Моделирование ватт-амперных характеристик мощных полупроводниковых лазеров с длиной волны излучения 1.5–1.55 мкм

П.В.Горлачук, А.В.Иванов, В.Д.Курносов, К.В.Курносов, В.И.Романцевич, В.А.Симаков, Р.В.Чернов

Выполнено моделирование ватт-амперных характеристик мощных полупроводниковых лазеров с длиной волны излучения 1.5–1.55 мкм. Представлена методика, позволяющая установить тепловое сопротивление и характеристические температуры, которые свойственны лазерному диоду. Определены скорости излучательной и безызлучательной рекомбинации носителей. Проведено сравнение результатов расчетов и эксперимента, и показано их удовлетворительное совпадение.

Ключевые слова: ватт-амперная характеристика, спектральный диапазон 1.5–1.55 мкм, тепловое сопротивление, излучательная и безызлучательная рекомбинация носителей.

1. Введение

Изучению ватт-амперных характеристик (ВтАХ) мощных полупроводниковых лазеров посвящено большое число работ. В обзоре [1] (и в цитируемой в нем литературе) представлены результаты их исследований в непрерывном и импульсном режимах генерации, а также сформулирована концепция их реализации. Мощным полупроводниковым лазерам с длиной волны излучения 1.5–1.55 мкм посвящены работы [2–6].

Далее под мощными полупроводниковыми лазерами будем подразумевать лазеры с шириной контакта не менее 50 мкм, что значительно больше, чем у лазеров (1.5–3 мкм), используемых для оптической передачи информации. Большие токи накачки приводят к сильному нагреву активной области лазерного диода (ЛД). Наиболее сложен анализ ВтАХ лазеров с длиной волны излучения 1.5–1.55 мкм. Сильная температурная зависимость выходной мощности излучения определяется процессами оже-рекомбинации, процессами излучательной и безызлучательной рекомбинации в волноведущих слоях, утечкой носителей, что приводит к насыщению ВтАХ при увеличении тока накачки [7,8].

В настоящей работе показано, как по измеренным ВтАХ и вольт-амперным характеристикам (ВАХ) при различных фиксированных температурах радиатора, на который установлен излучатель, определить основные его характеристики.

2. Параметры исследуемых гетероструктур и лазеров на их основе

Выращенные гетероструктуры $Ga_yAl_xIn_{1-x-y}As/InP$ имели две квантовые ямы (КЯ) толщиной по 90 Å. Между

П.В.Горлачук, А.В.Иванов, В.Д.Курносов, К.В.Курносов, В.И.Романцевич, В.А.Симаков, Р.В.Чернов. ОАО «НИИ "Полюс" им. М.Ф.Стельмаха», Россия, 117342 Москва, ул. Введенского, д.3, корп.1; e-mail: gorlachuk@bk.ru, mail@dilas.ru, webeks@mail.ru

Поступила в редакцию 5 июня 2013 г., после доработки – 21 июня 2013 г.

КЯ располагался барьерный слой толщиной 130 Å. К ямам примыкали волноведущие слои толщиной 0.65 и 1 мкм (при разработке геометрии и уровня легирования слоев гетероструктуры использовалась идеология несимметричного расширенного волновода [9]). Активные области, барьерные и волноведущие слои были нелегированными.

Из гетероструктур были изготовлены ЛД мезаполосковой конструкции с шириной полоскового контакта 100 мкм. Длины резонаторов ЛД составляли 1600 и 2000 мкм. На грани резонатора наносились отражающие (100%) и просветляющие (5%) покрытия.

Лазерные диоды напаивались на контактные пластины активной областью вниз, контактная пластина с ЛД устанавливалась в цилиндрический корпус диаметром 11 мм. Корпус излучателя монтировался на радиаторе, температура которого ($T = T_0 + \Delta T$, $T_0 = 20$ °C, $\Delta T = 0$, 5 °C, 10 °C) с помощью электронной схемы стабилизации поддерживалась постоянной. Измерения ВтАХ и ВАХ ЛД проводились при постоянном токе накачки.

3. Расчетные соотношения для определения теплового сопротивления и характеристических температур ЛД

Выходная оптическая мощность ЛД [10]

$$P = \hbar \omega n_{\rm ph} f V_{\rm a},\tag{1}$$

где $\hbar\omega$ – энергия фотона; $n_{\rm ph}$ – плотность фотонов в резонаторе; $f = c\alpha_{\rm m}$ – функция выхода; $\alpha_{\rm m} = L^{-1} \ln(R_1 R_2)^{-1/2}$; c – групповая скорость; L – длина резонатора; R_1 , R_2 – коэффициенты отражения зеркал; $V_{\rm a}$ – объем активной области.

Из стационарных решений скоростных уравнений, пренебрегая вкладом спонтанного излучения в генерирующую моду, имеем [11,12]

$$\frac{I\eta_{\rm in}}{qV_{\rm a}} = \frac{n_{\rm a}}{\tau} + \frac{n_{\rm ph}}{\tau_{\rm ph}},\tag{2}$$

где I – ток накачки; n_a – плотность носителей в КЯ; η_{in} – эффективность инжекции, показывающая, какая часть тока накачки попадает в КЯ; τ – время жизни носителей с учетом излучательной и безызлучательной рекомбинации; q – заряд электрона;

$$\tau_{\rm ph} = [c(\alpha + \alpha_{\rm m})]^{-1} \tag{3}$$

- время жизни фотонов в резонаторе; α - потери на свободных носителях в резонаторе ЛД.

Запишем уравнение (1) в виде

$$P = \eta_{t00} (I - I_{t00}), \tag{4}$$

где

$$\eta_{t00} = \hbar \omega q^{-1} \eta_{in} \eta_r \tag{5}$$

 – эффективность ВтАХ без учета нагрева активной области ЛД;

$$\eta_{\rm r} = \frac{\alpha_{\rm m}}{\alpha + \alpha_{\rm m}} \tag{6}$$

эффективность резонатора;

$$I_{\rm t00} = \frac{q V_{\rm a}}{\eta_{\rm in}} \frac{n_{\rm a}}{\tau} \tag{7}$$

 пороговый ток генерации без учета нагрева активной области ЛД. Принимая во внимание (5), (6), имеем

$$\frac{h\omega}{q}\frac{1}{\eta_{\rm t00}} = \frac{1}{\eta_{\rm in}} \Big(1 + \frac{\alpha}{\alpha_{\rm m}} \Big). \tag{8}$$

Выражения для эффективности BTAX и порогового тока с учетом нагрева активной области ЛД пороговым током имеют вид

$$\eta_{t0} = \eta_{t00}(T_0) \exp\left(\frac{-R_T U_{t0} I_{t0}}{T_P}\right),\tag{9}$$

$$I_{t0} = I_{t00}(T_0) \exp\left(\frac{R_T U_{t0} I_{t0}}{T_I}\right),$$
(10)

где $U_{t0} = U_{cut} + I_{t0}R_d$ – пороговое напряжение на ЛД; U_{cut} – напряжение отсечки на ВАХ; R_d и R_T – динамическое и тепловое сопротивления ЛД; T_P и T_I – характеристические температуры для эффективности ВтАХ и порогового тока накачки.

Величинам $I_{t00}(T_0)$ и $\eta_{t00}(T_0)$ можно сопоставить подобные величины при импульсном режиме работы с малой частотой следования импульсов тока накачки, когда можно пренебречь нагревом активной области ЛД.

Зависимость величины порогового тока от тока накачки и мощности излучения с двух граней *P* может быть представлена в следующем виде [13, 14]:

$$I_{t}(I,P,\Delta T) = I_{t0}(T_{0}+\Delta T)\exp\left[\frac{R_{T}(UI-P)}{T_{I}}\right],$$
(11)

причем считается, что

$$I_{t0}(T_0 + \Delta T) = I_{t00}(T_0) \exp\left(\frac{\Delta T}{T_I}\right),$$
(12)

где ΔT – изменение температуры радиатора, а U – напряжение на ЛД, соответствующее току накачки *I*. Подставив (10) и (12) в (11), получим

$$I_{\rm t}(I,P,\Delta T) = I_{\rm t0} \exp\left(\frac{\Delta T_{\rm LD}(I,P,\Delta T)}{T_I}\right),\tag{13}$$

где $\Delta T_{LD}(I, P, \Delta T)$ – нагрев активной области ЛД. Аналогично для эффективности ВтАХ будем иметь

$$\eta_{\rm t}(I,P,\Delta T) = \eta_{\rm t0} \exp\left(\frac{-\Delta T_{\rm LD}(I,P,\Delta T)}{T_P}\right). \tag{14}$$

Нагрев активной области ЛД запишем в виде

$$\Delta T_{\rm LD}(I, P, \Delta T) = R_T (UI - P - U_{\rm t0}I_{\rm t0}) + \Delta T.$$
⁽¹⁵⁾

Мощность излучения ЛД

$$P = \eta_{t}(I, P, \Delta T)[I - I_{t}(I, P, \Delta T)].$$
(16)

Тепловое сопротивление R_T зависит от температуры как [15]

$$R_T(\Delta T_{\rm LD}) = R_{T0} [(T_0 + \Delta T_{\rm LD})/T_0]^k, \qquad (17)$$

где *k* – постоянная величина.

Напряжение на ЛД

$$U(I,\Delta T_{\rm LD}) = U_{\rm cut}(\Delta T_{\rm LD}) + IR_{\rm d}(I)$$
(18)

 – это нелинейная функция от тока накачки и нагрева ЛД, где

$$U_{\rm cut}(\Delta T_{\rm LD}) = U_{0\rm cut}(1 - dT_{\rm u}\Delta T_{\rm LD}); \tag{19}$$

$$R_{\rm d}(I) = R_{\rm d0}(1 - dR_{\rm d}I); \tag{20}$$

 U_{0cut} – напряжение отсечки, получаемое при линейной аппроксимации экспериментальной ВАХ, когда ток накачки стремится к нулю; dT_u , dR_d – постоянные коэффициенты. Считаем, что U_{cut} зависит только от температуры, а R_d – только от тока накачки. (Характеристики прибора, ВАХ которого может быть аппроксимирована линейной функцией, даны в Приложении. Для этого случая $dT_u = 0$ и $dR_d = 0$.)

Подставив (17), (18) в (15), получим нелинейное уравнение относительно $\Delta T_{\rm LD}$, решив его, найдем зависимость $\Delta T_{\rm LD}$ от *I*, *P*, ΔT .

Подставив (13), (14) в (16), получим нелинейное уравнение, решив которое, определим зависимость $P = P(I, \Delta T)$, что позволит записать ΔT_{LD} , η_t и I_t как функции от I, $P(I, \Delta T)$ и ΔT .

На рис.1 представлены расчетные и экспериментальные ВАХ и ВтАХ для ЛД с длиной резонатора L = 2000 мкм при различных температурах радиатора (20, 25 и 30 °C). Наилучшее совпадение экспериментальных и расчетных характеристик обеспечивалось подбором коэффициентов в (13)–(20).

На рис.2 представлены зависимости нагрева активной области, порогового тока и эффективности ВтАХ от тока

Рис.1. Расчетные (кривые) и экспериментальные (точки) вольтамперные (*a*) и ватт-амперные (δ) характеристики лазера для температур радиатора 20 (**a**), 25 (**b**) и 30 °С (**b**).

Рис.2. Расчетные зависимости нагрева активной области лазера (*a*), порогового тока (δ) и пороговой эффективности BTAX (ϵ) от тока накачки для температур радиатора 20, 25 и 30 °С. Сплошные кривые – характеристики, рассчитанные по формулам (13)–(15), пунктирные кривые – аппроксимирующие кривые, рассчитанные по формулам (35) и (36) (см. разд.4).

накачки при различных температурах радиатора и L = 2000 мкм (характеристики ЛД с L = 1600 мкм подобны приведенным характеристикам). Начало всех кривых идет от измеренных пороговых токов накачки (см. рис.1, δ). Представленные зависимости экспериментально не измеряются [12, 13], так, отмечается, что «речь идёт о "пороге", не наблюдаемом обычными способами, поскольку он меняется под влиянием мощности излучения. Иначе говоря, измененное значение нельзя измерить путем снижения мощности, т. к. при этом восстанавливается исходное его значение» [12]. В [14] эти пороговые токи названы «эффективными».

Из рис.2, а видно, что при токе накачки 2 А нагрев активной области относительно температуры радиатора превышает 20°С. Зависимости порогового тока и эффективности BTAX от тока накачки показывают, что с ростом тока пороговый ток увеличивается, а эффективность BTAX уменьшается.

Измерение характеристик ЛД при трех значениях температуры, проводимое в два этапа, позволило определить тепловое сопротивление радиатора. На первом этапе сразу после установки заданного тока накачки фиксировались показания измерителей мощности и напряжения на ЛД. Затем из-за нагрева мощность излучения медленно уменьшалась. На втором этапе, когда мощность излучения достигала стационарного значения (через 3-4 мин), при том же токе накачки повторно измерялись мощность и напряжение на ЛД. ВАХ и ВтАХ, определенные на втором этапе и представленные на рис.1, подобны характеристикам, полученным на первом этапе. При этом мощность излучения ЛД на первом этапе измерений была выше. Так, при токе накачки 2 А она составила 0.508, 0.482, 0.433 Вт для температур радиатора 20, 25 и 30°С соответственно. Расчеты показали, что в обоих случаях характеристические температуры были одинаковыми, а R_T составили 7 и 2.2 К \cdot Вт⁻¹. Тепловое сопротивление радиатора (4.8 К \cdot Вт⁻¹) равно разности этих двух значений.

Значению 2.2 К·Вт⁻¹ отвечает тепловое сопротивление перехода активная область ЛД-контактная пластина, а 7 К·Вт⁻¹ – тепловое сопротивление перехода активная область ЛД-радиатор (вместе с корпусом ЛД). Тепловое сопротивление радиатора (4.8 К·Вт⁻¹) удалось определить экспериментально благодаря тому, что датчик температуры находился на самом радиаторе.

Наилучшее совпадение характеристик, показанных на рис.1, имеет место при $T_I = 53$ К, $T_P = 100$ К, $R_T = 7$ К·Вт⁻¹, $R_{d0} = 0.8$ Ом, $dT_u = 0.0095$ К⁻¹, $dR_d = 0.14$ А⁻¹, $U_{cut} = 0.82$ В, $I_{t0} = 0.62$ А и $\eta_{t0} = 0.4$ Вт·А⁻¹.

В работе [6] получено $T_I = 60$ К, а в работе [17] – $T_P = 91$ К, что коррелирует с нашими результатами.

Удовлетворительное совпадение расчетных и экспериментальных зависимостей на рис.1 имеет место лишь при отклонении указанных значений не более, чем на 5% $(T_P - 10\%)$.

Расчет η_{in} и α проводился по формуле (8). При этом η_{t00} рассчитывалась по формуле (9), U_{t0} , I_{t0} определялись из эксперимента, а R_T , T_P выбирались из условия наилучшего совпадения экспериментальных и расчетных ВАХ и ВтАХ. Для L = 1600 и 2000 мкм расчет дает $\alpha = 1.3 - 1.5$ см⁻¹ и $\eta_{in} = 0.62$. Если вместо η_{t00} в (8) подставить η_{t0} , то для L = 1600 мкм за счет большего разогрева активной области значения α и η_{in} станут отрицательными.

Поскольку η_t и I_t зависят от мощности излучения, то дифференциальная эффективность BTAX $\eta_d(I, \Delta T) = dP/dI$,

определенная экспериментально, не будет совпадать с эффективностью BrAX $\eta_t(I, \Delta T)$.

Действительно, при увеличении тока накачки (за счет нагрева активной области ЛД) эффективность η_d начинает уменьшаться вплоть до отрицательных значений, тогда как величина $\eta_t(I, \Delta T)$ всегда положительна.

Если приравнять нулю производную по dI от выражения (16), можно рассчитать максимальные мощность излучения и ток накачки, при превышении которого мощность уменьшается.

Формулы, связывающие η_t и η_d для случая, когда ВАХ может быть аппроксимирована линейной функцией, приведены в Приложении.

4. Расчет скоростей излучательной и безызлучательной рекомбинации носителей

При проведении расчетов будем опираться на результаты работ [16–22]. В [18] показано, что лучшее совпадение теории и эксперимента получено для моделей без обращения масс с излучательными переходами без выполнения правила отбора.

При расчете уровней размерного квантования будем использовать продольные компоненты масс тяжелых дырок

$$m_{\rm hhi} = \frac{m_0}{\gamma_{1i} - 2\gamma_{2i}},\tag{21}$$

где i = a, w (активная область и волноведущие слои). Параметры Латтинжера–Кона γ_{1i} , γ_{2i} рассчитывались по интерполяционным формулам

$$\gamma_{l}(\operatorname{Ga}_{y}\operatorname{Al}_{x}\operatorname{In}_{1-x-y}\operatorname{As}) = \gamma_{l}(\operatorname{InAs})(1-x-y)$$
$$+ \gamma_{l}(\operatorname{GaAs})y + \gamma_{l}(\operatorname{AlAs})x, \qquad (22)$$

где значения γ_1 для InAs, GaAs, AlAs выбирались из табл.1 работы [21]. Аналогично рассчитывалось значение γ_2 . Эффективная масса электронов определялась по формуле, аналогичной (22). Зависимость ширины запрещенной зоны $E_g(T)$ в слоях $Ga_yAl_xIn_{1-x-y}As$ рассчитывалась по приведенным в Приложении формулам (П2)–(П5). Учитывалось сужение ширины запрещенной зоны активной области ЛД при накачке током:

$$E_{\rm ga} = E_{\rm ga}(T) - k_{\rm g}(n_{\rm a}^{1/3} + p_{\rm a}^{1/3}), \qquad (23)$$

где n_a и p_a – плотности электронов и дырок в КЯ; k_g – постоянная величина; $E_{ga}(T)$ определялась по формулам (П2)–(П5).

Разрыв зоны проводимости ΔE_c выбирался равным 0.72 ΔE_g , где ΔE_g – разность ширин запрещенных зон активной области и волноведущих слоёв [20]. Показатели преломления твердых растворов $n(\hbar\omega)$ рассчитывались по формуле (2) работы [23]. Коэффициенты оптического ограничения для двух КЯ $\Gamma_a = 0.011$ и для волновода $\Gamma_w = 0.94$ считались постоянными, не зависящими от температуры и плотности носителей.

Коэффициент усиления для случая, когда не выполняется правило отбора по волновому вектору, с учетом переходов между первым квантовым уровнем в зоне проводимости ε_{el} и первым квантовым уровнем для тяжелых дырок в валентной зоне ε_{hh1} , может быть записан в виде

$$g(\hbar\omega) = G_0$$

$$\times \ln\left\{\frac{[1 + a_{1}\exp(-\hbar\omega/(k_{\rm B}T))][1 + b_{1}\exp(\hbar\omega/(k_{\rm B}T))]]}{a_{2}b_{2}}\right\}, \quad (24)$$

где $a_1 = \exp[(F_c - \varepsilon_{hh1})/(k_BT)]; b_1 = \exp[(F_v - E_{ce1})/(k_BT)];$ $a_2 = 1 + \exp[(F_c - E_{ce1})/(k_BT)]; b_2 = 1 + \exp[(F_v - \varepsilon_{hh1})/(k_BT)];$ G_0 – коэффициент, определяемый формулой (23) работы [18]; $E_{ce1} = E_{ga} + \varepsilon_{e1}.$

Максимальная энергия фотона, соответствующая максимуму коэффициента усиления, определяется из условия $dg(\hbar\omega)/d\hbar\omega = 0$:

$$\hbar\omega_{\rm max} = \frac{1}{2} [(E_{\rm cel} + \varepsilon_{\rm hhl}) + (F_{\rm c} - F_{\rm v})].$$
(25)

Она связана с плотностью электронов и дырок в активной области КЯ как

$$\hbar\omega_{\max} = E_{cel} + \varepsilon_{hhl} + \frac{1}{2}k_{B}T$$

$$\times \ln\left\{ \left[\exp\left(\frac{n_{a}}{\rho_{c}k_{B}T}\right) - 1 \right] \left[\exp\left(\frac{p_{a}}{\rho_{v}k_{B}T}\right) - 1 \right] \right\}, \quad (26)$$

где $\rho_e = m_{ca}/(\pi \hbar^2 L_a); \rho_v = m_{hha}/(\pi \hbar^2 L_a); m_{ca}, m_{hha} - эффек$ $тивные массы электрона и тяжелой дырки в КЯ; <math>L_a$ – ширина КЯ.

Максимум коэффициента усиления $g_{\text{max}} = G_0 \ln[(1 + \sqrt{a_1 b_1})^2 / (a_2 b_2)]$ может быть представлен через плотности электронов и дырок в активной области КЯ в виде

$$g_{\max} = G_0 \left[\frac{n_a}{\rho_e k_B T} + \frac{p_a}{\rho_v k_B T} - 2 \ln \left(\sqrt{\exp\left(\frac{n_a}{\rho_e k_B T}\right) - 1} + \sqrt{\exp\left(\frac{p_a}{\rho_v k_B T}\right) - 1} \right) \right].$$
(27)

Плотности электронов и дырок в волноводе могут быть выражены через плотности электронов и дырок в активной области ЛД:

$$n_{\rm w} = N_{\rm cw} \exp\left(-\frac{\Delta E_{\rm c} - \varepsilon_{\rm e1}}{k_{\rm B}T}\right) \left[\exp\left(\frac{n_{\rm a}}{\rho_{\rm e} k_{\rm B}T}\right) - 1\right],\tag{28}$$

$$p_{\rm w} = N_{\rm vw} \exp\left(-\frac{\Delta E_{\rm v} - \varepsilon_{\rm hhl}}{k_{\rm B}T}\right) \left[\exp\left(\frac{p_{\rm a}}{\rho_{\rm v} k_{\rm B}T}\right) - 1\right],\tag{29}$$

где $N_{\rm cw} = 2[(m_{\rm cw}k_{\rm B}T)/(2\pi\hbar^2)]^{3/2}$; $N_{\rm vw} = 2[(m_{\rm hhw}k_{\rm B}T)/(2\pi\hbar^2)]^{3/2}$; $m_{\rm cw}$, $m_{\rm hhw}$ – эффективные массы электрона и дырки в волноводе; $\Delta E_{\rm c}$, $\Delta E_{\rm v}$ – разрывы края зоны проводимости и валентной зоны.

Плотности электронов и дырок в активной области лазера, содержащей M_{qw} КЯ, связаны с плотностью электронов и дырок в волноводе уравнением электронейтральности [24]

$$M_{\rm qw}L_{\rm a}(n_{\rm a}-p_{\rm a})+L_{\rm w}(n_{\rm w}-p_{\rm w})=0, \qquad (30)$$

где *L*_w – ширина волновода.

Условием генерации ЛД является равенство:

$$\Gamma_{a}g_{max} = L^{-1}\ln(R_{1}R_{2})^{-1/2} + \Gamma_{a}\alpha_{a} + \Gamma_{w}\alpha_{w} + (1 - \Gamma_{a} - \Gamma_{w})\alpha_{em}.$$
 (31)

Потери на свободных носителях в активной области, волноведущих и эмиттерных слоях

$$\alpha_i = \sigma_{\rm e} n_i + \sigma_{\rm h} p_i, \tag{32}$$

где i = a, w, em; n_i и p_i – плотности носителей в слоях структуры ($n_{\rm em}$ и $p_{\rm em}$ определяются уровнем легирования n- и р-эмиттеров); σ_e и σ_h – сечения поглощения для электрона и дырки. Потерями на рассеяние в уравнении (32) пренебрегли.

Скорости спонтанной рекомбинации в КЯ и волноводе в соответствии с [25] представим в следующем виде:

$$R_{\rm spa} = B_{\rm spa} \left(\frac{T_0}{T_0 + \Delta T_{\rm LD}} \right) n_{\rm a} p_{\rm a} \left(1 + \frac{n_{\rm a} + p_{\rm a} - \sqrt{n_{\rm a} p_{\rm a}}}{\mathcal{N}_{\rm a}} \right)^{-1}, (33)$$

$$R_{\rm spw} = B_{\rm spw} \left(\frac{T_0}{T_0 + \Delta T_{\rm LD}} \right)^{3/2} n_{\rm w} p_{\rm w} \left(1 + \frac{n_{\rm w} + p_{\rm w} - \sqrt{n_{\rm w} p_{\rm w}}}{\mathcal{N}_{\rm w}} \right)^{-1}, (34)$$

где $\mathcal{N}_i = 1/4[(m_{ei} + m_{hhi})k_B T/(\pi h^2)]^{3/2}$; B_{spi} – постоянные коэффициенты; i = a, w.

Зависимость порогового тока накачки от скоростей излучательной и безызлучательной рекомбинации может быть записана в виде [19,21]

$$I_{t}(\Delta T_{LD}) = q V_{a} \left\{ A_{n} n_{a} + R_{spa} + C_{0} \right.$$
$$\times \exp\left[\frac{\Delta E}{k_{B}} \left(\frac{1}{T_{0}} - \frac{1}{T_{0} + \Delta T_{LD}}\right) \right] \left(n_{a}^{2} p_{a} + n_{a} p_{a}^{2}\right) \right\} \eta_{in}^{-1}, \quad (35)$$

где $A_n n_a$ – скорость безызлучательной рекомбинации; последний член в скобках представляет скорость ожерекомбинации в КЯ; C_0 и ΔE – постоянные коэффициенты. Аналогичная зависимость использована в работе [21], где рекомендован метод подбора коэффициентов для согласования теории и эксперимента.

С учетом (13) и (14) можно найти однозначную связь между $\eta_{t}(\Delta T_{LD})$ и $I_{t}(\Delta T_{LD})$:

$$\eta_{\rm t}(\Delta T_{\rm LD}) = \eta_{\rm t0} [I_{\rm t}(\Delta T_{\rm LD})/I_{\rm t0}]^{-T_l/T_P}.$$
(36)

Расчеты показывают, что если в (16) $\eta_t(I, P, \Delta T)$ заменить на η_t из (36), а $I_t(I, P, \Delta T)$ взять в виде (35), то получим отличное совпадение расчетных и экспериментальных ВтАХ (см. рис.1, δ), как и в случае расчета по формулам (13)–(20).

Аппроксимирующие кривые зависимости $I_t(I)$, рассчитанные по формуле (35) с учетом подбора коэффициентов A_n , B_{spa} , B_{spw} , C_0 , ΔE , σ_e и σ_h , показаны на рис.2, δ , аналогично на рис.2, ϵ представлены аппроксимирующие кривые зависимости $\eta_t(I)$, рассчитанные по формуле (36) с учетом выбранных коэффициентов.

Кривые, представленные на рис.2,*б*,*в*, демонстрируют удовлетворительное совпадение характеристик, рассчитанных на первом и втором этапах измерений при следующих значениях коэффициентов: $A_n = 6 \times 10^7 \text{ c}^{-1}$, $B_{\text{spa}} = 8 \times 10^{-11} \text{ см}^3 \text{ c}^{-1}$, $C_0 = 2.6 \times 10^{-29} \text{ см}^6 \text{ c}^{-1}$, $\Delta E = 0.18 \text{ эB}$, $\sigma_e = 3 \times 10^{-18} \text{ см}^2$, $\sigma_h = 13.4 \times 10^{-18} \text{ см}^2$, $B_{\text{spw}} = 8 \times 10^{-11} \text{ см}^3 \text{ c}^{-1}$. Значение $\sigma_e = 3 \times 10^{-18} \text{ см}^2$ заимствовано из работы [22], а

значение $\sigma_h = 13.4 \times 10^{-18}$ см² рассчитано из условия $\alpha = 1.3$ см⁻¹, определенного ранее. Подробное рассмотрение внутренних оптических потерь в квантоворазмерных лазерных гетероструктурах раздельного ограничения проведено в работе [9] и в цитируемой в ней литературе. В асимметричном волноводе толщиной 4 мкм ($\lambda = 1.08$ мкм) получены потери $\alpha = 0.2$ см⁻¹, а в волноводе толщиной 1.7 мкм $\alpha = 0.34$ см⁻¹. В настоящей работе для волновода толщиной 1.65 мкм ($\lambda = 1.5-1.55$ мкм) получены потери $\alpha = 1.3-1.5$ см⁻¹, т.е. примерно в 4 раза большие.

В работе [19] для $\lambda = 1.3$ мкм в расчетах использовались следующие значения: $C_0 = 5 \times 10^{-29}$ см⁶·c⁻¹, $\Delta E = 0.1$ эВ, $\sigma_{\rm h} = 30 \times 10^{-18}$ см². Для этой же длины волны в работе [10] брались $C_0 = 3 \times 10^{-29}$ см⁶·c⁻¹, $B_{\rm spa} = 1 \times 10^{-10}$ см³·c⁻¹, $A_{\rm n} = 1 \times 10^8$ с⁻¹, а для $\lambda = 1.5$ мкм в [26] использовались $C_0 = 1.3 \times 10^{-29}$ см⁶·c⁻¹, $B_{\rm spa} = 8 \times 10^{-11}$ см³·c⁻¹, $A_{\rm n} = 2.2 \times 10^8$ с⁻¹.

Таким образом, значения коэффициентов, полученные в настоящей работе, удовлетворительно коррелируют с ранее опубликованными.

Зависимости от тока накачки плотностей электронов и дырок в активной области и в волноводе ЛД, а также длины волны излучения λ_{max} при различных температурах

Рис.3. Зависимости плотностей электронов и дырок в КЯ (*a*) и в волноводе (δ), а также длины волны излучения (*b*) от тока накачки, рассчитанные для температур радиатора 20, 25 и 30 °C. Точками указаны экспериментальные значения λ_{max} для температур радиатора 20 (\blacksquare), 25 (\bullet) и 30 °C (\blacktriangle).

радиатора представлены на рис.3. Все графики начинаются с пороговых значений тока, соответствующих рис.1, *б*.

Видно, что как в активной области, так и в волноводе плотности электронов и дырок увеличиваются с ростом тока. Плотность дырок в активной области ЛД меньше плотности электронов, а в волноводе, наоборот, больше. Объясняется это тем, что барьер для дырок значительно ниже, чем для электронов ($\Delta E_v / \Delta E_g = 0.28$, $\Delta E_c / \Delta E_g = 0.72$), и дыркам легче диффундировать в волновод.

Длина волны излучения рассчитывалась по формуле $\lambda_{\text{max}} = 1.24/\hbar\omega_{\text{max}}$, а $\hbar\omega_{\text{max}}$ определялось по формуле (26). Коэффициент k_{g} , входящий в формулу (23), брался (в соответствии с [18]) равным 3×10^{-8} эВ·см. Для сравнения на рис.3, в представлены экспериментальные зависимости длины волны излучения $\lambda_{\text{max}}(I)$ для токов накачки 1 и 2 А при температурах радиатора 20, 25 и 30 °C. Видно удовлетворительное совпадение теоретических и экспериментальных данных. Отметим, что расчет, проведенный по формулам (3)–(13) работы [16], дал значительно большее расхождение между результатами расчетов и экспериментом.

Представленные зависимости $\lambda_{max}(I)$ позволяют оценить тепловое сопротивление ЛД, которое может быть представлено в виде $R_T = \Delta T / \Delta P_{diss} = (\Delta \lambda / \Delta T)^{-1} \Delta \lambda / \Delta P_{diss}$, где $\Delta P_{diss} = U_2 I_2 - U_1 I_1 - \Delta P$ – мощность, рассеиваемая в ЛД; U_2 – напряжение на ЛД при токе накачки $I_2 = 2$ А; U_1 – при $I_1 = 1$ А; ΔP – изменение выходной оптической мощности излучения для токов 1 и 2 А. Величина $\Delta \lambda / \Delta T$ рассчитывалась для токов 1 и 2 А при температурах радиатора 20, 25 и 30 °C. Среднее значение $\Delta \lambda / \Delta T = 5.5$ Å/K, а $\Delta \lambda / \Delta P_{diss} = 40.5$ Å/BT, что дает оценку $R_T = 7.4$ K/BT. Из экспериментальных данных следует $\Delta \lambda / \Delta T = 5.8$ Å/K, что дает значение $R_T = 7$ K/BT, хорошо совпадающее со значение R_T , полученным в разд.3.

Формула (35) задает пороговый ток I_t , включающий компоненты, которые определяются процессами излучательной и безызлучательной рекомбинации в КЯ и волноводе, а также позволяет найти ток утечки:

$$I_{\text{leak}} = I_{\text{t}} - I_{\text{spa}} - I_{\text{na}} - I_{\text{A}} - I_{\text{spw}}, \qquad (37)$$

где $I_{spa} = qV_aB_{spa}n_ap_a$; $I_{na} = qV_aA_nn_a$; $I_A = qV_aC_0\exp\{\Delta E/k_B [T_0^{-1} + (T_0 + \Delta T_{LD})^{-1}]\}(n_a^2p_a + n_ap_a^2)$; $I_{spw} = qV_w(A_nn_w + B_{spw}n_wp_w)$.

На рис.4,а представлены зависимости от температуры радиатора ΔT суммарного порогового тока I_t , рассчитанного по (35), и его составляющих. Видно, что максимальный вклад вносят токи оже-рекомбинации и утечки. Изменение тока утечки, определяемого формулой (37), с температурой радиатора показано на рис.4,6. Мы не смогли объяснить получаемую величину тока I_{leak} утечкой носителей в эмиттер, используя модели, представленные в работах [5, 10, 27, 28]. Связано это с тем, что эмиттеры имели состав $Al_{0.48}In_{0.52}As$ с шириной запрещенной зоны $E_g =$ 1.45 эВ, что почти на $4k_{\rm B}T$ превышает $E_{\rm g}$ для InP (1.35 эВ), используемого в эмиттерах системы InGaAsP/InP. Эти модели давали меньшие токи утечки, чем показано на рис.4, б. Расчет токов боковой утечки носителей, определяемых формулой (33) работы [29], или обусловленных растеканием носителей (см., напр., [30]), давал либо заниженные значения токов утечки, либо не совпадал с их температурной зависимостью.

Удовлетворительную аппроксимацию кривых (рис.4,*б*) можно получить, если ток утечки рассчитывать по формуле из работы [31]

Рис.4. Зависимости от температуры радиатора порогового тока I_t (I) и его составляющих: тока оже-рекомбинации I_A (2), тока утечки I_{leak} (3), токов излучательной и безызлучательной рекомбинации в КЯ I_{spa} (4) и I_{na} (5), тока рекомбинации в волноводе I_{spw} (6) (a), а также тока утечки I_{leak} для токов накачки I = 1, 1.5 и 2 A (6). Сплошные линии – характеристики, рассчитанные по формуле (37); штриховые – аппроксимирующие зависимости, рассчитанные по формуле (38).

$$I_{\text{leak}} = q V_a D n_a^{5.5} \tag{38}$$

при $D = 8.7 \times 10^{-76}$ см^{13.5}·с⁻¹. Расхождение кривых наблюдается для T = 30 °C при увеличении тока накачки от 1 до 2 А. Если же в расчетах используется диффузионная составляющая тока утечки, пропорциональная $Dn_a^{3.5}$, согласовать эти кривые не удается. В работе [14] ток утечки определяется следующей зависимостью:

$$I_{\text{leak}} = j_0 w L \exp\left[\frac{-(E_{\text{g}} - \Delta F)}{nk_{\text{B}}T}\right],$$
(39)

где j_0 – подгоночный параметр; w – ширина активной области ЛД;

$$\Delta F = E_{cel} + \varepsilon_{hhl} + k_B T$$

$$\times \ln \left[\left(\exp\left(\frac{n_a}{\rho_e k_B T}\right) - 1 \right) \left(\exp\left(\frac{p_a}{\rho_v k_B T}\right) - 1 \right) \right]$$
(40)

- разность квазиуровней Ферми.

Если в качестве E_g взять ширину запрещенной зоны эмиттера, то для подгонки нужно использовать неоправданно высокое значение j_0 . Разумные результаты получаются, если в качестве E_g берется ширина запрещенной зоны волновода E_{gw} . Тогда при $n = 2, j_0 = 6.45 \times 10^3 \text{ A} \cdot \text{сm}^{-2}$ имеет место удовлетворительная аппроксимация всех кривых на рис.4, б. В этом случае мы должны предположить, что ток утечки определяется выбросом носителей из КЯ в волновод.

В заключение отметим, что измерение ВАХ и ВтАХ при трех различных температурах радиатора позволило определить характеристические температуры и рассчитать тепловое сопротивление ЛД, установленного на ра-

диатор. Знание R_T (при использовании одного и того же радиатора) позволяет контролировать качество технологических операций напыления омических контактов и напайки ЛД на контактную пластину.

Найденные в работе значения теплового сопротивления, характеристических температур, а также скоростей излучательной и безызлучательной рекомбинации носителей позволили удовлетворительно согласовать результаты расчетов и экспериментов.

Приложение

б

Экспериментальные и расчетные ВАХ и ВтАХ для случая линейной аппроксимации вольт-амперных характеристик представлены на рис.П1. При линейной зависимости напряжения на ЛД от тока накачки дифференциальная эффективность ВтАХ может быть записана в виде

$$\eta_{\rm d}(I,\Delta T) = \eta_{\rm t}(I,\Delta T) \left(1 + \frac{cb}{a}\right) \left(1 + \eta_{\rm t} \frac{cd}{a}\right)^{-1},\tag{\Pi1}$$

где

$$a = 1 - k \left(1 + \frac{\Delta T_{LD}}{T_0} \right)^{k-1} \left\{ \frac{R_{T0} [(U_{cut} + IR_d)I - P]}{T_0} \right\},$$

$$b = d(U_{cut} + 2R_dI),$$

$$c = \frac{-I}{T_P} + \left(\frac{1}{T_P} - \frac{1}{T_I} \right) \exp\left(\frac{\Delta T_{LD}}{T_I} \right),$$

$$d = R_{T0} \left(1 + \frac{\Delta T_{LD}}{T_0} \right)^k.$$

$$U(B)$$

$$1.50$$

$$1.25$$

$$1.00$$

$$0.75$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.5$$

$$1.0$$

$$1.5$$

$$1.00$$

$$0.75$$

$$0.50$$

$$0.5$$

$$0.50$$

$$0.5$$

$$1.0$$

$$1.5$$

$$1.0$$

$$0.5$$

$$1.0$$

$$1.5$$

$$1.0$$

$$0.5$$

$$1.0$$

$$1.5$$

$$1.0$$

$$1.5$$

$$1.0$$

$$1.5$$

$$2.0$$

$$I(A)$$

$$1.5$$

$$2.0$$

$$I(A)$$

Рис.П1. Линеаризованная экспериментальная вольт-амперная (*a*) и экспериментальная ватт-амперная (б) характеристики ЛД для температур радиатора 20 (□), 25 (о) и 30 °C (△). Штриховая кривая – линейная аппроксимация ВАХ, сплошные кривые – аппроксимирующие зависимости ВтАХ.

Определив из эксперимента значение η_d для выбранного тока накачки и ΔT , можно рассчитать значение $\eta_t(I,\Delta T)$. Решение нелинейного уравнения 1 + cb/a = 0 совместно с (16) позволяет установить мощность излучения и максимальный ток накачки, после которого начинается падение мощности.

Экспериментальные зависимости, представленные на рис. П1, δ , показывают, что максимальный ток накачки, при превышении которого начинается спад мощности, составляет 1.98, 2.09 и 2.18 А для температур 30, 25 и 20 °C. Расчет дал следующие значения: 1.84, 2.004, 2.16 А, такое совпадение можно считать удовлетворительным из-за погрешности определения $I_{\rm max}$ из экспериментальных графиков.

Зависимость ширины запрещенной зоны $E_{\rm g}$ в слоях ${\rm Ga}_y{\rm Al}_x{\rm In}_{1-x-y}{\rm As}$ от температуры рассчитывалась по формуле (3) работы [23]

$$E_{g}(Ga_{y}Al_{x}In_{1-x-y}As) = xE_{g}(AlAs) + yE_{g}(GaAs)$$
$$+ (1 - x - y)E_{g}(InAs) - xyK_{AlGaAs}$$
$$- y(1 - x - y)K_{GaInAs} - x(1 - x - y)K_{AlInAs}, \qquad (\Pi 2)$$

где $K_{AlGaAs} = 0.399$, $K_{GaInAs} = 0.442$, $K_{AlInAs} = 0.614$ – параметры нелинейности соответствующих тройных твердых растворов, которые считались не зависящими от температуры.

Зависимость E_{g} от температуры двухкомпонентных растворов заимствована из работы [16]:

$$E_{\sigma}(\text{InAs}) = 0.417 - 2.76 \times 10^{-4} T^2 / (T + 93), \tag{\Pi3}$$

$$E_{\rm g}({\rm AlAs}) = 3.099 - 8.85 \times 10^{-4} T^2 / (T + 530),$$
 (II4)

$$E_{\rm g}({\rm GaAs}) = 1.519 - 5.405 \times 10^{-4} T^2 / (T + 204).$$
 (II5)

- 1. Тарасов И.С. Квантовая электроника, 40, 661 (2010).
- Boucher J.F., Callahan J.J. Proc. SPIE Int. Soc. Opt. Eng., 8039, 80390B (2011).
- Boucher J.F., Vilokkinen V., Rainbow P., et al. Proc. SPIE Int. Soc. Opt. Eng., 7480, 74800K (2009).
- Han I.K., Cho S.H., Heim P.J.S., Woo D.H., et al. *IEEE Photon. Techn. Lett.*, **12**, 251 (2000).
- Скрынников Г.В., Зегря Г.Г., Пихтин Н.А. и др. ФТП, 37, 243 (2003).
- Зегря Г.Г., Пихтин Н.А., Скрынников Г.В. и др. ФТП, 35, 1001 (2001).
- Винокуров Д.А., Капитонов В.А., Лютецкий А.В. и др. ФТП, 41, 1003 (2007).
- Лютецкий А.В., Борщев К.С., Пихтин Н.А. и др. ФТП, 42, 106 (2008).
- Слипченко С.О., Винокуров Д.А., Пихтин Н.А. и др. ФТП, 38, 1477 (2004).
- Agrawal G.P., Dutta N.K. Long-wavelength semiconductor lasers (New York: Van Nostrand, 1986).
- Полупроводниковые инжекционные лазеры. Динамика, модуляция, спектры. Под ред. У. Тсанга (М.: Радио и связь, 1990).
- Елисеев П.Г. Введение в физику инжекционных лазеров (М.: Наука, 1983).
- Жолнеров В.С., Иванов А.В., Курносов В.Д. и др. ЖТФ, 82, 63 (2012).
- Scott J.W., Geels R.S., Corzine S.W., Coldren L.A. *IEEE J. Quantum Electron.*, 29, 1295 (1993).
- Bewtra N., Suda D.A., Tan G.L., Chatenoud F., Xu J.M. *IEEE J.* Sel. Top. Quantum Electron., 1, 331 (1995).
- Chang Yi-An, Chen J-R., Kuo H-C., et al. J. Lightwave Techn., 24, 536 (2006).

- Sayid S.A., Marko I.P., Cannard P.J., Chen X., et al. *IEEE J. Quantum Electron.*, 46, 700 (2010).
- Иванов А.В., Курносов В.Д., Курносов К.В. и др. Квантовая электроника, 36, 918 (2006).
- Piprek J., White J.K., Thorpe A.J.S. *IEEE J. Quantum Electron.*, 38, 1253 (2002).
- 20. Selmic S.R., Chou T.M., Sih J.P., et al. *IEEE J. Sel. Top. Quantum Electron.*, **7**, 340 (2001).
- 21. Minch J., Park S.H., Keating T., Chuang S.L. *IEEE J. Quantum Electron.*, **35**, 771 (1999).
- 22. Кейси Х., Паниш М. Лазеры на гетероструктурах (М.: Мир, 1981).
- 23. Иванов А.В., Курносов В.Д., Курносов К.В. и др. Квантовая электропика, **37**, 545 (2007).

- Wilcox J.Z., Ou S., Yang J.J., Jansen M., Peterson G.L. Appl. Phys. Lett., 55, 825 (1989).
- 25. Grinberg A.A. IEEE J. Quantum Electron., 30, 1151 (1994).
- 26. Zou Y., Osinski J.S. IEEE J. Quantum Electron., 29, 1295 (1993).
- 27. Гарбузов Д.З., Овчинников А.В. и др. *ФТП*, **25**, 928 (1991).
- Chinn S.R., Zory P.S., Reisinger A.R. *IEEE J. Quantum Electron.*, 24, 2191 (1988).
- Asryan L.V., Gun'ko N.A., Polkovnikov A.S., et al. Semicond. Sci. Techn., 15, 1131 (2000).
- 30. Joyce W.B. J. Appl. Phys., 51, 2394 (1980).
- Olshansky R., Su C.B., Manning J., Powazinik W. IEEE J. Quantum Electron., 20, 838 (1984).