Экспериментальное исследование диодного усилителя модулированного пучка на основе AlGaAs/GaAs, работающего в режиме глубокого насыщения усиления

Н.В.Дьячков, А.П.Богатов, Т.И.Гущик, А.Е.Дракин

Экспериментально исследовано изменение параметров модуляции оптического сигнала при его усилении в диодном усилителе мощности. Результаты эксперимента находятся в хорошем согласии с теорией, учитывающей нелинейное взаимодействие полей в активной среде лазера через биения инверсии. Показано, что доминантным типом модуляции выходного сигнала является фазовый тип, а глубина модуляции зависит от коэффициента амплитудно-фазовой связи активной среды усилителя и характера модуляции (фазовых соотношений между спектральными компонентами) выходного сигнала.

Ключевые слова: диодный оптический усилитель, амплитудно-фазовая модуляция.

1. Введение

Проведенные в работе [1] расчеты показали перспективность использования диодного усилителя в качестве выходного усилителя мощности модулированного оптического пучка для систем оптической связи в открытом пространстве. В расчетах, выполненных на основе развитой в [2] теории, использовался целый ряд внутренних параметров активной среды диодного лазера. Хотя эти параметры были использованы в большом числе работ, разброс их значений, связанный как с различием активных сред диодных лазеров, так и с технологическими особенностями их конструкций, может вносить дополнительную неопределенность в прогнозируемые результаты. В связи с этим экспериментальная проверка выводов работы [1] путем сравнения данных расчета и эксперимента представлялась целесообразной.

На настоящий момент экспериментальные данные по исследованию усиления модулированных в ГГц диапазоне оптических пучков в диодном усилителе, работающем в режиме глубокого насыщения, отсутствуют. Именно только такой режим и может обеспечить наиболее высокоэффективное преобразование электрической мощности в мощность оптического пучка.

В связи с этим целью настоящей работы было экспериментальное исследование усиления квазимонохроматического оптического излучения в диодном усилителе при условии насыщения усиления входным излучением. Особый интерес представляло получение данных о том, как изменяются параметры модуляции пучка при прохождении его через такой усилитель.

Н.В.Дьячков, А.П.Богатов, Т.И.Гущик, А.Е.Дракин. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; e-mail: kln4d@yandex.ru, bogatov@sci.lebedev.ru

Поступила в редакцию 9 июля 2014 г.

2. Экспериментальная установка

Упрощенная схема экспериментальной установки показана на рис.1. Одночастотный диодный лазер с внешним резонатором (блок I) служил в качестве задающего генератора. Его излучение, спектр которого показан на первой вставке, поступало на вход диодного усилителя-модулятора (блок II). Ток накачки усилителя-модулятора, наряду с регулируемой постоянной составляющей, имел и регулируемую гармоническую составляющую на частотах Ω/2π в диапазоне 400-1150 МГц. В результате спектр оптического излучения на выходе усилителя-модулятора содержал несущую частоту задающего генератора ω_0 и две симметрично расположенные боковые частоты на расстоянии Ω от несущей частоты, как показано на второй вставке. Это излучение через светоделительную пластину поступало на вход диодного усилителя мощности (блок III), который и являлся основным объектом исследования.

Принцип получения и экспериментальная реализация источника спектрально-согласованного модулированного оптического излучения с помощью одночастотного лазера и диодного усилителя-модулятора (блоки I и II) описаны ранее, например в работах [2,3]. Оптическая связь между всеми блоками осуществлялась в параллельном пучке, формируемом линзами 4 и 5 (коллиматорами излучения лазерных диодов).

Все эксперименты выполнялись для пространственного профиля пучка, соответствующего одной поперечной моде лазерных диодов 1, 2, 3. Необходимость острой фокусировки пучка линзами 4 потребовала специальных усилий по выбору оптики и системы юстировки этих линз. В нашем случае оптимальным решением оказалось использование линзовых «головок» из проигрывателей DVD дисков. Все они имели электромеханическое управление, которое осуществлялось ПК. На рассматриваемой упрощенной схеме блоки управления юстировочных узлов и их связь с компьютером не показаны. Линзы 5, задача которых заключалась в формировании параллельного пучка на выходе лазерных и усилительных диодов,

Рис.1. Схема экспериментальной установки:

I – блок одночастотного лазера с внешним резонатором; II – блок диодного усилителя-модулятора; III – блок диодного усилителя мощности; ИП1–ИП3 – источники питания лазера и усилителей; СД1–СД3 – светоделительные пластины; И1, И2 – конфокальные интерферометры Фабри–Перо; ПИ – блок питания интерферометров; МДР – монохроматор МДР-41; ФД1–ФД5 – фотодиоды; ОСЦ – цифровой осциллограф В-423; ПК – управляющий компьютер; *1, 2, 3* – лазерные диоды; *4, 5* – линзы.

юстировались вручную до встраивания соответствующих блоков в оптическую систему. Фокусные расстояния линз составляли ~3 мм, так что линейные размеры оптических пучков блоков I, II, III не превышали 4 мм. На рис.2 представлены оптические схемы задающего генератора и усилительного модуля, показаны направления прецизион-

Рис.2. Оптическая схема одночастотного лазера (a) и усилительного модуля (δ). Тонкими стрелками показана требуемая точность юстировки линз в соответствующих направлениях, слои гетероструктуры (p-n-переход) лежат в плоскости *уг*.

ных юстировок линз и даны точности их перемещений. Плоскостям слоев гетероструктур диодов соответствует плоскость *уг.* Грубые юстировки узлов оптических схем осуществлялись вручную путем механических подвижек.

Резонатор задающего генератора (рис.2,*a*) помимо зеркал, образованных гранями диода, включал в себя внешнее спектрально-селективное зеркало в виде голографической решетки полного внутреннего отражения [4]. Нулевой порядок этой решетки служил оптическим выходом излучения задающего генератора. Излучение с «глухого» зеркала лазерного диода использовалось в качестве дополнительного оптического выхода для контроля спектра генерации с помощью монохроматора МДР-41, снабженного сопряженной с ПК линейкой фотодетекторов (см. рис.1).

Лазерные диоды для задающего генератора и усилителей были изготовлены на основе гетероструктур AlGaAs/GaAs, предназначенных для мощных поперечноодномодовых лазеров, работающих в спектральной области 850 нм, геометрия слоев гетероструктур была близка к описанной в работе [5]. Основное отличие усилительных диодов 2, 3 от лазерного диода 1 заключалось в том, что оптическая ось активной области усилительных диодов была наклонена под углом ~7° к их граням, на которые дополнительно наносились просветляющие покрытия. Это позволило избежать в усилителях самовозбуждения лазерной генерации. Усилительные диоды разработаны в ООО «Суперлюминесцентные диоды» (Москва). Их конструкция описана ранее в [6], а значения параметров частично представлены в табл.1.

Табл.1. Геометрические и материальные параметры исследуемого усилителя.

Параметр	Обозначение	Значение
Фактор оптического огра- ничения	Γ(%)	2.0
Толщина активной области	<i>d</i> _a (нм)	9.2
Ширина гребня	W(MKM)	5.0
Длина усилителя	<i>L</i> (см)	0.16
Длина волны задающего генератора	λ_0 (нм)	850

Оптический спектр входного и выходного излучений для усилителя мощности контролировался с помощью сканирующих конфокальных интерферометров И1 и И2. Развертка интерферометров осуществлялась одновременной подачей пилообразного напряжения от блока ПИ на пьезокерамические держатели зеркал. Выходное излучение интерферометров регистрировалось фотодиодами ФД3 и ФД4, сигналы которых поступали на цифровой осциллограф В-423, где и формировались считываемые ПК оцифрованные данные, как условно показано на рис.1. Входные оптические пучки для интерферометров создавались с помощью светоделительных пластин СД2 и СД3.

На рис.3 представлены типичные спектры входного и выходного пучков, полученные с помощью сканирующих интерферометров И1 и И2. Выходные сигналы интерферометров нормированы на интенсивность излучения несущей частоты, поэтому амплитуды боковых пиков автоматически представляют собой квадраты модулей $|V_{\pm 1}|^2$ соответствующих относительных амплитуд волн на боковых частотах $V_{\pm 1}(\Omega)$, определенных в работе [1]. Ширины пиков на рис.3 соответствуют спектральному разрешению интерферометров.

Светоделительные пластины СД1, СД2 и СД3 создавали также пучки для измерения выходной мощности

Рис.3. Типичные спектры входного (*a*) и выходного (*б*) оптических пучков, полученные с помощью интерферометров И1 (область свободной дисперсии 7.5 ГГц) и И2 (область свободной дисперсии 3.75 ГГц). Показаны два порядка пропускания интерферометров.

задающего генератора и интегральной входной и выходной мощностей исследуемого усилителя с помощью фотодиодов ФД1, ФД2 и ФД5, сигналы которых обрабатывались ПК.

Регулируя уровень постоянного тока накачки источников питания ИП1 и ИП2, можно было в необходимых пределах изменять мощность входного оптического пучка для исследуемого усилителя (блок III), а регулировкой амплитуды и частоты переменной составляющей источника питания ИП2 изменять глубину и частоту его гармонической модуляции.

Таким образом, описанная экспериментальная установка позволяла в широких пределах изменять параметры входного модулированного оптического пучка усилителя, а также режим его работы, варьируя ток накачки от источника ИПЗ, и выполнять все необходимые измерения – как спектрального состава излучения, так и интенсивности пучка при каждом его прохождении через оптический блок.

3. Результаты эксперимента и их анализ

Первая часть исследований была посвящена измерениям статических характеристик усилителя, в которых входной пучок представлял собой монохроматическое излучение постоянной интенсивности на несущей частоте ω_0 задающего генератора. В этом случае переменная составляющая тока усилителя-модулятора (диод 2) была равна нулю, а регулировка постоянной составляющей тока позволяла управлять интенсивностью входного пучка усилителя (диод 3). На рис.4 и 5 представлены результаты таких исследований.

На рис.4, *а* показаны типичные ватт-амперные характеристики – зависимости мощности выходного пучка P_{out} от тока накачки *J* при различных мощностях входного излучения P(0). Видно, что ватт-амперная характеристика линейна даже при достаточно высоких значениях тока *J*. Это, во-первых, свидетельствует о хорошей точности теоретического расчета и адекватности сделанного в [1] приближения для зависимости выходной мощности усилителя от его тока накачки (соотношение (10)). Во-вторых, полагая эффективность накачки $\Gamma_w \cong 1$, что вполне допустимо для данного типа лазерных диодов, можно по наклону линейного участка сразу найти значение нерезонансных потерь α . Из данных рис.4,*a* следует, что $\alpha = 8.5$ см⁻¹.

На рис.4, б представлены результаты (как и на рис.4, а, но более подробно) для начального участка ватт-амперной характеристики в логарифмическом масштабе. Используя результаты работы [1], можно показать, что при малых токах линейный участок зависимости на рис.4, б характеризуется наклоном:

$$\frac{\mathrm{d}(\ln P_{\mathrm{out}})}{\mathrm{d}J} = \left(\frac{\Gamma_{\mathrm{w}}\Gamma}{ed_{\mathrm{a}}W}\right)\sigma\tau.$$
(1)

С помощью данных табл.1 и рис.4, δ можно сразу найти $\sigma\tau$. Это же произведение определяет и интенсивность насыщения $I_{\rm s} = \hbar\omega_0/(\sigma\tau)$, а значит, и нелинейный участок зависимости на рис.4, δ . Все это вместе дает возможность, помимо произведения $\sigma\tau$, найти по данным рис.4, δ значения κ – коэффициента ввода оптической мощности из параллельного пучка в оптический волновод усилителя, а также тока прозрачности $J_{\rm tr}$ путем наилучшего совпадения экспериментальных и расчетных данных. Это можно

Рис.4. Ватт-амперные характеристики усилителя мощности P_{out} при разных мощностях входного излучения P_{in} . Экспериментальные результаты (точки) и расчет (сплошные линии) представлены в линейном масштабе во всем диапазоне (*a*) и в полулогарифмическом масштабе на начальном участке диапазона (б) токов накачки.

сделать, поскольку все эти коэффициенты отвечают за различные свойства функции $P_{out}(J)$ и поэтому являются линейно-независимыми. На рис.4 уже использовано зна-

Н.В.Дьячков, А.П.Богатов, Т.И.Гущик, А.Е.Дракин

чение κ для пересчета измеряемой в эксперименте мощности, падающей на усилитель, в мощность P(0) входного пучка внутри усилителя. Точность определения значений $\sigma \tau$, κ и $J_{\rm tr}$ оказалась вполне приемлемой для дальнейшего нашего анализа, т. к. $P_{\rm out}$ в наших измерениях изменялась в диапазоне более четырех порядков.

Это подтверждают данные рис.5, из которых можно независимым образом найти ток прозрачности J_{tr} и коэффициент ввода к. Действительно, при токе вблизи тока прозрачности ($J \approx J_{\rm tr}$) зависимость $P_{\rm out}$ от P(0) должна быть линейной, при $J > J_{tr}$ она сублинейна, а при $J < J_{tr}$ - суперлинейна. Такое поведение можно видеть на рис.5 при $J_{\rm tr}$ = 23 мА. Из данных на рис.4,6 получено, что $J_{\rm tr}$ = 23.2±1 мА (диапазон, в котором лежат все точки пересечения трех экспериментальных зависимостей). Наклон прямой на рис.5,6, пересчитанный на мощность входного пучка вне усилителя, дает $\kappa = 0.22$, что вполне согласуется с $\kappa = 0.23$, полученным из данных рис.4, б. В табл.2 приведен набор полученных из эксперимента значений параметров исследованных усилителей в статическом режиме. При этом оцениваемая нами погрешность значений не превышает существенно того разброса, который испытывают остальные параметры этих усилителей, например геометрических и оптических, приведенные в табл.1 для однотипных образцов лазерных диодов.

Таким образом, вышеприведенные результаты позволяют считать, во-первых, что представленные в [1,2] теория и расчеты на ее основе адекватно описывают поведение статических характеристик усилителя, а во-вторых, что эти результаты позволяют найти параметры усилителя, от которых зависят и его динамические характеристики.

Результаты исследования динамических характеристик представлены ниже. Основными измеряемыми величинами в эксперименте были мощности пучка на входе и выходе усилителя P(0) и P_{out} , а также

Рис.5. Зависимости выходной мощности усилителя Pout от входной мощности излучения Pin при разных токах накачки усилителя.

Табл.2. Параметры исследуемого усилителя, полученные из анализа его статических характеристик.

Параметр	Обозначение	Значение
«Динамическое» сечение стиму- лированного перехода	$\sigma \tau \ (10^{-15} \text{ Hc} \cdot \text{cm}^2)$	1.9
Ток прозрачности	$J_{\mathrm{tr}}\left(\mathrm{MA} ight)$	23.0
Коэффициент нерезонансных потерь в волноводе	α (cm ⁻¹)	8.5
Коэффициент ввода излучения в усилитель	к (%)	23
Интенсивность насыщения усиления	<i>I</i> _s (кВт/см ²)	123
Мощность насыщения усиления	$P_{\rm s} ({\rm mBt})$	2.83

$$|V_{\pm 1}|^2 = \frac{P(\omega_0 \pm \Omega)}{P(\omega_0)} \tag{2}$$

– отношения мощностей на боковых частотах $P(\omega_0 \pm \Omega)$ к мощности волны на несущей частоте $P(\omega_0)$. В эксперименте квадраты модулей $|V_{\pm 1}|^2$ находились как амплитуды боковых пиков сигнала интерферометра, нормированные на амплитуду пика, соответствующего несущей (центральной) частоте (см. рис.3). При сравнении экспериментальных и расчетных данных для расчета $|V_{\pm 1}|^2$ использовалось выражение (15) из работы [1].

На рис.6 представлены данные, характеризующие зависимость отношения мощностей на боковых частотах на выходе усилителя (z = L) к аналогичному отношению на его входе (z = 0), $|V_{\pm 1}(L)|^2/|V_{\pm 1}(0)|^2$, от мощности P_{out} , которая изменялась при изменении тока накачки усилителя. Параметром этих зависимостей являлась частота модуляции. Видно, что результаты расчета и эксперимента удовлетворительно согласуются.

Из данных рис.6 следует, что относительная интенсивность боковых частот падает с ростом выходной мощности. Однако абсолютное значение мощности волн на боковых частотах $P(\omega_0 \pm \Omega)$ растет за счет увеличения мощности несущей частоты (полной выходной мощности) $P(\omega_0)$. Более того, значения $|V_{\pm 1}(L)|^2$ при мощности свыше 100 мВт выходят на постоянный уровень. Это означает, что при дальнейшем увеличении выходной мощности параметры модуляции сохраняются. Такое поведение - исключительно результат различия коэффициентов амплитудно-фазовой связи R_m и R для среды усилителя-модулятора и усилителя мощности соответственно. Это следует из соотношения (15) работы [1], если учесть, что при росте выходной мощности (росте u) $|K| \rightarrow 0$. Физический смысл такого поведения заключен в том, что смешанный тип модуляции, которым обладает входной пучок, в усилителе мощности переходит в чисто фазовый тип модуляции. Дальнейшее усиление фазово-модулированного сигнала происходит уже без изменения параметров его модуляции. Это свидетельствует о том, что доминантным типом модуляции в диодном усилителе мощности является фазовая модуляция, глубина которой определяется значением R активной среды усилителя и характером модуляции (соотношением между амплитудной и фазовой компонентами) входного сигнала. В нашем случае этот характер определялся параметром $R_{\rm m}$. Только тогда, когда $R_{\rm m}$ значительно отличается от R, возможно усиление оптического сигнала в диодном усилителе мощности при сохранении глубины его модуляции.

Заметим, что интенсивности на выходе усилителямодулятора для стоксовой и антистоксовой компонент

Рис.6. Зависимости относительного изменения квадратов модулей амплитуд стоксовой (*a*) и антистоксовой (*б*) компонент излучения при усилении в усилителе мощности при мощности входного излучения 3.2 мВт и различных частотах модуляции входного пучка. Постоянная составляющая тока накачки усилителя-модулятора – 110 мА. Точки – эксперимент, сплошные кривые – расчет при коэффициентах амплитудно-фазовой связи усилителя-модулятора $R_{\rm m} = 6.0$, усилителя мощности R = 3.0 и $\tau = 1.6$ нс.

строго равны: $|V_{\pm 1}(0)|^2 \equiv |V_{-1}(0)|^2 = |V(0)|^2$, что следует из равенства (14) в [1]. А их фазовые соотношения и, следовательно, соотношения между компонентами амплитудной и фазовой модуляций, определяются коэффициентом амплитудно-фазовой связи $R_{\rm m}$. Если значения R и $R_{\rm m}$ не совпадают, то на выходе усилителя мощности всегда будет присутствовать компонента излучения с чисто фазовой модуляцией, что и отражается в наличии слагаемых, пропорциональных $R_{\rm m} - R$ и $(R_{\rm m} - R)^2$ в выражении (15) из [1]. Слагаемое $(R_{\rm m} - R)^2/(1 + R_{\rm m}^2)$ и определяет тот постоянный уровень, к которому стремится отношение $|V_{\pm 1}(L)|^2/|V(0)|^2$ при росте выходной мощности усилителя.

Наличие слагаемого, пропорционального $R_m - R$, приводит к различию интенсивностей стоксовой и антистоксовой компонент на выходе. Из расчета также следует, что при росте выходной мощности это различие стремится к нулю, как и должно быть при чисто фазово-модулированном пучке (рис.7).

В нашем случае различие между $R_{\rm m}$ и R обеспечивалось различием рабочих точек (постоянной составляющей) тока накачки усилителя-модулятора и усилителя мощности. Известно (см., напр., [7–9]), что коэффициент амплитудно-фазовой связи активной среды зависит от уровня накачки (концентрации носителей в активной области) и длины волны (ее положения относительно спектрального максимума усиления). Поэтому изменением постоянного тока через усилитель-модулятор можно изменять $R_{\rm m}$, а значит, и то значение, на которое в пределе выходит $|V_{\pm 1}(L)|^2$. Об этом свидетельствуют рис.8 и 9. В

Рис.7. Зависимости разности относительного изменения квадратов модулей амплитуд антистоксовой (рис. $6, \delta$) и стоксовой (рис.6, a) компонент излучения при усилении в усилителе мощности при разных частотах модуляции входного пучка и тех же параметрах, что и на рис.6.

соответствии с экспериментальными данными работ [8,9] можно полагать, что увеличение тока накачки усилителямодулятора при фиксированной длине волны увеличивало $R_{\rm m}$ с 4.3 до ~6.0.

Наблюдаемое на рис.6 и 8 некоторое отклонение экспериментальных точек от расчетных кривых может быть связано не только со статистической ошибкой, но и с неточностью определения параметров усилителя. Например, при нахождении их значений мы принимали $\Gamma_w = 1$, в то время как реальное значение может составлять ~0.8, что

Рис.8. Зависимости относительного изменения квадратов модулей амплитуд стоксовой (*a*) и антистоксовой (*б*) компонент излучения при усилении в усилителе мощности при различных токах через усилитель-модулятор и частоте модуляции 800 МГц. Точки – эксперимент, сплошные кривые – расчет для $R_{\rm m} = 4.35$, 4.75 и 6.0 при токах 35, 70 и 110 мА соответственно. Для усилителя мощности R = 3.0.

безусловно приведет к некоторым поправкам значений найденных параметров. Кроме того, расчетные кривые получены в модели, в которой принято, что R постоянно по длине усилителя. Конечно, в реальности значение Rвблизи входной грани может отличаться от его значения вблизи выходной грани усилителя. Поэтому под R_m и R, использованными в расчете, можно понимать некоторые их значения, усредненные по длине соответствующих усилителей.

Тем не менее можно считать, что согласие представленных на рис.6 и 8 результатов расчета и эксперимента достаточно хорошее.

Что касается различия в интенсивностях стоксовой и антистоксовой компонент, то в нашем случае, поскольку $R_{\rm m} > R$, антистоксова компонента была несколько больше. Однако расчет и эксперимент показывают, что это различие невелико и составляет менее 10% (по отношению к интенсивности на входе) в максимуме. Хотя экспериментальные данные рис.7 и 9 имеют значительный разброс относительно расчета, тем не менее можно уверенно констатировать, что этот разброс не влияет на вывод о доминировании в нашем случае антистоксовой компоненты и о наличии максимума для мощностей компонент (рис.7 и 9) при умеренных значениях выходной мощности, как это следует из расчета.

4. Обсуждение и выводы

В настоящей работе впервые, насколько нам известно, экспериментально исследовано распространение и усиление модулированного пучка в диодном усилителе мощности, работающем в режиме глубоко насыщения. В наших исследованиях мы вынуждены были ограничивать выходную мощность усилителя на уровне ~100 мВт из-за опасений появления необратимых изменений усилителя, обусловленных оптическим разрушением выходной грани диода. Такое ограничение мощности никак не связано с предметом исследования, поскольку имеет другую физическую природу и снимается независимыми методами. Примером может служить работа [10], в которой за счет оптического упрочнения выходной грани и оптимизации горизонтального волновода лазерного диода достигнута выходная мощность ~2 Вт в режиме стационарной поперечно-одномодовой генерации. Поэтому, с нашей точки зрения, все результаты настоящей работы останутся в силе или даже улучшатся (например, расширится полоса моду-

Рис.9. Зависимости разности относительного изменения квадратов модулей амплитуд стоксовой (рис.8,*a*) и антистоксовой (рис.8, δ) компонент выходного излучения при разных токах усилителямодулятора и тех же параметрах, что и на рис.8.

ляции) при дальнейшем увеличении выходной мощности усилителя.

Результаты исследований в динамическом и статическом режимах работы усилителя мощности в полной мере подтвердили адекватность теории, изложенной в работе [2], поскольку расчеты, выполненные в рамках этой теории в [1], хорошо согласовывались с экспериментальными данными. Более того, их сравнение позволило найти параметры усилителя, необходимые для полного моделирования его работы не только в тех режимах, которые были рассмотрены выше, но и в ряде других случаев. В частности, например, если в статическом режиме измеряемой величиной является параметр $\sigma\tau$ (интенсивность насыщения), то в динамическом режиме наряду с этим параметром фигурирует параметр $\Omega \tau$. Найдя этот параметр из эксперимента по данным рис.6 и 8, можно с использованием найденного ранее $\sigma \tau$ по отдельности определить σ $u \tau$, что и сделано в настоящей работе.

Экспериментально показано, что изменения интенсивностей боковых частот в результате нелинейного взаимодействия их полей с полем «сильной» несущей частоты зависят от их фазовых соотношений. Один и тот же механизм взаимодействия полей через инверсию и зависимость показателя преломления от концентрации носителей приводят к различным результатам, если амплитудно-фазовые соотношения полей на входе усилителя различны, как это показано в работах [11-14]. Например, если на входе усилителя присутствует только одно «сильное» поле и имеется «слабое» поле в стоксовой области, а антистоксова компонента каким-то образом подавлена (например, из-за потерь на этой частоте или отсутствия синхронизма), то стоксова компонента будет испытывать существенное дополнительное усиление со стороны сильного поля. В другом случае, когда во входном сигнале присутствуют как стоксова, так и антистоксова компоненты это же взаимодействие приведет к тому, что комбинация полей боковых частот, соответствующая амплитудной модуляции сигнала, будет подавляться сильным полем центральной частоты. Напротив, комбинация полей, соответствующая фазово-модулированному сигналу, при усилении не будет испытывать воздействия этого сильного поля.

В экспериментах подтверждено, что эффективное усиление модулированного сигнала в системе диодный усилитель-модулятор – диодный усилитель мощности возможно, если коэффициенты R_m и R значительно различаются. При этом доминантным типом модуляции усиленного пучка будет фазовый тип.

В наших экспериментах входной сигнал имел одинаковые интенсивности волн на боковых частотах, а их фазовые соотношения задавались коэффициентом амплитуднофазовой связи R_m , причем R_m превышало R. В этом случае выходная антистоксова компонента была несколько больше стоксовой. Из расчетов понятно, что в противном случае ($R_m < R$), выходная стоксова компонента может превышать антистоксову. Однако в любом случае при достаточно высокой мощности выходные интенсивности стоксовой и антистоксовой компонент становятся равными, и их фазовые соотношения соответствуют фазово-модулированному сигналу.

В случае, когда $R_{\rm m} = R$, на выходе усилителя боковые компоненты будут подавлены. Их интенсивности будут стремиться к нулю по мере роста выходной мощности усилителя. Это означает, что получение мощного модулированного оптического пучка в нашей системе усилитель-модулятор – выходной усилитель мощности возможно только при $R_{\rm m} \neq R$. Кроме того, в любом случае выходной пучок диодного усилителя мощности будет преимущественно фазово-модулированным с подавленной амплитудно-модулированной компонентой.

В заключение отметим, что результаты настоящей работы в совокупности с результатами работы [1] позволяют считать, что диодные лазеры можно рассматривать как элементную базу для создания на их основе высокоэффективных и малогабаритных излучателей для систем связи в открытом пространстве со средней выходной мощностью фазово-модулированного пучка мультиваттного уровня и расходимостью, близкой к дифракционному пределу. При этом полоса модуляции может находиться на уровне ~10 ГГц при усилении в выходном усилителе мощности амплитудно-модулированного пучка и свыше 100 ГГц при усилении фазово-модулированного пучка.

Работа выполнена в рамках темы №01201156501 «Исследование свойств оптоэлектронных материалов и структур и возможностей их использования в лазерной технике, информатике и медицине» и при частичной финансовой поддержке РФФИ (грант №12-02-31345 мол_А_2012) и УНК ФИАН.

- 1. Дьячков Н.В., Богатов А.П., Гущик Т.И., Дракин А.Е. *Кван*товая электроника, **44**, 997 (2014).
- Богатов А.П., Дьячков Н.В., Дракин А.Е., Гущик Т.И. Квантовая электроника, 43, 699 (2013).
- Анненков Д.М., Богатов А.П, Елисеев П.Г., Охотников О.Г., Пак Г.Т., Рахвальский М.П., Федоров Ю.Ф., Хайретдинов К.А. Квантовая электропика, 11, 231 (1984).
- Соскин М.С., Тараненко В.Б. Квантовая электроника, 4, 536 (1977).
- Плисюк С.А., Батрак Д.В., Дракин А.Е., Богатов А.П. Квантовая электроника, 36, 1058 (2006).
- Лобинцов А.А., Успенский М.Б., Шишкин В.А., Шраменко М.Б., Якубович С.Д. Квантовая электроника, 40, 305 (2010).
- Wenzel H., Erbert G. IEEE J. Sel. Topics Quantum Electron., 5, 637 (1999).
- Богатов А.П., Болтасева А.Е., Дракин А.Е., Белкин М.А., Коняев В.П. Квантовая электроника, 30, 315 (2000).
- Богатов А.П., Болтасева А.Е., Дракин А.Е., Белкин М.А., Коняев В.П. ФТП, 34, 1258 (2000).
- Sverdlov B., Pfeiffer H.-U., Zibik E., et al. Proc. SPIE Int. Soc. Opt. Eng., 8605, 860508-1 (2013).
- 11. Bogatov A.P., Eliseev P.G., Sverdlov B.N. *IEEE J. Quantum Electron.*, **QE-11**, 510 (1975).
- Богатов А.П., Елисеев П.Г., Охотников О.Г., Рахвальский М.П., Хайретдинов К.А. Квантовая электроника, 10, 1851 (1983).
- Bogatov A.P., Eliseev P.G., Kobildzhanov O.A., Madgazin V.R. IEEE J. Quantum Electron., QE-23, 1064 (1987).
- Батрак Д.В., Богатов А.П., Каменец Ф.Ф. Квантовая электроника, 33, 941 (2003).