited states involved in the transition].

Figure 1 shows the absorption and luminescence cross sections for the  ${}^{5}I_{7} \leftrightarrow {}^{5}I_{8}$  transition of Ho<sup>3+</sup> ions in the ZrO<sub>2</sub>-13.6 mol % Y<sub>2</sub>O<sub>3</sub>-0.4 mol % Ho<sub>2</sub>O<sub>3</sub> crystal at *T* = 300 K, while Fig. 2 presents the spectral dependence of the gain cross section of the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  laser transition calculated by formula (1).

To perform laser experiments, we assembled a scheme given in Fig. 3. The scheme includes a  $\text{Tm}: \text{YLiF}_4$  pump laser, whose active element (4) had a shape of a rectangular paral-



Figure 1. Spectral dependences of the absorption and luminescence cross sections for the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  transition of Ho<sup>3+</sup> ions in the ZrO<sub>2</sub>-13.6 mol % Y<sub>2</sub>O<sub>3</sub>-0.4 mol % Ho<sub>2</sub>O<sub>3</sub> crystals at T = 300 K.



**Figure 2.** Spectral dependences of the gain cross section of the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  laser transition of Ho<sup>3+</sup> ions in the ZrO<sub>2</sub>-13.6 mol % Y<sub>2</sub>O<sub>3</sub>-0.4 mol % Ho<sub>2</sub>O<sub>3</sub> crystals at different population inversion *p*.

lelepiped  $3 \times 3 \times 10$  mm in size with the faces antireflection coated for the laser wavelength 1.9 µm. The copper holder of the active element was thermostated at  $T \approx 18$  °C. The pump laser cavity was formed by a spherical highly reflecting mirror (3) (R = 100 mm) and a plane output mirror (6) with a transmission coefficient of 4%. To match the pump laser spectrum with the absorption spectrum of Ho<sup>3+</sup> ions, we placed into the laser cavity a Lyot filter (5), which allowed us to tune the laser wavelength within the range 1900–1930 nm. The Tm: YLiF<sub>4</sub> laser was pumped by a fibre-coupled (fibre diameter 400 µm) laser diode array (1). The pumped spot 600 µm in diameter was formed by lenses (2).



Figure 3. Optical scheme of the experiment with a laser based on the  $ZrO_2-13.6$  mol %  $Y^2O_3-0.4$  mol %  $Ho_2O_3$  crystal.

An active rod (10) made of a  $\text{ZrO}_2-13.6 \text{ mol } \% \text{ Y}_2\text{O}_3-0.4 \text{ mol } \% \text{ Ho}_2\text{O}_3$  crystal had dimensions  $3 \times 3 \times 20 \text{ mm}$  and antireflection coatings for the laser wavelength ( $\lambda_{\text{gen}} \sim 2.15 \,\mu\text{m}$ ). The pump laser beam was focused into the active element by a lens (8) so that the pump beam waist was 300  $\mu\text{m}$ . To decrease the thermal load on the active element, we used a chopper (7), which formed pump pulses with a duration of 30 ms and a repetition rate of ~3 Hz. We used a semiconfocal cavity formed by a plane mirror (9) (transmission coefficient in the pump wavelength region no less than 60%, reflection coefficient at  $\lambda_{\text{gen}}$  higher than 99%) and a spherical output mirror (11) (R = 100 mm) with a transmission coefficient at  $\lambda_{\text{gen}}$  below 1%.

Lasing at the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  transition of Ho<sup>3+</sup> ions in the ZrO<sub>2</sub>-13.6 mol % Y<sub>2</sub>O<sub>3</sub>-0.4 mol % Ho<sub>2</sub>O<sub>3</sub> crystal was obtained at the wavelength  $\lambda_{gen} = 2.17$  nm. The laser threshold absorbed pump power was 380 mW; the laser spectrum is shown in Fig. 4.

The oscillograms of luminescence and laser pulses recorded using a GDS 720C digital oscilloscope are presented in Fig. 5.



Figure 4. Spectrum of laser radiation at the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  transition of Ho<sup>3+</sup> ions in the ZrO<sub>2</sub>-13.6 mol % Y<sub>2</sub>O<sub>3</sub>-0.4 mol % Ho<sub>2</sub>O<sub>3</sub> crystals.



Figure 5. Oscillograms of luminescence and laser pulses of the  $ZrO_2$ -13.6 mol %  $Y_2O_3$ -0.4 mol % Ho<sub>2</sub>O<sub>3</sub> crystals.

Thus, in this work we received the spectral dependences of the absorption and luminescence cross sections for the  ${}^{5}I_{8} \leftrightarrow {}^{5}I_{7}$  transitions of Ho<sup>3+</sup> ions in the ZrO<sub>2</sub>–13.6 mol % Y<sub>2</sub>O<sub>3</sub>–0.4 mol % Ho<sub>2</sub>O<sub>3</sub> crystal. The spectral dependence of the gain cross section for the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  transition is calculated, which allowed us to determine the possible range of laser wavelength tuning to be 2120–2200 nm. Lasing at the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$  transition (2.17  $\mu$ m) of Ho<sup>3+</sup> ions in these crystals pumped by a Tm:YLiF<sub>4</sub> laser is obtained for the first time. It should be noted that the wavelength of the laser based on the ZrO<sub>2</sub>–13.6 mol % Y<sub>2</sub>O<sub>3</sub>–0.4 mol % Ho<sub>2</sub>O<sub>3</sub> crystal is the longest among the wavelengths of all known solid-state lasers based on Ho<sup>3+</sup>-doped crystals.

*Acknowledgements.* This work was supported by the Federal Targeted Program 'Scientists and Science Educators of Innovative Russia' for 2009–2013 (State Contract No. 14.740.11.0071).

## References

- Voron'ko Yu.K., Lomonova E.E., Vishnyakova M.A., Popov A.V., Sobol' A.A., Shukshin V.E. *Neorg. Mater.*, 40 (5), 585 (2004).
- Voron'ko Yu.K., Lomonova E.E., Popov A.V., Sobol' A.A., Ushakov S.N. *Neorg. Mater.*, 41 (8), 955 (2005).
- 3. Shukshin V.E. *Trudy IOFAN*, **64**, 3 (2008).
- 4. Khromov M.N. Doct. Diss. (Moscow: IOFAN, 2009).
- Ryabochkina P.A., Borik M.A., Kulebyakin A.V., Lomonova E.E., Malov A.V., Somov N.V., Ushakov S.N., Chabushkin A.N., Chuprunov E.V. *Opt. Spektrosk.*, **112** (3), 513 (2012).
- Scholle K., Lamrini S., Koopman P., Fuhberg P., in Frontiers in Guided Wave Optics and Optoelectronics (Croatia: InTech., 2010).
- Fomasiero L., Mix E., Peters V., Heumann E., Petermann K., Huber G. Ceram. Intern., 26, 589 (2000).
- Koopmann P., Lamrini S., Scholle K., Schafer M., Fuhberg P., Huber G. Opt. Mater. Express, 1 (8), 1447 (2011).
- Kurkov A.S., Dianov E.M. Kvantovaya Elektron., 34 (10), 881 (2004) [Quantum Electron., 34 (10), 881 (2004)].
- Jackson S.D., Sabella A., Lancaster D. IEEE J. Sel. Top. Quantum Electron., 13, 567 (2007).
- Kurkov A.S., Sholokhov E.M., Medvedkov O.I., Dvoyrin V.V., Pyrkov Yu.N., Tsvetkov V.B., Marakulin A.V., Minashina L.A. *Laser Phys. Lett.*, 6, 661 (2009).
- 12. Kurkov A.S., Dvoyrin V.V., Marakulin A.V. Opt. Lett., 35, 490 (2010).