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Abstract.   We have studied the possibility of exciting surface waves 
in a conductor, which is irradiated by a focused femtosecond laser 
pulse incident along the normal to the surface. The time-dependent 
ponderomotive force is shown to lead to the excitation of surface 
waves in the terahertz frequency range. It is also shown that the 
total energy and the pulse amplitude of the surface waves increases 
with increasing effective electron collision frequency. 

Keywords: surface wave, femtosecond laser pulse, terahertz fre-
quency range, frequency of collisions. 

1. Introduction 

Interest in the study of surface waves is caused not only by 
their unusual physical properties, but also by the possibility 
of using these waves in solving such important applications as 
diagnosis of the surface [1], generation of electron beams [2], 
and generation of terahertz radiation [3]. Linear theory of 
surface waves in conductors is extensively studied in the lit-
erature (see, e.g., books [1, 4] and references therein). Linear 
theory describes in great detail the laws of dispersion of the 
waves and the methods for their excitation. Nonlinear excita-
tion methods have been studied to a much lesser extent. 
However, in experiments on the interaction of femtosecond 
laser pulses with conductors, when surface waves are excited 
along with the generation of harmonics [5] and terahertz radi-
ation [6], there is a need to go beyond linear theory. The need 
to develop nonlinear theory of excitation of surface waves is, 
in particular, indicated in experiments [7, 8]. Nonlinear mech-
anisms of excitation of surface waves have been previously 
discussed, such as stimulated Compton scattering [9], instan-
taneous spatial modulation of the refractive index in the 
region of action of ultrashort laser pulses [10, 11], and para-
metric decay of the pump wave into two surface waves [12]. 
The author of [13] has developed the theory of nonlinear exci-
tation of surface waves during the passage of the laser pulse 
through the plasma – vacuum interface. 

In this paper, in contrast to [9] – [13], we consider another 
way of surface wave excitation in a conductor, which is 

realised under the ponderomotive action of focused pulsed 
laser radiation. The ponderomotive force generated by the 
laser pulse leads to the directed motion of electrons. In the 
skin layer of the conductor there appears a vortex current 
changing during the pulse action. This slowly varying current 
is the source of a low-frequency electromagnetic field, which 
is emitted from metal into the surrounding space. In Section 2 
we present the necessary information about the shape and 
form of the incident pulse and the form of the ponderomotive 
potential in the conductor. The low-frequency field arising in 
the conductor due to the inhomogeneity and nonstationarity 
of the ponderomotive potential is studied in Section 3. The 
low-frequency field corresponding to a surface wave in vac-
uum is described in Section 4. In the same Section we have 
found the components of the Fourier transforms of the low-
frequency field in vacuum and conductor. The energy distri-
bution over the frequencies, the total energy and the magnetic 
field structure of the surface wave in the wave zone are 
described in Section 5 for the Gaussian pulse action on the 
conductor. It is shown that the energy distribution over the 
frequencies is bell-shaped, with a maximum near the fre-
quency ~1/t

*
, where t

*
 = t /R L1 2 2

+ , the time t determines 
the Gaussian pulse duration tp = 2t ln 2 , R is the size of the 
focal spot, L = ct is the pulse length, and c is the speed of 
light. The position of this maximum is almost independent of 
the collision frequency of electrons in the low-frequency field 
ns. If nst* << 1, the value of the maximum does not depend on 
vs, and within the frequent collisions of electrons, when nst* 
>> 1, it increases proportionally to *sn t . Consequently, the 
total energy of the surface wave also increases proportionally 
to *sn t . We have found that the surface wave propagates in 
the form of an electromagnetic field pulse with a duration of 
the order of t

*
. 

2. High-frequency field and ponderomotive 
potential 

Consider the irradiation of the conductor occupying the half-
space z > 0 by the laser pulse propagating along the z axis. We 
assume that the carrier frequency w0 of the pulse is much 
larger than 1/t and radiation is weakly focused into the region 
whose characteristic size R is much greater than c/w0. Without 
significant loss of generality, we assume that the pulse has a 
Gaussian intensity distribution in the xy plane. Under these 
assumptions, the electric field of the incident pulse has the 
form 
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where EL(t) is the electric field strength varying weakly during 
the time ~t on the z axis; and x y2 2r = + ; r = ( r, z). We 
confine ourselves to consideration of the action of the field (1) 
under conditions when the carrier frequency w0 of radiation 
and the electron collision frequency in the high-frequency 
field vh satisfy the inequality 

| |i h0w n+  >> | ( )|L 0k w u,	 (2)

where u is the characteristic velocity of the electrons and the 
wavenumber ( )L 0k w  determines the scale of variation of the 
field along the z axis in the conductor  d ~ /| ( )|1 L 0k w : 
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In formula (3), wp is the plasma frequency, and   e0(w0) = 
e'0(w0) + ie'’0(w0) is the contribution to the dielectric constant 
of the conductor of the bound electrons and lattice. Under 
these conditions, the field (1) produces in the conductor a 
nonuniform field 
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This field has a ponderomotive effect on the electrons. In the 
case when the carrier frequency w0 significantly exceeds the 
frequency of collisions between the electrons vh, correspond-
ing to the field (4), the ponderomotive potential has the form 
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where e is the charge, and m is the effective mass of the elec-
tron. 

3. Low-frequency field in the conductor 

The ponderomotive action of the pulse with a slowly time-
varying amplitude of the field leads to the appearance of a 
low-frequency current and low-frequency field in the conduc-
tor. To determine the density of the low-frequency current, 
we will use the equation 

¶
¶ ( , ) ( , ) ( , ) ( , )
t

t t t e tj r j r E r r
4
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s
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2

dpn
w

F+ = -: D,	 (6)

where E(r, t) is low-frequency electric field in the conductor 
and vs is the electron collision frequency in the low-frequency 
field, which differs from the frequency vh due to the depen-
dence of the frequency of electron – electron collisions on the 
field frequency [14]. To describe the low-frequency electro-
magnetic field, equation (6) must be supplemented by 
Maxwell’s equations for the electric field E(r, t) and magnetic 
field B(r, t): 

¶
¶( , ) ( , )rot t c t

tE r B r1
=- ,	 (7)

¶
¶( , ) ( , ) ( , )rot t c t

t c tB r D r j r1 4p
= + ,	 (8)

where D(r, t) is the electric induction. When constructing the 
solution to equations (6) – (8), we use the Fourier transform 
with respect to time t and coordinate r = (x, y): 
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(9)

where k9 = (kx, ky) is the wave vector in the xy plane, and 
F(r, t) is one of the functions j(r, t), E(r, t), B(r, t) or D(r, t). In 
virtue of the axial symmetry of the ponderomotive potential 
(5) the current density, the fields and the induction vector 
have the form 

( , ) ( , ), , ( , ) , ( , ) ( , ), , ( , ) ,t j t j t t E t E tj r r r E r r r0 0z z= =r r^ ^h h

	 ( , ) 0, ( , ), , ( , ) ( , ), , ( , )t B t t D t D tB r r D r r r0 0 z= =j r^ ^h h.

After the Fourier transform we obtain from equations (7) and 
(8) a system of equations for the Fourier transforms of the 
components of the electric and magnetic fields: 
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( , , ) ( ) ( , , ) 4 ( , , )i ik B z c E z c j zk k kz z0
pw we w w w=- += = = =j , z > 0.

When transforming equation (8) we used the relationship of 
the Fourier transform of the induction vector and the electric 
field D(r, w) = e0(w)E(r, w). Equations (6) and (10) are valid in 
the region z > 0. Taking into account the explicit form of the 
ponderomotive potential (5), we extend these equations and 
the unknown functions in the region z < 0: 
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Taking into account relations (11), from equation (6) after the 
Fourier transform with respect to time and coordinates we 
find the Fourier transform of the current density 
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Below, using expressions (11), (12) and the Fourier transform 
in the coordinate z [see (9)], from equations (10) we obtain the 
relations 
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where 

( , ) ( , 0, ) ( , 0, )B B z B zk k kw w wD = =+ - =-= = =j j j

	 = 2 ( , 0, )B zk w=+=j

is the jump of the function ( , , )B zk w=j  on the plane z = 0 
because of the odd continuation to the region z < 0; 
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is the dielectric constant of the conductor provided that | w + 
ins | >> ku. The solution of the system of equations (13) for the 
components of the Fourier transforms of the electromagnetic 
field has the form 
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Using the inverse Fourier transform in the coordinate z [see 
(9)], from (15) – (17) we find an expression for the functions 
Bj(k9, z, w), Er(k9, z, w) and Ez(k9, z, w) in the conductor: 
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The quantity 1/k1 determines the size of the localisation region 
of the low-frequency field in the conductor near its surface. 

4. Low-frequency field in vacuum. Surface wave 

The low-frequency electromagnetic field in vacuum, when z < 0, 
is described by the system of equations (10), if we put  
j(k9, z, w) = 0, e0(w) = 1. In what follows we consider only that 
portion of the electromagnetic field in vacuum, which corre-
sponds to a surface wave whose field is localised near the 
boundary of the conductor. Thus, we seek a solution of the 
modified system of equations (10) provided that 

k9с > |w|.	 (22)

For such k9 and w we have the solution: 
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where /k c0
2 2 2k w= -=  and ( , 0, )B zk w=-=j  is the 

unknown function. To determine the functions ( , 0, )B zk w=+=j  
and ( , 0, )B zk w=-=j  we use the conditions of continuity of 
the tangential components of the electromagnetic field at the 
boundary of the conductor. Equating the components 
( , , )B zk w=j  and ( , , )E zk w=r  in the plane z = 0, from formulas 

(18), (19), (23), (24), we find 
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Relations (23) – (26) completely determine the Fourier trans-
forms of the components of the low-frequency field localised 
at the conductor surface in vacuum. These Fourier trans-
forms and the transforms described by formulas (18) – (20) 
are proportional to the Fourier transform of the ponderomo-
tive potential on the conductor surface ( , 0, )zk wF == . For 
the ponderomotive potential (5) the Fourier transform has 
the form 
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Expressions (18) – (27) allow us to find the electromag-
netic field of the surface wave in vacuum and conductor. 
Equations (23) – (25) are suitable for describing only the part 
of the field localised at the surface of the conductor. This part 
of the field is determined by the Fourier transforms of the 
fields with sufficiently large wave vectors in a plane that is 
coplanar to the surface of the conductor: k9c > |w| (22). 
Therefore, the dependence of the field on coordinate r recov-
ered by using the inverse Fourier transform in  r (9) is bounded 
below by the region of integration in k9 by the quantity |w|/c. 
Then, from (18), (22), (26) and (27) for the frequency-depen-
dent azimuthal component of the Fourier transform of the 
magnetic field localised at the surface of the conductor, we 
obtain 
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where h(z) is the unit Heaviside step function and J0(k9  r) is 
the zero order Bessel function. In the denominator of formula 
(28) we have the function k + k0e(w), which, taking into 
account the explicit expressions for k0 and k, can be written in 
the form 
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Equation (29) is equal to zero if 
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into account that for the frequently realised conditions wp2 >> 
( )0 w |( ) | 's

2 2w n e+  and ( )0 w| ( )| ( ) /( )' ' 'p s
2 2 2e w e w w w n e=- = + -

> 0. Note that at low frequencies the absolute value of the 
real part of the dielectric constant is usually much greater 
than unity, |e'(w)| >> 1, and in the denominator of (30) we can 
neglect the unity: 
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Expressions (30) and (31) detemine the dispersion law for the 
waves propagating along the surface of the conductor (see, 
for example, [4]). Thus, the expression under the integral in 
(28) has a simple pole in the plane of the complex variable k9. 
Consider the low-frequency field at large distances from the 
focal spot region when the inequalities r >> R, c/w are ful-
filled. In this case, in calculating the integral over the variable 
k9 we can use the asymptotic representation of the Bessel 
function: 

( ) cosJ k
k
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r
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To calculate the integral in k9, we choose in (28) the path of 
integration in the plane k9, as shown in Fig. 1. The point in 
Fig. 1 denotes the pole corresponding to the surface wave 
(30), (31). The integral along the arc of an infinitely large 
radius is zero. The integral along the ray originating from 
point w/c at an angle p/4 to the real axis is exponentially small 
at r >> R. Therefore, the main contribution to the desired 
integral (28) comes from the residue at the pole. Taking into 
account the contribution from the pole (31) and formula (32), 
we find from (28) the expression for the Fourier transform of 
the azimuthal component of the magnetic field on the surface 
of the conductor: 
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Completely analogous to (23) – (25) we find the Fourier trans-
forms of the components of the electromagnetic field in vac-
uum: 
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and from (18) – (20) with (26) and (27) taken into account, we 
find same values in the conductor: 

( , )
| ( )| ( )

( , )
' ''i

E Br r1
z w

e w e w
w=

-
j ,

( , )
| ( )| ( )

( , )
' ''i

iE Br rw
e w e w

w=-
-

r j ,	 (35)

( , ) ( , 0, ) | ( )| ( )' ''exp iB B z c
zr -w r w w e w e w= - -j j : D,

	 z > 0,  w > 0.

Expressions (33) – (35) describe the surface wave diverging 
from the focal spot. The amplitude of this wave decreases 
with distance proportionally to r1/ . According to (33), the 
presence of dissipation, caused by collisions of electrons and 
by the field absorption by the lattice and bound electrons, 
leads to a decay of the surface wave at large distances, when 
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Therefore, we will consider the characteristics of the surface 
wave in the region r < rm, when a change in the wave ampli-
tude due to dissipation can be neglected. This region exists if  

w/c

Imk9

Rek9

Figure 1.  Contour of integration in formula (28). 
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rm >> R, c/w. Note that the region of localisation of the sur-
face wave field in vacuum 
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is much greater than the penetration depth into the con
ductor: 

( ) ( )' '' /
m v

2 2 1 2
-d d e w e w+

-6 @  << dv.	 (38)

5. Physical characteristics of the surface wave 

To calculate the energy W, transported by the surface 
wave, we consider a cylindrical surface of radius r and 
length dz. The symmetry axis of this surface coincides with 
the propagation direction of the laser pulse and passes 
through the origin of the coordinates. During all the time, 
through this surface along the normal, the energy passes 
that is equal to the product of the time-integrated energy 
flux density
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By integrating expression (40) in the z coordinate from –¥ 
to +¥ and using relations (34) and (35), we find the energy 
of surface waves per unit frequency interval dw: 
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From formula (41) and relations (34) and (35) it follows that 
the energy of the surface wave in vacuum is much higher than 
the energy in the conductor. By calculating in formula (41) 
the integral over the area of vacuum, we obtain the spectral 
energy distribution of surface waves 
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According to (42), the spectral energy distribution depends 
not only on the physical characteristics of the conductor, but 
also on the shape of the incident laser pulse. Let us investigate 
in more detail the spectral composition of the generated field 

for the frequently discussed case when the pulse shape is 
described by a Gaussian distribution: 

( ) ( / )expt E tEL L
2 2 2 2t= - .	 (43)

Consider distribution (42) under conditions typical of many 
experiments, when the inequalities 
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are met. 
For a pulse (43) under conditions (44), expression (42) 

takes the form 

)W(
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L R
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m c
W I8 2 1L

p
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2
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2

5 5w tW =
+ *

,	 (45)

where W = wt
*
 is the dimensionless frequency; WL = 

/8E R LL
2 2p  is the laser pulse energy; and the dimensionless 

function 
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g
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W W

W W W
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+ +

+
-c m,  gs = nst*.	 (46)

Here, the parameter gs accounts for the effect of electron col-
lisions on the distribution of energy over the frequencies. 
Function (46) describing the spectral energy distribution of 
the surface wave is shown in Fig. 2 for different values of the 
dimensionless collision frequency gs. It is seen that the emis-
sion spectrum has a broad maximum, the position of which 
depends weakly on the parameter gs. However, with an 
increase in the collision frequency, the maximum amplitude is 
increased. To explain this behaviour, consider function (46) in 
more detail. When gs << 1, which corresponds to the limit of 
rare collisions, from formula (46) we obtain the expression

)W( expI
2 2

5 2
- W W

-c m.	 (47)
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Figure 2.  Dependences of the normalised spectral energy density I(W) 
(46) for surface waves on the dimensionless frequency W at gs = ( 1 ) 8, 
( 2 ) 4, ( 3 ) 1 and ( 4 ) 0.25. 
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In this case, the spectral distribution has a maximum at  Wmax 
- 5 , which corresponds to the frequency 

R L1
5

max 2 2
w

t
=

+
.	 (48)

If during the laser pulse action there are many collisions 
between the electrons (gs >> 1), from formula (46) we have the 
relation 

)W( expI
2

/
s s

9 2
2

- g W W
-c m.	 (49)

Function (49) has a maximum at 3/ 2maxW = , which corre-
sponds to the frequency 

/R L2 1
3

max 2 2
w

t
=

+
.	 (50)

Frequencies (48) and (50) differ slightly, which corresponds 
to the data shown in Fig. 2. In the case of tightly focused 
laser radiation R << L, and the position of the maximum of 
the spectral distribution is determined by the inverse dura-
tion of the laser pulse: wmax ~ 1/t. With an increase in the 
size of the focal spot, the maximum is shifted to lower fre-
quencies wmax ~ c/R. Also, in accordance with Fig. 2, from 
formula (49) we see that in the limit of frequent electron col-
lisions the maximum of the function I(W) increases propor-
tionally to sg . 

By integrating expression (45) over the frequencies, we 
find the total energy of the surface waves 
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where
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From formula (51) we see that at a fixed energy and dura-
tion of the laser pulse, the energy of the surface wave is maxi-
mum upon tight focusing when the condition R<<L is ful-
filled. The dependence of the normalised energy of surface 
waves (52) on the the electron collision frequency is presented 
in Fig. 3. For large values of gs the energy increases propor-
tionally to sg . Using approximate formulas (47) and (49), 
we obtain explicit expressions for w at small and large values 
of gs. In the limit of rare collisions of the electrons, when gs << 1, 
by integrating (47) in W, we find the relation 

3

2 2
5.7expdw

2
85 2

0
-W W W

= - =c my .	 (53)

In the limit of frequent collisions, when gs >> 1, and for the 
normalised energy of surface waves, from (52) we have the 
expression 
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Let us analyse the spatiotemporal structure of the surface 
wave on the conductor surface, where z = 0. By using an 
inverse Fourier transform with respect to time, from formulas 
(33) and (43) we find the distribution of the magnetic field of 
the surface wave 
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( ) 2Re expd i i iH zz z z z
4 4s

3

0

2px g x= + + -c my ,	 (56)

where  x = ( r/c – t)/t
*
 and use is made of the identity Bj( r, z = 

0, – w) = B*
j( r, z = 0, w). Dependence (56) is shown in Fig. 4 for 

two values of the dimensionless frequency of electron colli-
sions, gs. Curve ( 2 ) corresponds to the limit when the colli-
sion frequency is less than 1/t

*
. An increase in the frequency 

of collisions leads to an increase in the amplitude of the gener-
ated magnetic field, the spatiotemporal profile of the surface 
wave being also modified [curve ( 1 ) in Fig. 4]. In the limit of 
frequent collisions, when gs >> 1, from (56) we find the expres-
sion 

( ) 2 ( )exp
d
dH s 3

3
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x
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	 =  8 (3 2 ) ( )exps
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Figure 3.  Dependence of the normalised energy of surface waves w (52) 
on the parameter gs. 
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Figure 4.  Spatiotemporal structure of the magnetic field of the surface 
wave (56) at gs = ( 1 ) 8 and ( 2 ) 0.25.
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It follows from Fig. 4 and formulas (56) and (57) that the sur-
face wave propagates along the surface of the conductor in 
the form of an electromagnetic pulse with a duration of the 
order of t*.  Upon tight focusing of laser radiation R << L, 
and the pulse duration of the surface wave is comparable to 
the duration of the laser pulse. The surface wave pulse dura-
tion increases with increasing size of the focal spot, and 
when R >> L, becomes equal to R/c. 

6. Conclusions 

Consider the energy of the surface waves for typical parame-
ters of laser irradiation of the conductor. To do this, we 
rewrite formula (51) with regard to the expression WL = 
ILp3/2R2t: 

8 2
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2
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4 2
p

w
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d n ,	 (58)

where IL = cE2
L/(8p) is the flux density of laser radiation. 

Energy (58) under the condition R2 = 2L2 has a maximum 
value 

52W c
e
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p

p

L
2

3

2

.
w

w
d n .	 (59)

Let us estimate the energy and frequency of the generated sur-
face waves. As a target we use a semiconductor with the 
plasma frequency wp » 2 ́  1014 s–1 and the electron collision 
frequency ns » 1013 s–1. We assume that the flux density is IL 
» 1012 W cm–2, the pulse duration is t » 400 fs, and the carrier 
frequency is w0 » 2 ́  1014 s–1. Strictly speaking, when w0 » wp, 
formula (59) requires clarification. However, from the com-
parison of expression (59) with the results obtained in [13] at 
w0 > wp, we can conclude that the optimal conditions for gen-
eration are achieved at w0 » wp, and formula (59) is suitable 
for the estimates even at such frequencies. For the parameters 
used, the pulse length is L » 120 mm and R » 170 mm. The 
parameter characterising the influence of the collisions is gs = 
7, and in accordance with Fig. 3, w = 30. Under these condi-
tions, according to formula (50), the maximum emission 
occurs at a frequency of 0.5 THz, and the total radiation 
energy (59) is 0.5 ́  10–12 J. Since the total energy in the pulse is 
equal to 6 ́  10–4 J, the conversion efficiency is very small, i.e., 
about 10–9. At the same time, as is seen from relation (59), in 
conductors with a lower plasma frequency and at a higher 
intensity of radiation, the generation efficiency can be signifi-
cantly enhanced. However, one should not choose too high 
intensity due to the efficient heating of electrons and, subse-
quently, of the lattice. Note also that in metals, where the 
plasma frequency is high, the generation efficiency of surface 
waves at the ponderomotive impact of the focused laser pulse 
radiation incident along the normal to the sample surface is 
less than in semiconductors. 
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