НАНОСТРУКТУРЫ

Исследование нелокального нелинейно-оптического отклика медных наноструктурированных тонких пленок, изготовленных методом импульсного лазерного напыления^{*}

Б.Фарманфармае, М.Р.Рашидиан Вазири, Ф.Хаджиисмаилбаижи

Методом импульсного лазерного напыления изготовлены наноструктурированные медные тонкие пленки. Спектры оптического поглощения этих пленок имеют пики плазмонного поглощения вблизи 619 нм, что говорит о формировании наночастиц меди на их поверхностях. Микрофотографии пленок, полученные на сканирующем электронном микроскопе, подтверждают формирование наночастиц на поверхностях пленок. При дифракции лазерного пучка в геометрии на прохождение в дальней зоне зарегистрированы дифракционные кольца. С использованием нелокальной теории г-сканирования показано, что для некоторых определенных положений тонких пленок относительно фокальной точки, несмотря на малость максимальных сдвигов аксиальной фазы, в дальней зоне может наблюдаться ряд колец с низкой интенсивностью, что было подтверждено моделированием. Показано, что наилучиим подходом к определению знака и величины нелинейного показателя преломления тонких образцов является использование традиционного метода z-сканирования с закрытой диафрагмой.

Ключевые слова: импульсное лазерное напыление, наноструктурированные тонкие пленки, нелинейная оптика, z-скан.

1. Введение

В последние годы активно обсуждается зависимость нелинейного отклика наноструктурированных тонких пленок от размера и формы содержащихся в них наночастиц, а также возможность управления этими параметрами путем изменения условий нанесения пленок [1]. Наноструктурированные металлические пленки широко исследовались из-за их быстрого нелинейного отклика, а также больших величин нелинейных показателей преломления. Если длина волны излучения близка к длине волны пика плазмонного поглощения наночастиц, нелинейный показатель преломления металлических наноструктурированных пленок увеличивается вследствие усиления локального поля [2].

Одним из методов изготовления разнообразных наноструктур является импульсное лазерное напыление (ИЛН) [3]. К преимуществам данного метода относятся возможность управления размером наночастиц, а также возможность получения их относительно однородного распределения на поверхности подложки. Среди различных наночастиц большое внимание привлекают наночастицы меди из-за их быстрого и значительного оптического нелинейного отклика, поэтому исследовались результаты присутствия таких наночастиц в полупроводниковых тонких пленках, коллоидах и различных стеклах [4].

Для измерения нелинейного показателя преломления может применяться метод *z*-сканирования, который был

*Перевод с англ. Е.А.Витовтовой.

Поступила в редакцию 8 сентября 2013 г.

описан в 1989 г. в работе [5]. Этот метод измерения нелинейных показателей преломления тонких твердых или жидких образцов имеет высокую точность, например при использовании быстродействующих импульсных лазеров [6]. Однако во многих случаях теория z-сканирования, которая была разработана для оценки нелинейного показателя преломления, не совсем точна (например, когда отклик нелинейной среды на лазерное излучение нелокален). Так, в нематических жидких кристаллах переориентация директора в результате действия оптического поля нелокальна в пространстве. Кроме того, при использовании непрерывного лазера или лазера с большой длительностью импульса преобладает тепловая оптическая нелинейность, и отклик среды нелокален [7]. В этих случаях должна применяться теория, учитывающая нелокальный отклик нелинейных сред. Недавно была разработана обобщенная нелокальная теория *z*-сканирования для оценки показателя преломления второго порядка тонких образцов [8]. На основе этой теории по измеренным кривым z-сканирования могут быть легко определены более точные значения нелинейного показателя преломления, а также параметра, который определяет нелокальный отклик тонких образцов.

Кроме метода *z*-сканирования, знак нелинейного показателя преломления образцов может быть найден путем наблюдения дифракционных колец излучения в дальней зоне [9, 10]. Выполненные моделирование и эксперименты указывают на то, что знак нелинейного показателя преломления может быть установлен путем анализа картин таких дифракционных колец и определения знака радиуса кривизны волнового фронта на входной плоскости образца [11–15]. Моделирование экспериментов, связанных с наблюдением дифракционных колец в дальней зоне, возможно с помощью вычисления интеграла Френеля–Кирхгофа в приближении Фраунгофера [10].

В настоящей работе описаны изготовление медных наноструктурированных тонких пленок и измерение их ха-

B.Farmanfarmaei. Laser and Optics Research School, P.O. Box 14155-1339, Tehran, Iran; Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, P.O. Box 14665-678, Tehran, Iran

M.R.Rashidian Vaziri, F.Hajiesmaeilbaigi. Laser and Optics Research School, P.O. Box 14155-1339, Tehran, Iran; e-mail: rezaeerv@gmail.com

рактеристик. Нелинейные показатели преломления пленок исследовались методом *z*-сканирования. Картины дифракционных колец после прохождения гауссова лазерного пучка через нелинейные образцы были зарегистрированы на экране, расположенном в дальней зоне. Описание этих картин проведено на основе численного расчета интеграла Френеля – Кирхгофа.

2. Изготовление образцов и измерение их характеристик

Наноструктурированные медные тонкие пленки были изготовлены методом ИЛН. Для абляции медной мишени внутри вакуумной камеры использовалась вторая гармоника излучения импульсного Nd: YAG-лазера (длина волны 532 нм, частота следования импульсов 10 Гц и их длительность 20 нс по уровню 0.5). Чтобы снизить возможность абляции нежелательных макроскопических кусков с поверхности мишени, она была тщательно отполирована наждачной бумагой и затем очищена ультразвуком в этиловом спирте и деионизированной воде. Плотность энергии лазерного излучения на медной поверхности составляла ~1.46 Дж/см², во время процесса напыления поддерживалось давление 200 мкТор. Лазерный пучок облучал медную поверхность под углом 45° к нормали, и расстояние между мишенью и подложкой было выбрано равным 3 см [16]. Держатель мишени вращался со скоростью 40 об./мин для предотвращения образования кратеров в одном месте на поверхности мишени, а подложка вращалась со скоростью 60 об./мин для улучшения однородности слоя покрытия. Процесс напыления продолжался 15 мин.

После извлечения пленок из вакуумной камеры и перед исследованием их нелинейно-оптических свойств спектрометром были измерены спектры оптического поглощения этих пленок в УФ и видимом диапазонах длин волн. Морфология и средний размер наночастиц в изготовленных наноструктурированных пленках были получены с помощью сканирующего электронного микроскопа.

3. Методика исследования нелинейного показателя преломления

Для измерения нелинейного показателя преломления медных наноструктурированных тонких пленок использовался метод *z*-сканирования. Схема экспериментальной установки для *z*-сканирования показана на рис.1. Лазерный пучок фокусируется линзой, и образец перемещается вдоль оптической оси (ось *z*), проходя через фокальную точку. Во время движения образца регистрируется мощность излучения, проходящего через малую апертуру, расположенную далеко от фокальной точки. Эта мощность как функция положения образца связана со знаком и величиной нелинейного показателя преломления n_2 . Наши эксперименты по *z*-сканированию были выполнены с использованием второй гармоники излучения непрерывного Nd: YAG-лазера (длина волны 532 нм,

Рис.1. Схема экспериментальной установки для z-сканирования.

мощность 150 мВт). Фокусное расстояние линзы *f* составляет 25 см, что дает рэлеевскую длину 3.4 мм.

Для нахождения нелинейных показателей преломления медных наноструктурированных тонких пленок нами применялась нелокальная теория *z*-сканирования [8]. В обобщенной нелокальной теории *z*-сканирования нелокальный параметр *m*, определяющий нелокальный отклик образца, и показатель n_2 могут быть получены по измеренным кривым *z*-сканирования. Параметр *m* рассчитывается по формуле

$$m = \frac{1}{2} \left[\sqrt{\frac{h^2 - 1}{2(7 - h)}} - 1 \right],\tag{1}$$

где

$$h = 1 + 6 \left(\frac{\Delta z_{p-v}}{2z_0}\right)^2;$$
 (2)

 z_0 – рэлеевская длина; Δz_{p-v} – расстояние между максимумом и минимумом на измеренной кривой *z*-сканирования.

Измеряя разность ΔT_{p-v} сигналов в максимуме и минимуме кривой *z*-сканирования с закрытой диафрагмой, можно получить максимальный сдвиг аксиальной фазы в фокальной точке $|\Delta \Phi_0|$ из следующего выражения:

$$\Delta T_{p-v} = \frac{24\sqrt{6} (\sqrt{m'-1})}{\sqrt{(m'+7)^2 - 48} + (5m'-1)} \times \frac{\sqrt{\sqrt{(m'+7)^2 - 48} - (m'+1)}}{\sqrt{(m'+7)^2 - 48} + (5-m')} |\Delta \Phi_0|, \qquad (3)$$

где $m' = (2m + 1)^2$. Зная $|\Delta \Phi_0|$, можно найти нелинейный показатель преломления:

$$n_2 = \frac{\alpha \left| \Delta \Phi_0 \right|}{k I_0 [1 - \exp(-\alpha L)]},\tag{4}$$

где $k = 2\pi/\lambda$ – волновое число; I_0 – аксиальная интенсивность в фокальной точке; α – коэффициент линейного поглощения; L – толщина образца. Знак нелинейности можно определить, исходя из положения максимума относительно минимума на кривой *z*-сканирования: если за минимумом следует максимум, то $n_2 > 0$, а если наоборот, то $n_2 < 0$.

Для наблюдения дифракционных колец в дальней зоне в нашей экспериментальной установке было сделано незначительное изменение: удалены диафрагма и детектор и в дальней зоне установлена ПЗС-камера. Дифракционные картины проецировались на ПЗС-камеру с помощью линзы, снабженной регулируемой диафрагмой во избежание насыщения камеры. Дифракционные кольца могут регистрироваться ПЗС-камерой при любых положениях *z* нелинейного образца на оптической оси.

4. Результаты и их обсуждение

На рис.2 показан типичный спектр поглощения пленок в УФ и видимом диапазонах длин волн. Наличие плазмонных пиков в спектрах поглощения на длине волны 619 ± 4 нм является прямым доказательством формирования наночастиц меди на поверхности пленок [17]. Широкий пик поглощения на рис.2 обусловлен, вероятно, широким распределением по размерам наночастиц меди на поверхности пленки [18].

Рис.2. Типичный спектр поглощения медных наноструктурированных тонких пленок.

Типичная микрофотография пленок, полученная с помощью сканирующего электронного микроскопа, приведена на рис.3. Она подтверждает формирование наночастиц меди на поверхности пленки, средний размер которых был оценен в 35±11 нм. Такой большой разброс значений свидетельствует о широком распределении по размерам наночастиц меди на поверхности пленки.

На рис.4 показана типичная кривая *z*-сканирования с закрытой диафрагмой для наноструктурированных медных тонких пленок. Нелокальный параметр *m* с использованием соотношений (1) и (2) оценен в 2.3. Полученное

Рис.3. Микрофотография медной наноструктурированной тонкой пленки, полученная с помощью сканирующего электронного микроскопа.

Рис.4. Кривая z-сканирования с закрытой диафрагмой для медной наноструктурированной тонкой пленки.

значение *m* больше единицы, и пространственное распределение интенсивности дифрагировавшего пучка уже, чем исходное распределение, вследствие фазового сдвига, связанного с нелокальным откликом поверхности образца [8].

Нелокальный отклик медной тонкой пленки, наноструктура которой показана на рис.3, может быть обусловлен рассеянием тепла внутри пленки и рассеянием гауссова лазерного пучка наночастицами. Зная параметр m, можно рассчитать, на основе выражения (3), что максимальный нелинейный фазовый сдвиг равен 0.7693. Наконец, из соотношения (4) можно оценить показатель преломления n_2 в 6×10⁻⁶ см²/Вт, а поскольку на кривой *z*-сканирования за минимумом следует максимум, то эта величина положительна.

На рис.5,*а* показана зарегистрированная картина дифракционных колец в дальней зоне после прохождения лазерного пучка через нелинейную медную тонкую пленку. Образец располагался на расстоянии 8 см за фокальной точкой. На рис.5,*б* приведено распределение интенсивности по радиальной координате. Наблюдаемая картина дифракционных колец содержит в центре яркое пятно, что соответствует прогнозам работы [10]: если расходящийся гауссов пучок проходит через самофокусирующую среду ($n_2 > 0$), то полученные картины колец в дальней зоне должны содержать в центре яркое пятно. Следует отметить, что дифракционные кольца на рис.5,*а* имеют малую интенсивность и совершенно отличаются от колец, формирующихся при дифракции на нелинейных образцах, обладающих бо́льшими значениями | $\Delta \Phi_0$ | [10].

Нужно иметь в виду, что для наблюдения дифракционных колец, возникающих в результате нелинейности образца, сдвиг $|\Delta \Phi_0|$ должен удовлетворять условию $|\Delta \Phi_0| \gg 2\pi$ [10]. В то же время значение $|\Delta \Phi_0|$, полученное при *z*-сканировании наноструктурированной медной тонкой пленки, составляет 0.7693. Чтобы объяснить причину та-

Рис.5. Картины дифракционных колец с малой интенсивностью, наблюдаемые в дальней зоне (a), а также распределения интенсивности по радиальной координате, полученные в эксперименте (l) и при численном расчете дифракционного интеграла Френеля–Кирхгофа (2) (δ).

кого расхождения, нужно рассмотреть дифракционный интеграл Френеля–Кирхгофа в приближении Фраунгофера, который используется для прогнозирования картин дифракционных колец в дальней зоне:

$$I(\rho) = I_0 \left| \int_0^\infty J_0(k\theta r) \exp\left[-\frac{r^2}{w^2(z)} - i\varphi(r) \right] r dr \right|^2,$$
(5)

где $w(z) = w_0 [1 + (z/z_0)^2]^{1/2}$ – радиус пучка на образце в некоторой точке z; $J_0(x)$ – функция Бесселя первого рода нулевого порядка; θ – угол дифракции в дальней зоне; ρ – радиальная координата в плоскости наблюдения поля на расстоянии D, которая в параксиальном приближении связана с θ соотношением $\rho = D\theta$; r – радиальная координата на входной плоскости образца; $\varphi(r)$ – общий фазовый сдвиг, индуцированный в гауссовом пучке после прохождения его через образец, который в приближении тонкого образца (т.е. при $L \ll z_0$) [8] может быть записан в виде

$$\varphi(r) \approx \frac{kr^2}{2R(z)} + \frac{\Delta \Phi_0}{1 + (z/z_0)^2} \exp\left[-\frac{2mr^2}{w^2(z)}\right].$$
 (6)

Первый член в (6) связан с естественным радиусом кривизны пучка R(z), а второй – с нелинейным фазовым сдвигом. При подстановке (6) в (5) первый член в полученном выражении определяет естественную дифракцию пучка, а второй – дифракционные кольца, возникающие в результате нелокального нелинейного эффекта Керра.

На рис.5,6 показано радиальное распределение интенсивности, полученное путем численного интегрирования выражения (5) с параметрами, соответствующими нашему эксперименту. Для нелокального параметра *т* и максимального сдвига аксиальной фазы $|\Delta \Phi_0|$ используются значения 2.3 и 0.7693 соответственно, определенные с помощью кривой *z*-сканирования образца на рис.4 и нелокальной теории *z*-сканирования. Видно хорошее соответствие между экспериментальной зависимостью и кривой, полученной при численном решении. Нужно отметить, что второй член в выражении (6) очень мал. Таким образом, наблюдаемые дифракционные кольца с малой интенсивностью появляются вследствие наличия первого члена в (6). Как сообщалось ранее [12], изменение величины R(z) может также приводить к формированию дифракционных колец. Следовательно, наблюдаемая картина колец с малой интенсивностью является результатом естественной дифракции самого гауссова пучка и не может быть использована для оценки знака и величины n₂ [9, 12].

5. Заключение

Методом ИЛН нами изготовлены медные наноструктурированные тонкие пленки. Для оценки нелинейного показателя преломления этих пленок использовалась нелокальная теория *z*-сканирования. Поскольку наноструктура исследуемого материала определяет нелокальный отклик и его количественную меру – параметр *m*, различные наноструктуры, в том числе содержащие наночастицы, наностержни, нанопровода и т.д., могут быть исследованы предлагаемым методом.

Установлено, что, несмотря на малую величину максимальных сдвигов аксиальной фазы, которые были определены с помощью нелокальной теории *z*-сканирования, в дальней зоне наблюдаются картины дифракционных колец с малой интенсивностью. Моделирование показывает, что формирование таких колец может быть обусловлено переменным радиусом кривизны волнового фронта гауссова пучка. Следовательно, их нельзя истолковывать как дифракционные кольца, формирующиеся в результате нелинейности отклика пленки.

Ранее нами было показано [19], что в экспериментах по фазовой самомодуляции, которые обычно используются для оценки знака n_2 [20], полученный знак может зависеть от толщины исследуемого образца. Мы полагаем, что для определения знака и величины нелинейного показателя преломления тонких образцов наилучшим является традиционный метод *z*-сканирования с закрытой диафрагмой.

- Canfield B.K., Kujala S., Jefimovs K., Svirko Y., Turunen J., Kauranen M. J. Opt. A: Pure Appl. Opt., 8, S278 (2006).
- Ma G., Sun W., Tang S.H., Zhang H., Shen Z., Qian S. Opt. Lett., 27, 1043 (2002).
- Eason R. Pulsed Laser Deposition of Thin Films: Applications-led Growth of Functional Materials (New York: John Wiley & Sons Inc., 2007).
- Karthikeyan B., Anija M., Suchand Sandeep C.S., Muhammad Nadeer T.M., Philip R. *Opt. Commun.*, 281, 2933 (2008).
- Sheik-Bahae M., Said A.A., Van Stryland E.W. Opt. Lett., 14, 955 (1989).
- Sheik-Bahae M., Said A.A., Wei T.H., Hagan D.J., Van Stryland E.W. IEEE J. Quantum. Electron., 26, 760 (1990).
- 7. Dabby F.W., Whinnery J.R. Appl. Phys. Lett., 13, 284 (1968).
- Rashidian Vaziri M.R, Hajiesmaeilbaigi F., Maleki M.H. J. Opt., 15 (2), 025201 (2013).
- Nascimento C.M., Alencar M.A.R.C., Chávez-Cerda S., da Silva M.G.A., Meneghetti M.R., Hickmann J.M. J. Opt. A: Pure Appl. Opt., 8, 947 (2006).
- Deng L., He K., Zhou T., Li C. J. Opt. A: Pure Appl. Opt., 7, 409 (2005).
- 11. Karimzadeh R. Opt. Commun., 286, 329 (2013).
- Ramirez E.V.G., Carrasco M.L.A., Otero M.M.M., Cerda S.C., Castillo M.D.I. Opt. Express, 18, 22067 (2010).
- Yokota Y., Ogusu K., Tanaka Y. *IEICE Trans. Electron. E*, 81-C, 455 (1998).
- 14. Durbin S.D., Arakelian S.M., Shen Y.R. Opt. Lett., 6, 411 (1981).
- Koushki E., Farzaneh A., Mousavi S.H. J. Phys. B: Appl. Phys., 99, 565 (2010).
- Rashidian Vaziri M.R., Hajiesmaeilbaigi F., Maleki M.H. J. Phys. D: Appl. Phys., 43, 425205 (2010).
- Magruder R.H., Haglund R.F., Yang L., Witting J.E., Zuhr R.A. J. Appl. Phys., 76, 708 (1994).
- Arul Dhas N., Paul Raj C., Gedanken A. Chem. Mater., 10, 1446 (1998).
- Rashidian Vaziri M.R., Hajiesmaeilbaigi F., Maleki M.H. J. Opt., 15 (3), 035202 (2013).
- Lucchetti L., Suchand S., Simoni F. J. Opt. A: Pure Appl. Opt., 11, 034002 (2009).