ЛАЗЕРЫ

Механизм деактивации синглетного кислорода в электроразрядном кислородно-иодном лазере

В.Н.Азязов, П.А.Михеев, А.А.Першин, А.П.Торбин, М.С.Хэвен

Определено влияние реакции молекулярного синглетного кислорода с колебательно-возбужденной молекулой озона $O_2(a^l \Delta) + O_3(v) \rightarrow 2O_2 + O$ на скорость убыли $O_2(a^l \Delta)$ в электроразрядном кислородно-иодном лазере. Показано, что эта реакция является доминирующим каналом потерь $O_2(a^l \Delta)$ на выходе электроразрядного генератора синглетного кислорода и может также вносить существенный вклад в убыль $O_2(a^l \Delta)$ в разрядной зоне генератора.

ke@sci.lebedev.ru - http://www.quantum-electron.ru

Ключевые слова: синглетный кислород, кислородно-иодный лазер, деактивация, рекомбинация, колебательно-возбужденный озон, разряд, $O_2(a^{l}\Delta), O_3, O(^{3}P)$.

Малый коэффициент усиления активной среды электроразрядного кислородно-иодного лазера (ЭКИЛ) [1] не позволяет осуществлять эффективный съем запасенной в синглетном кислороде $O_2(a^{1}\Delta)$ энергии [2]. Для повышения коэффициента усиления необходимо увеличивать концентрации как атомов иода, так и молекул $O_2(a^{1}\Delta)$. Обнаружено [3], что скорость деактивации $O_2(a^{1}\Delta)$ на выходе электроразрядного генератора синглетного кислорода (ЭГСК) растет с увеличением концентраций атомов кислорода [O], молекул кислорода [O₂], а также буферного газа [M]. Скорость убыли $O_2(a^{1}\Delta)$ на выходе ЭГСК удовлетворительно объясняется феноменологическим трехчастичным механизмом деактивации [3]

$$O + O_2(a^{1}\Delta) + M \rightarrow O + O_2 + M.$$
⁽¹⁾

В работах [4–6] также наблюдали аномально высокую скорость деактивации $O_2(a^{1}\Delta)$ в смесях $O-O_2-Ar-$ He–CO₂ в послефотолизной зоне. При этом добавление Ar не сказывалось на скорости деактивации $O_2(a^{1}\Delta)$, а добавление He и CO₂ даже уменьшало ее [6], что находится в противоречии с механизмом (1). Скорость убыли $O_2(a^{1}\Delta)$ в послефотолизной зоне хорошо объясняется химическим процессом [5, 6]

$$O_2(a^1\Delta) + O_3(v) \rightarrow 2O_2 + O, \tag{2}$$

e-mail: anchizh93@gmail.com

M.S.Heaven. Emory University, Atlanta, GA, 30322, USA; e-mail: mheaven@emory.edu

Поступила в редакцию 27 июня 2014 г., после доработки – 10 сентября 2014 г.

где колебательно-возбужденная молекула озона $O_3(v)$ образуется в процессе трехчастичной рекомбинации [7]

$$O + O_2 + M \rightarrow O_3(v) + M.$$
(3)

Здесь $v = v_1 + v_2 + v_3 - суммарное число квантов на дефор$ $мационной (<math>v_2 = 701 \text{ см}^{-1}$), симметричной ($v_1 = 1103 \text{ см}^{-1}$) и антисимметричной ($v_3 = 1042 \text{ см}^{-1}$) валентных модах молекулы озона [7]. В ряде работ [7–10] также отмечается, что $O_3(v)$ эффективно реагирует с $O_2(a^{1}\Delta)$. Несмотря на это, процесс (2) ранее не использовался для объяснения высокой скорости убыли $O_2(a^{1}\Delta)$ на выходе ЭГСК. Целью настоящей работы является определение влияния процесса (2) на динамику $O_2(a^{1}\Delta)$ в ЭКИЛ.

Кинетическая схема процессов с участием колебательно-возбужденного озона приведена в [6]. Отсутствие измеренных значений вероятностей возбуждения колебательных мод молекулы O_3 в процессе (3) и констант скоростей процесса (2) для конкретных наборов значений v_1 , v_2 и v_3 осложняет моделирование колебательной кинетики озона. В работе [5] показано, что упрощенная модель колебательной кинетики озона с объединенной модой v адекватно описывает экспериментальные результаты, полученные в [4–6]. В процессе (3) образуется молекула озона с $v \ge 3$ [5,7]. В столкновениях с частицами среды колебательные кванты перераспределяются между тремя модами. Молекула озона $O_3(v)$ деактивируется в VT-процессе [7]

$$O_3(v) + M \to O_3(v-1) + M$$
 (4)

или удаляется в химических реакциях (2) и

$$O_3(v) + O \rightarrow O_2 + O_2. \tag{5}$$

Реакции (2) и (5) с v < 2 являются медленными и не оказывают существенного влияния на кинетику $O_3(v)$ [5]. Для $v \ge 2$ в [5] приводятся следующие значения констант скоростей реакций (2) и (5): $k_2 = 4.1 \times 10^{-11}$ см³·с⁻¹ и $k_5 = 1.2 \times 10^{-11}$ см³·с⁻¹.

Квазистационарная концентрация $O_3(v \ge 2)$ может быть найдена из баланса его образования в процессе (3) и убыли в процессах (2), (4) и (5):

В.Н.Азязов, А.П.Торбин. Самарский филиал Физического института им. П.Н.Лебедева РАН, Россия, 443011 Самара, ул. Ново-Садовая, 221, Самарский государственный аэрокосмический университет, Россия, 443086 Самара, Московское ш., 34;

e-mail: azyazov@fian.smr.ru, torbinalex@gmail.com

П.А.Михеев. Самарский филиал Физического института им. П.Н. Лебедева РАН, Россия, 443011 Самара, ул. Ново-Садовая, 221; e-mail: mikheyev@fian.smr.ru

А.А.Першин. Самарский государственный аэрокосмический университет, Россия, 443086 Самара, Московское ш., 34;

Покажем, что процесс (2) обеспечивает такие же скорости убыли $O_2(a^{1}\Delta)$, как и процесс (1) в условиях экспериментов работы [3], где впервые был предложен трехчастичный процесс деактивации. Для этого рассмотрим отношение скоростей этих процессов с учетом (6):

$$Q_{2/1} = \frac{k_2[O_3(v \ge 2)][O_2(a)]}{\sum_{M} k_1^M[O][O_2(a)][M]}$$

=
$$\frac{k_2[O_2]\sum_{M} k_3^M[M]}{\sum_{M} k_1^M[M](k_2[O_2(a)] + \sum_{M} k_4^M[M] + k_5[O])}.$$

В условиях экспериментов [3] (Ar: O₂ = 99:1, давление смеси 100 Тор, концентрация молекул синглетного кислорода [O₂(a)] = 1.5×10^{15} см⁻³, [O] = 2×10^{15} см⁻³, температура смеси T = 300 K) при $k_1^{\text{Ar}} = 0.62 \times 10^{-32}$ см⁶·c⁻¹ [3], $k_1^{\text{O2}} = 1 \times 10^{-32}$ см⁶·c⁻¹ [3], $k_3^{\text{O2}} = 6 \times 10^{-34}$ см⁶·c⁻¹ [3], $k_3^{\text{Ar}} = 0.62 \times k_3^{\text{O2}}$ [3], $k_4^{\text{O2}} = 3 \times 10^{-14}$ см³·c⁻¹ [7] и $k_4^{\text{Ar}} = 5.9 \times 10^{-15}$ см³·c⁻¹ [7] отношение $Q_{2/1}$ близко к единице, т.е. скорость убыли O₂(a¹Δ) на выходе ЭГСК в равной степени обеспечивается процессами (1) и (2).

Скорость процесса (2) с учетом (6) может быть представлена в следующем виде:

$$R_{2} = k_{2}[O_{3}(v \ge 2)][O_{2}(a)] = \frac{k_{2}[O_{2}(a)]\sum_{M} k_{3}^{M}[O][O_{2}][M]}{k_{2}[O_{2}(a)] + \sum_{M} k_{4}^{M}[M] + k_{5}[O]}$$

Для типичных условий в послеразрядной зоне ЭГСК [1] ([He] = 9×10^{17} см⁻³, [O₂] = 2.5×10^{17} см⁻³, [O] = 5×10^{15} см⁻³, [O₂(a)] = 3×10^{16} см⁻³, T = 550 K) слагаемые в знаменателе удовлетворяют условию

$$k_2[O_2(a)] \gg \sum_{M} k_4^{M}[M] + k_5[O]$$

В этом случае

$$R_2 \approx \sum_{M} k_3^{M}[O][O_2][M],$$

и скорость процесса (2) лимитируется скоростью образования $O_3(v)$ в процессе трехчастичной рекомбинации (3). Это явилось причиной того, почему авторы работы [3] считают основным механизмом деактивации $O_2(a^{1}\Delta)$ трехчастичный процесс.

Реакция (2) может вносить заметный вклад в скорость убыли $O_2(a^{1}\Delta)$ и в разрядной зоне ЭГСК. Рассмотрим отношение скорости данной реакции к скорости самого быстрого процесса в разрядной зоне – деактивации $O_2(a^{1}\Delta)$ электронным ударом:

$$O_2(a^1\Delta) + e \to O_2 + e. \tag{7}$$

В экспериментальных условиях работы [11] отношение скоростей процессов (2) и (7) $Q_{2/7}$ составляет ~0.2 в случае, когда атомы О не удалены из системы. В экспериментах с уменьшенной концентрации атомов О за счет добавления NO и покрытия стенок камеры окисью ртути отношение намного меньше – $Q_{2/7} \approx 0.03$. Следовательно, процесс (2) вносит заметный вклад в скорость убыли $O_2(a^{1}\Delta)$ и в разрядной зоне ЭГСК при избытке атомов О. В работе [11] в результате удаления избытка атомов О получена рекордная концентрация $O_2(a^{1}\Delta)$ в ЭГСК.

Таким образом, процесс (2) может обеспечить наблюдаемые скорости деактивации $O_2(a^{1}\Delta)$ как в послеразрядной [3], так и в послефотолизной [5] зонах. Процессы (2)–(5) также необходимо включать в кинетическую схему процессов в разрядной зоне ЭГСК. В работах [4–9] приведены экспериментальные факты, подтверждающие определяющую роль в деактивации синглетного кислорода процесса (2), тогда как процесс (1) является феноменологическим и не может обеспечить скорость убыли $O_2(a^{1}\Delta)$ в послефотолизной зоне [4, 5]. Скорость деактивации $O_2(a^{1}\Delta)$ можно уменьшить удалением избытка атомов О, например за счет добавления в смесь NO [1] или покрытия стенок камеры окисью ртути [11], а также добавлением в смесь на выходе ЭГСК тушителей $O_3(v)$, таких как CO₂, SF₆, SiF₄ и т.д.

Выполнение настоящей работы в Самарском государственном аэрокосмическом университете (СГАУ) поддержано Минобрнауки РФ в рамках Программы повышения конкурентоспособности СГАУ на 2013–2020 гг. и Государственного задания вузам и научным организациям в сфере научной деятельности, (гос. задание № 3.161. 2014/К), работы в Самарском филиале ФИАНа поддержаны РФФИ (грант № 14-05-97013).

- Benavides G.F., Woodard B.S., Zimmerman J.W., Palla A.D., Day M.T., King D.M., Carroll D.L., Verdeyen J.T., Solomon W.C. *IEEE J. Quantum Electron.*, 48, 741 (2012).
- Mezhenin A.V., Azyazov V.N. IEEE J. Quantum Electron., 49, 739 (2013).
- Vasiljeva A.N., Klopovskiy K.S., Kovalev A.S., Lopaev D.V., Mankelevich Y.A., Popov N.A., Rakhimov A.T., Rakhimova T.V. J. Phys. D: Appl. Phys., 37, 2455 (2004).
- Azyazov V.N., Mikheyev P.A., Postell D., Heaven M.C. Chem. Phys. Lett., 482, 56 (2009).
- 5. Azyazov V.N., Heaven M.C. Int. J. Chem. Kinet. (2014, in press).
- Azyazov V.N., Mikheyev P.A., Heaven M.C. Proc. SPIE Int. Soc. Opt. Eng., 7751, 77510E (2010).
- Steinfield J.I., Adler-Golden S.M., Gallagher J.W. J. Phys. Chem. Ref. Data, 16, 911 (1987).
- Kurylo M.J., Braun W., Kaldor A., Freund S.M., Wayne R.P. J. Photochem., 3, 71 (1974).
- Rawlins W.T., Caledonia G.E., Armstrong R.A. J. Chem. Phys., 87, 5209 (1987).
- Клоповский К.С., Ковалев А.С., Лопаев Д.В., Рахимов А.Т., Рахимова Т.В. Физика плазмы, 18, 1606 (1992).
- Braginsky O.V., Kovalev A.S., Lopaev D.V., Proshina O.V., Rakhimova T.V., Rakhimov A.T., Vasilieva A.N. J. Phys. D: Appl. Phys., 40, 6571 (2008).