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Abstract.  Nonlinear currents slowly varying in time are found in 
the skin layer of a metal irradiated by short laser pulses. The low-
frequency field generated by the nonlinear currents in metal and 
vacuum is studied. The spectral composition, energy and shape of 
the low-frequency radiation pulse are described. 

Keywords: femtosecond pulse, nonlinear current, skin layer, tera-
hertz radiation. 

1. Introduction 

The study of the generation of nonlinear currents and emerg-
ing low-frequency fields began in the early years of nonlinear 
optics development. Due to the progress in obtaining femto-
second laser pulses, this part of nonlinear optics has been fur-
ther developed due to the ability to produce sufficiently strong 
fields in the skin layer in a time shorter than the time of sig-
nificant heating of the electrons and the lattice, resulting in 
the destruction of the surface of the metal. Recently, interest 
in this area of research has increased due to new opportunities 
in mastering the terahertz frequency range. Generation of 
terahertz radiation on the surface of silver and gold was 
observed in [1, 2], and on the surface of copper – in [3]. The 
authors of [4] studied terahertz radiation upon irradiation of 
semiconductors in a magnetic field. It was shown in [5] that 
when a femtosecond laser pulse interacts with a nanostruc-
tured metal surface, the efficiency of terahertz radiation gen-
eration increases significantly. The emergence of new experi-
mental works points to the need for a theory capable of ade-
quate description of the observed patterns of terahertz 
radiation generation. The appropriate step in this direction 
has been made in this paper in relation to the description of 
the properties of the interaction of a femtosecond s-polarised 
pulse with a gold target (found in [1, 2]). 

In Section 2 we investigate the field generated in a metal 
by a short s-polarised pulse. Nonlinear currents in the skin 
layer and the low-frequency field in the metal are considered 
in Section 3. The field of low-frequency radiation in a vacuum 
is described in Section 4. We also present the expressions for 
the Fourier transforms of the magnetic field in vacuum, the 
explicit form of which depends on the relations between the 

frequency of collisions between electrons and the frequencies 
of the fundamental and generated fields. The spectral compo-
sition, energy and shape of the low-frequency pulse are con-
sidered in Section 5. We show that when the metal is irradi-
ated by a femtosecond s-polarised pulse, broadband terahertz 
radiation is generated. The most efficient generation occurs at 
a frequency on the order of the inverse duration of the funda-
mental femtosecond pulse. The low-frequency pulse duration 
is comparable to the duration of the fundamental pulse, and 
the total energy of low-frequency radiation is proportional to 
the square of the fundamental radiation intensity. We present 
an explanation of the frequency and temporal characteristics 
of the low-frequency pulse, obtained in [1, 2]. We have found 
that in this case it is necessary to consider the collision of elec-
trons, leading to the generation of a nonlinear current along 
the metal surface. 

2. High-frequency field 

Consider the interaction of an electromagnetic s-polarised 
pulse with a metal occupying the half-space z > 0. Electric and 
magnetic fields of the pulse incident on the metal surface have 
the form 

( , ) ( / ) ( ) . .exp i i c ct t tE r E kr kr
2
1

inc inc w w= - - + + ,

( , ) ( / ) ( ) . .exp i i c ct t tB r B kr kr
2
1

inc inc w w= - - + + ,	
	

(1)

where Einc(t – kr/w) = Einc(t – kr/w)(0, 1, 0); Binc(t – kr/w) = 
Einc(t – kr/w)(– cos q, 0, sin q); w is the carrier frequency; q is 
the angle between the direction of the pulse propagation and 
the vector of the external normal to the surface of the metal;  
k = (w/c)(sin q, 0, cos q) is the wave vector; and c is the velocity 
of light. We also assume that the function ( / )E t krinc w-  
weakly changes over the time ~1/w. 

In describing the response of the metal to the action of the 
field of form (1) under conditions when the frequency w or the 
electron collision frequency is greater than the ratio of the 
Fermi velocity uF to the skin-layer depth, we will use the 
equation for the velocity u = u(r, t) of the directed motion of 
the electrons 

¶ ( ) [ ]m m
e

c mn pu u u
f

E uB1 1 dd+ = + + -
¶t

a k ,	 (2)

where  f = f (r, t) is the friction force; e and m are the charge 
and effective mass of the electron;  E = E(r, t) and B = B(r, t) 
are the electric and magnetic fields in the metal; and p and n 
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are the pressure and concentration of the electrons. The field 
in the metal is described by Maxwell’s equations 

¶
¶

¶
¶, 4rot rotc t c t cE B B D j1 1 p

=- = + ,	 (3)

where D = D(r, t) is the electric displacement field. The cur-
rent density j = j(r, t) = enu(r, t), the velocity u, the friction 
force f and the fields in the metal we present in the form 

( , ) ( , ) ( , ) ( ) . .]exp i c ct t t tF F r F r F r
2
1

0 w= = + - +16 ,	 (4) 

where  F = E, B, D, f, u, j; and the function Fn = Fn(r, t) weakly 
changes over the time ~1/w, 

¶
¶ ln
t

Fn&w .	 (5)

In formula (4) we omitted the harmonics exp(–inwt) with 
numbers n H 2, which is justified in a sufficiently weak field. 

Taking into account the field weakness and inequality (5), 
from (2) for  j1(r, t) we find the approximate expression 

( , )
( )

( , )
i

i
t tj r E r

4
p

1

2

1p w n
w

=
+

,	 (6)

where 4 /ne mp
2pw =  is the plasma frequency and v is the 

collision frequency of the electrons interacting with the high-
frequency electromagnetic field. In deriving relation (6) we 
used a simple expression for the force of friction: f1(r, t) = –
mnu1(r, t). 

In expression (3), the difference of D(r, t) from E(r, t) is 
due to the influence of the lattice and bound electrons. This 
difference is described by the w-frequency dependent dielec-
tric constant e0(w). In particular, at frequencies close to w fre-
quencies, we have 

t
( , ) ( ) ( ) ( , ) ( )exp expi i dt t t t t t tD r E r1 0 1w e w- = - -

3-

l l l ly

	 ( ) ( , ) ( )exp it tE r0 1- e w w- ,	 (7)

where 

3

( ) ( ) ( )exp i dt t t0 0
0

e w e w= y

and the weak change in E1(r, t) over the time ~1/w is neglected. 
Taking into account expressions (4) – (7) under the condi-

tion of the action of s-polarised radiation for the function  
E1(r, t) determining the field in the metal, we derive from (3) 
the relation 

( , ) ( ) ( , ) 0t
c

tE r E r1 2

2

1
w e wD + = ,	 (8)

where e(w) = e0(w) – wp
2/[w(w + in)]. We will seek the approx-

imate solution of equation (8) in the form  E1(r, t) = 
(0, E1(r, t), 0), where 

( , ) ( , , ) ( )exp siniE t E z x t kxr1 1- q .	 (9)

Then, by neglecting the weak changes in E1(z, x, t) along 
the surface of the metal, from (8) we obtain the approximate 
equation

¶
¶ ( , , ) ( , , ) 0
z
E z x t E z x t

2

2

1
2

1k- = ,	 (10)

where we use the notation 

( )sin Re Imi
c

2
2

2
2 2 2k w q e w k k= - = -7 A .	 (11)

By assuming 0Re 2 2k  and 0Im 2 2k , the solution of equa-
tion (10) decreasing into the metal bulk can be written as 

( , , ) (0, , ) ( ),exp iE z x t E x t z1 1 1 2k k k k= - = - ,

( ) ( ) ( ) , 1,2Re Im Re p
2
1 1

/
p

p2 2 2 2 2 1 2k k k k= + - - =6 @ .	
		

(12)

In turn, from (3), (4), (9) and (12) for the function B1(r, t)
determining the magnetic field in the metal we have the rela-
tion 

( , ) (0, , ) ( ) , ,exp sin sini it E x t z kx
k

B r 01 1 k q k q= - + -b l.	 (13)

Electromagnetic radiation is partially reflected from the 
metal. Taking into account inequality (5), in the approxima-
tion linear in Einc, the fields of the reflected s-polarised pulse 
have the form 

/ )r w( , ) ( ( . .'exp i i c ct t tE r E k k
2
1

ref ref w= - - + +)rl ,

/ )r w( , ) ( ( ) . .'exp i i c ct t tB r B k k r
2
1

ref ref w= - - + +l ,	
	

(14)

where Eref(t – k'r/w) = REinc(t – k'r/w); R is the complex 
reflection coefficient; k' = k(sin q, 0, – cos q); and Bref(r – k'r/w) 
= REinc(t – k'r/w)(cos q, 0, sin q). 

Using the condition of continuity of the tangential com-
ponents of the electric and magnetic fields, from relations (1), 
(4), (9), (12), (13) and (14) we find the complex coefficients of 
penetration (Fs) and reflection (R) of s-polarised radiation: 

,
cos
cos

cos
cos

i i
iF

k
k R

k
k2

s - -
q k

q
q k
q k

+ +

- ,	 (15)

and the function E1(0, x, t):

(0, , ) sinE x t F E t c
x

s inc1
q

= -` j.	 (16)

Formulas (4), (9), (11) – (13) and (16) define a high-frequency 
field in the metal. 

3. Nonlinear current and low-frequency field 
in the metal 

Consider an electromagnetic field and current density at fre-
quencies W, much smaller than w. At low frequencies, the fric-
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tion force f0 depends on the electron collision frequency vs, 
which differs from v: f0 = – mnsu0. Keeping in mind this differ-
ence, in the case of the action of the s-polarised pulse we 
derive from (2) and (4) 

¶
¶ ( , )

( , )
4

( , )
t

t
t t

j r
j r E rs

p0
0

2

0p
n

w
+ =

	 +  [ ( , ) ( , )] [ ( , ) ( , )]
mc
e t t t tj r B r j r B r
4

* *
1 1 1 1+" ,.	 (17)

In (17) the contribution of the pressure changes is omitted. 
This approximation is justified if, for the frequencies W con-
sidered below, conditions of the high-frequency or normal 
skin effect are realised. Below, using expressions for j1 (6), E1 
(9), (12), (16) and B1 (13), after the Fourier transform in time 
(t ® W) and coordinate x (x ® q), we have from (17) 

( ) ( , , ) ( , , )i i q z q zj E
4s
p

0

2

0p
n

w
W W W- + =

	 +  ( , ) ( 2 )expq zJ 1n kW - .
	

(18)

Here we use the notations J(q, W ) = (Jx(q, W ), 0, Jz(q, W )),

|F I( , ) | ( )2sin sinJ q
mc

e
q c

p
sx 2

2

2 2
2 pd

w

w n
q qW W W

=
+

-` j,	 (19)

( , ) | | ( )2 sinJ q mc
e

F I q c
p

sz

2

2 2

1 2 2 pdnw
w

w n

wk nk qW W W
=

+

+
-` j,	(20)

where d(x) is the delta function, and I(W ) is the Fourier trans-
form of the energy flux density: 

3

( ) ( ) ( )expd iI c E
8 inc

2

p
t t tW W=

3-
y .	 (21)

According to (18), if we omit the term with E0(q, z, W), then 
the function J(q, W) defines the Fourier transform of the drag 
current density [6]. Taking into account relations (4), from 
Maxwell’s equations (3) for the Fourier transform of the 
slowly varying magnetic field B0(q, z, W ) = (0, B0(q, z, W ), 0) 
we obtain the equation

( , , ) ( , , ) ( , ) ( 2 )exp
d
d
z
B q z B q z Q q zs2

2

0
2

0 1k kW W W- = - ,	 (22)

where

( , )
( )

( , ) ( , )
i

i iQ q
c

J q qJ q4 2
s

x z1
p

n
n kW

W
W W=

+
+6 @,	 (23)

( ) Re Imiq
c

s s s
2 2

2

2
2 2/k e k kW W= - - ,	 (24)

' ''( ) ( )
( )

( ) ( )
i

i
s

p
0

2

e e
n

w
e eW W

W W
W W= -

+
= + .	 (25)

Typically, 0Re s
2 2k . The solution to equation (22), 

decreasing with distance from the surface of the metal, has the 
form 

( , , ) ( ,0, ) ( )expB q z B q zs0 kW W= -

	 + 
( , )

( ) ( )exp exp
Q q

z z
4

2
s

s
1
2 2 1

k k
k k

W

-
- - -6 @,	 (26)

( )Imi signs s s s1 2
2k k k k= - ,

( ) ( ) ( ) , 1,2Re Im Re p
2

1 1
/

s s s sp
p2 2 2 2 2 1 2k k k k= + - - =6 @ ,	(27)

where B(q, 0, W) is the value of the function B0(q, z, W) at z = 0. 
By using relation (26) and the second expression from equa-
tions (3), we find the Fourier transforms of the electric field 
components: 

( , , )
( )

( , , ) ( )expiE q z c B q z0 s sx0 e
k kW

W W
W= -)

	 + 
( , )

( ) ( )exp exp
Q q

z z
4

2 2
s

s s
1
2 2 1 1

k k
k k k k

W

-
- - -6 @

	 –  ( , ) ( )exp
i

i
c J q z4 2

s
x 1

p
n

n k
W

W
+

- 3,	 (28)

( , , )
( )

( , , ) ( )expE q z c B q q z0 sz0 e
kW

W W
W=- -)

	 + 
( , )

( ) ( )exp exp
Q q

q z z
4

2
s

s
1
2 2 1

k k
k k

W

-
- - -6 @

	 –  ( , ) ( )exp
ic J q z4 2
s
z 1

p
n

n k
W

W
+

- 1.	 (29)

The functions  B0(q, z, W ) (26), E0x(q, z, W ) (28) and E0z(q, z, W ) 
(29) allow us to describe the field in the metal at frequencies 
much lower than w. 

4. Low-frequency radiation field 

In a vacuum, for the Fourier transform of the magnetic field 
Br(q, z, W ) = (0, Br(q, z, W ), 0) from system (3) we obtain the 
equation

( , , ) ( , , ) 0
d
d
z
B q z

c
q B q zr r2

2

2

2
2W W W+ - =c m .	 (30)

The solution to this equation, corresponding to the wave 
escaping from the metal surface, has the form 

( , , ) ( ,0, )exp iB q z B q z
c

qr r 2

2
2W W W

= - -e o.	 (31)

In this case, for the components Erx(q, z, W ) and Erz(q, z, W ) 
we obtain the relations 

( , , ) ( , , )E q z
q c

B q z1r rx 2

2 2

W
W

W=- - ,	 (32)

( , , ) ( , , )E q z
qc
B q zr rz W

W
W=- .	 (33)

The comparison of formulas (29) and (33) shows that 
e(W )E0z(q, 0, W ) ¹ Erz(q, 0, W ) at z = 0. The absence of continu-
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ity of the normal component of the Fourier transform of the 
electric induction is the result of an approximate description 
of the nonlinear current. However, under conditions 
max(W, ns) >> | ks |uF, when considering the generation of low-
frequency radiation, a precise description of the z-component 
of the electric field is not necessary. It is enough to satisfy the 
conditions of continuity of the tangential components of the 
electric and magnetic fields that lead to the relations 

( ,0, ) ( ,0, )B q B qr W W= ,	 (34)

( ) ( ,0, ) ( ,0, )i
c

q B q B qr s2

2
2e kW W W W- =

	 + 
( , )

( , )
i

iQ q
c J q

2
4

s s
x

1

p
k k n

nW
W

W
+

-
+

.	 (35)

By using (23), we find from equations (34) and (35) the 
Fourier transform of the magnetic field on the surface of the 
metal 

( ,0, )
( ) ( ) [ ( ) / ]

( , ) ( , )

i i

i
B q c c q

qJ q J q4
2

r
s s s

sz x

1 2 2 2

p
n k k

n

e k

k
W

W W W

W W
=

+ + - +

-
.	

		
(36)

Taking into account the relations (19), (20) and (31), after 
the inverse Fourier transform in q we derive from (36) 

( , )B rr W  =

( ) ( ) ( ) [ ( ) ] | |

[ ( / )]

cos cos

sin cos

i i i

i

mc c k

e k

2

16

s s s

p s

2
1

2 2 2

2 2 2
1 2p

n k k w n e q k q k

w q q k n k k n w

W W W

W

+ + + + +

- - +

´  ( ) ( )exp sin cosiI c x zq qW W
-: D.	 (37)

According to (37), the radiation of the metal at low frequen-
cies occurs at an angle q, i.e., in the direction of reflection of 
the fundamental high-frequency signal. Formulas (36) and 
(37) take into account the collisions of the electrons. This 
refinement has led to the emergence of a nonlinear, emitting 
low-frequency current along the surface of the metal. Note 
that Kadlec et al. [2] take into account only the nonlinear sus-
ceptibility, corresponding to the current along the normal to 
the metal surface. We will show below that under conditions 
of interest, including those realised in [2], both currents are 
comparable in magnitude and important for the description 
of the low-frequency response of the metal. 

Expression (37) can be considerably simplified. Often, the 
carrier frequency of the fundamental pulse satisfies the 
inequalities wp >> w >> n and wp

2 >> w2| e0(w)|. Moreover, w >> 
wpuF/c. Under such conditions, k - k1 - wp/c. At a frequ
ency W, it is relatively easy to implement the inequality 
wp

2 >> | e0(W )(W + ins)W |. Thus, ks - (wp/c) /( )i snW W + . 
Taking into account the presented inequalities at W >> ns, we 
obtain from (37) 

( , )
( / )cos

sin cos
i
iB

mc
er

3
16

r
p p

2 2
2-

p
w q w

n q qW
W
W

-

-

	 ´  ( ) ( )exp sin cosiI c x zq qW W
-: D, w >> n.	 (38)

At lower frequencies, when ns >> W, expression (37) takes 
the form 

( , ) 8
[ ( ) /( )]

[ ( ) /( ) ]

cos
sin cos

i i
B

mc
e

i
r

1 2

1 2
r

p s p

s

2 2 2

2p
w q n w

n n
q qW

W

W W
=

+ -

- -

	 ´  ( ) ( )exp sin cosiI c x zq qW W
-: D,  w >> n.	 (39)

Under the conditions discussed, wp >> W, snW  and the func-
tion Br(r, W ) [(38) and (39)] has a maximum at q - p /4. If 
W >> ns, n, then according to (38) the generation of the low-
frequency field is mainly determined by the nonlinear current 
proportional to Jz. On the contrary, if W << ns and n >> snW , 
then according to (39) the main contribution to the generated 
field is caused by the current driven along the x axis. Thus, in 
a wide range of angles q, not close to p/2, expression (39) con-
tains a large factor proportional to n/ snW , which suggests a 
more efficient generation of low-frequency radiation in the 
limit of relatively high frequencies of collisions between the 
electrons. The same conclusion follows from formula (38) if 
n > W. 

Relations (38) and (39) correspond to the commonly 
encountered conditions in which w >> n. If the collision fre-
quency is so large that inequality n >> w is realised, then, gen-
erally speaking, there may be two limiting cases. Then, if n >> 
w >> W >> ns, from (37) we have 

( , ) 16
/cos

sin cos
i

B
mc
err

p p
2 2

2

- p
w

w
q w
q qW

W-

	 ´  ( ) ( )exp sin cosiI c x zq qW W
-: D.	 (40)

The inequality ns << n, for example, can be realised due to a 
significant increase in the frequency of electron – electron col-
lisions in a high-frequency field [7]. 

In the other limiting case, n >> w and ns >> W. In this case, 
from (37) we obtain 

( , ) 8 (1 )
( ) /( )cos

sin cosi
i

B
mc

er
1 2

r
p s

s p
2 2 2

2

- p
w
w

n
n

q n w

q qW W

W
-

+ -

	 ´  ( ) ( )exp sin cosiI c x zq qW W
-: D.	 (41)

In writing (41) we take into account the inequality  Wn << 
wns. At q, not close to p/2, in contrast to (40), expression (41) 
contains the parameter /( )sn wnW , which is usually small. It 
is clear that with such q, the function Br(r, W ) is proportional 
to / sn n . Therefore, when v and ns are close, expression (41) 
depends weakly on the electron collision frequency. 

5. Spectral composition, energy 
and low-frequency radiation field 

The energy of low-frequency radiation emitted from the unit 
area of the metal surface, is given by the time integral of the 
modulus of the Poynting vector: 

3 3

( , ) ( , ) ( )d dW t c t t WE r B r
4 r r

0
/

p
W W=

3-

6 @y y ,	 (42)
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where

( ) | |W c
4

r2
2

p
W = ( , )B r W 	 (43)

is the spectral energy density. Using relations (12), (25), (27), 
(37) and definition (43), for W(W ) we derive the expression 

( )
( ) ( )

64 ( )
W

m c

e k I

s

p

2 3 2 2 2 2 2

2 4 4 2

n w n

w
W

W

W
=

+ +

´  '
( )

[ ( / )]
[ ( ) ]cos c

2 s s

s s
s

1 1
2

2
2

1
2 2

2 1 2
2

2
2

k k k

k n k n k k n w
e q k

W
W W

+ +

+ + +
+

"
"

,

+  ''[ ( ) ]
[ ( ) ]

cos
cos

sin cosc
k

s1
2 1

1
2

2
2 2

2 4

e q k
k k q

q qW W +
+ +

-
, .	 (44)

In the above limiting cases and for the angles q, not close 
to p/2, expression (44) can be considerably simplified. Using 
expressions (38) – (41), from (43) we obtain 

( ) ( ) ( )sin cosW
c mc

e I
9
64

p
2

2
2 2 2 2 2

w
n q qW W W= +e o ,

	 W >> ns, w>> n,	 (45)

( ) ( )sin cosW c mc
e I16

2 2p s s
2

2 2 2
2 2 2

w
n

n n
n q qW W W W W= + +e do n< F ,

	 W << ns, w>> n,	 (46)

( ) ( )sin cosW c mc
e I64

p
2

2
2 2 2

w
w q qW W= e o ,  n >> w >> W >> ns,	

		
(47)

( ) ( )sin cosW c mc
e I32

p s2

2
2 2 2

w
w n

n q qW W W= e o , n >> w, ns >> W.	
		  (48)

Relations (44) – (48) allow us to analyse the spectral composi-
tion of the low-frequency radiation, if the shape of the high-
frequency pulse acting on the metal is specified. For example, 
it is possible in the case of a Gaussian pulse, E2

inc(t) = 
EL

2exp(– t2/t2
p), where the time tp defines the pulse duration  tp 

= 2 ln2pt . The Fourier transform of the energy flux density 
(21), responsible for such a pulse, has the form 

( ) ( /4)expI Ip L p
2 2p t tW W= - ,	 (49)

where IL = cEL
2/(8p) is the maximum energy flux density. 

Let us present numerical estimates for a gold target. We 
assume that the femtosecond pulse is produced by radiation 
of a Ti : sapphire laser with a carrier frequency w - 2.3 ́  
1015 s–1. The maximum energy flux density, IL, will be chosen 
equal to 1012 W cm–2 such that the pulse duration tp ~ 20 fs 
provides no substantial heating of the electrons, and hence 
constant frequency of collisions. The time tp = tp/(2 ln 2 ) 
satisfies the relation wtp >> 1, which allows us to consider the 
change in the field amplitude over the time ~1/w to be slow. 
The angle of incidence on the metal is q = p/4. The plasma 
frequency for gold is wp = 1.37 ́  1016 s–1. At a temperature T 
= 300 K use is made of the electron collision frequency n = 
1.2 ́  1014 s–1 [8] and ns = 3.7 ́  1013 s–1 [9]. According to the data 

of Ref. [8] the value of e0(w) corresponding to the frequency w 
- 2.3 ́  1015 s–1 is ~8. 

Figure 1 shows the dependences of the spectral energy 
density W(W ) (44) for various pulse durations tp. The func-
tion W(W ) is normalised to its maximum value Wmax, achieved 
at tp = 15 fs. The generation efficiency at low frequencies is 
small. With increasing W, the function W(W ) increases, 
reaches a maximum at W ~ 1/tp and then decreases mono-
tonically. Thus, the shorter the pulse, the greater the genera-
tion efficiency. Figure 2 shows similar dependences, which are 
plotted in the case of irradiation of an aluminium target at n 
= 9.3 ́  1013 s–1 [10], ns = 1.62 ́  1014 s–1 [9], wp = 1.9 ́  1016 s–1 
[10] and e0(w) - 4 + 42i [11]. Despite the similarity of the curves 
in Figs 1 and 2 we can see that for aluminium the function 
W(W )/Wmax, with increasing pulse duration, decreases notice-
ably stronger. 

The spectrum of terahertz radiation, such as the one pre-
sented in Fig. 1, is given in [2], where the authors studied 
experimentally the generation of low-frequency radiation on 
the surface of a gold target exposed to the radiation of a ~50-fs, 
810-nm Ti : sapphire. However, according to Fig. 1 [2], the 
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Figure 1.  Spectral energy densities of low-frequency radiation upon ir-
radiation of the gold target by a pulse with a duration of (solid line) 15, 
(dashed curve) 20 and (dotted curve) 25 fs.

W/Wmax

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35
W 
2p THz

Figure 2.  Spectral energy densities of low-frequency radiation upon ir-
radiation of the aluminium target by a pulse with a duration of (solid 
line) 15, (dashed curve) 20 and (dotted curve) 25 fs. 
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maximum in the radiation spectrum takes place at a frequency 
of ~0.5 THz, which is much less than the expected value of 
~1/(2ptp) ~ 5 THz. This difference is probably due to the lim-
ited resolution of the ZnTe detector at frequencies, which are 
close and somewhat larger than 2.5 THz [1]. 

Expression (37) allows us to find the time dependence of 
the field at the observation point of generated radiation: 

3

( , ) ( ) ( , )expd iB t t Br r
2
1

r rp
W W W= -

3-
y

	 = 
3

( ) ( , )Re expd i t B r1
r

0p W W W-6 @y .	 (50)

Because the field at the point of observation differs from the 
field on the metal surface only by the delay time r/c, then by 
integrating expression (37) over W, we assume x = z = 0. In a 
vacuum, | Er | = | Br |; therefore, after integration over W, in (50) 
we find the experimentally studied [1] dependence of the field 
amplitude on time. The results of numerical calculations 
using formulas (37) and (50) are shown in Fig. 3 for the above-
mentioned parameters of the gold target and the parameters 
of the laser pulse used in [1]: l = 810 nm, tp - 50 fs and ILtp 
- 5.8 mJ cm–2. The solid curve in Fig. 3 is obtained by inte-
grating expression (37) over the entire range of frequencies. 
The shape of this curve is similar to the shape of the curve 
found in the experiment [1] and shown in Fig. 3 from paper 
[1]. However, according to this figure the field of the gener-
ated pulse exists during the time ~2 ps, which is almost an 
order of magnitude greater than that calculated theoretically 
(see Fig. 3 in this paper). This difference in the widths of the 
generated pulse can be eliminated, if we integrate over W in 
(50) to the frequency W ~ 2.5 THz, which limits the frequency 
range well recorded by the ZnTe detector. In integrating in 
(50) to W < 2.5 THz, we obtain the pulse, the width of which 
is comparable with that obtained in [1]. The field represented 
by the solid curve in Fig. 3 is produced by two sources – the 
current flowing along the normal to the surface and the cur-
rent flowing along the surface. The contributions of each of 
these currents into the field are shown in Fig. 3 by dashed and 

dotted curves. One can see that under the experimental condi-
tions discussed in [1], the contributions of the currents that 
are proportional to Jx and Jz are comparable in magnitude. In 
this case, the current-induced (proportional to Jz) nonlinear 
polarisability {see formula (2) in [3]} used in [1] for the inter-
pretation of data on the action of an s-polarised pulse on the 
gold surface leads to a time-symmetric shape of the generated 
low-frequency pulse (dashed curve in Fig. 3). The experimen-
tally observed asymmetric shape of the pulse appears due to 
the nonlinear current along the surface taken into account 
(solid and dashed curves in Fig. 3), which, within the above 
theory, differs from zero only when account is taken of elec-
tron collisions. Equation (2) in [1] does not take into account 
the impact of Jx on the generated field. 

Consider the energy of low-frequency radiation. From 
(45), (46) and (49) we obtain that at nstp << 1, the total energy 
density is 

sin cosW
nmc

I
9
8 2

1

p p

p

3

2

2

2 2
2 2p

w t

n t
q q=

+L ,	 (51)

and at nstp >> 1, – 

4 sin cosW
nmc

I

p s
3

2

2

2
2 2

w n
n q q= L .	 (52)

Relations (51) and (52) allow us to assess the total energy of 
the low-frequency pulse. For example, for the laser pulse with 
an energy density IL ~ 1012 W cm–2 and duration 50 fs, irradi-
ating the gold target, from (52) we have W - 1.5 ́  10–14 J cm–2, 
which corresponds to the radiation flux density W/tp ~ 
0.3  W  cm–2. According to relations (51) and (52), the total 
energy of low-frequency radiation is proportional to the 
square of the flux density of radiation at the fundamental fre-
quency. At the same time, W can be estimated by using a rela-
tively small value of IL. The fact is that the above theory takes 
into account the effect of a high-frequency field on the motion 
of electrons in the framework of perturbation theory. This 
approach is certainly justified if the characteristic velocity of 
the electrons in the high-frequency field is less than their ther-
mal velocity, which leads to limitation of IL. In particular, 
under conditions of a high-frequency skin effect, for which we 
present the estimates, the energy flux density limitation has 
the form IL  < 0.125cnkBT, where kB is the Boltzmann con-
stant [12]. For the gold target, when n - 6 ́  1022 cm–3 and the 
electron temperature typical for the fluxes under consider-
ation is T > 1000 K, we obtain IL < 3 ́  1012 W cm–2. 

6. Conclusions 

We have presented above a relatively simple theory of genera-
tion of low-frequency radiation appearing due to the slow 
temporal change in the nonlinear currents generated in the 
metal by a femtosecond s-polarised laser pulse. We have 
shown that the account for the electron collisions can describe 
the contribution to the radiation, caused by the nonlinear cur-
rent along the surface of the conducting target. This contribu-
tion determines to a large extent the shape of the generated 
low-frequency pulse. At higher frequencies of collisions, the 
nonlinear current along the surface provides a more efficient 
generation of low frequency radiation than the nonlinear cur-
rent along the normal to the surface; as a result, there appears 
a significant increase in the total energy of the low-frequency 
pulse. The theory presented can qualitatively explain the time 
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Figure 3.  Field of a low-frequency pulse appearing upon irradiation of 
the gold target by a pulse with a duration of 50 fs (solid curve), and the 
fields appearing by taking into account only the nonlinear current along 
the surface (dashed curve) and only the current along the normal to the 
surface (dotted curve). The fields are normalised to the maximum of the 
modulus of the field, Emax = max |Er(r, t)|.



	 S.G. Bezhanov, S.A. Uryupin1054

and frequency characteristics of terahertz radiation, obtained 
experimentally in [1, 2]. At the same time, obvious is the need 
for the further development of the theory taking into account 
the spatial dispersion of the metal in order to present a more 
adequate description of the generation of radiation at low fre-
quencies. However, this is the subject of a separate study.
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