Синхронизация и десинхронизация автомодуляционных колебаний в кольцевом чип-лазере под действием периодического сигнала и шума

В.Ю.Дудецкий, Е.Г.Ларионцев, С.Н.Чекина

Численно и экспериментально исследовано влияние шума накачки на синхронизацию автомодуляционных колебаний в твердотельном кольцевом лазере с периодической модуляцией накачки. Установлено, что в отличие от эффекта десинхронизации, обычно возникающего под действием шума при синхронизации автоколебаний (порядка 1/1) периодическим сигналом, синхронизация порядка 1/2 может сопровождаться конструктивным воздействием шума: при достаточно малой интенсивности шум накачки способствует синхронизации автоколебаний, сужению их спектра и увеличению отношения сигнал/шум.

Ключевые слова: твердотельный кольцевой лазер, автомодуляционный режим генерации, синхронизация порядка 1/2, бистабильность, стохастический резонанс, десинхронизация.

1. Введение

Синхронизация колебаний, возникающих в нелинейных динамических системах, является фундаментальным явлением, исследованию которого посвящено большое число работ (см., напр., монографии [1,2]). Изучена синхронизация периодических, квазипериодических и хаотических автоколебаний. Общий случай вынужденной синхронизации периодических автоколебаний порядка n/m характеризуется следующим соотношением между частотой внешнего сигнала ω и частотой синхронизованных колебаний Ω_s : $n\omega = m\Omega_s$ (m и n – целые числа).

В работах [1,2] исследовано влияние шумов на синхронизацию автоколебаний порядка 1/1. Вследствие диффузии фазы автоколебаний, возникающей под действием шума, спектр синхронизованных автоколебаний уширяется, и при достаточно сильном шуме происходит десинхронизация. В настоящей работе теоретически и экспериментально рассмотрено влияние шума накачки на синхронизацию периодических автомодуляционных колебаний порядка 1/2 в твердотельном кольцевом лазере (ТКЛ). Показано, что в определенном диапазоне интенсивностей шума накачки стохастическое воздействие играет конструктивную роль: шум способствует синхронизации автоколебаний, сужению их спектра и увеличению отношения сигнал/шум.

Ранее синхронизация автомодуляционных колебаний излучения ТКЛ исследовалась теоретически и экспериментально в работах [3–7], в которых внешним сигналом, вызывающим синхронизацию, являлась периодическая модуляция мощности накачки. Важное отличие ис-

Поступила в редакцию 4 февраля 2014 г., после доработки – 14 марта 2014 г.

следований, проведенных в настоящей работе, состоит в том, что помимо периодической модуляции накачки осуществлялась также и шумовая модуляция с помощью генератора шума, включенного в цепь питания лазера накачки.

2. Экспериментальная установка

Исследования проводились на кольцевом чип-лазере с длиной волны 1.06 мкм, резонатор которого представлял собой моноблок на кристалле YAG: Nd в виде призмы с одной сферической гранью и тремя плоскими гранями полного внутреннего отражения. Геометрический периметр резонатора составил 28 мм, угол неплоскостности резонатора был 80°. Накачка лазера осуществлялась полупроводниковым лазерным диодом на длине волны 0.810 мкм. В цепь питания диода были включены генератор периодических колебаний и генератор шума. В процессе эксперимента интенсивность шума накачки изменялась при вариации выходного напряжения генератора шума от нуля до максимального значения, соответствующего интенсивности электрического шума 10⁻⁶ Вт/Гц. При обработке результатов исследований интенсивность шума накачки D измерялась в относительных единицах (относительная единица интенсивности шума накачки соответствует интенсивности электрического шума на выходе генератора, равной 10^{-/} Вт/Гц).

В процессе экспериментов регистрировались временные и спектральные характеристики интенсивности излучения встречных волн в зависимости от мощности шумового воздействия, а также частоты и амплитуды периодического сигнала, модулирующего накачку. Регистрация сигналов осуществлялась с помощью АЦП 20-12-РСІ и широкополосного цифрового осциллографа Tektronix TDS 2014.

3. Теоретическая модель и параметры лазера

При численном моделировании использовалась векторная модель ТКЛ [8,9], в которой поляризация излу-

В.Ю.Дудецкий. Московский государственный университет им. М.В.Ломоносова, физический факультет, Россия, 119991 Москва, Воробьевы горы; e-mail: vadim.dudetskiy@gmail.com

Е.Г.Ларионцев, С.Н.Чекина. НИИ ядерной физики им. Д.В.Скобельцына МГУ им. М.В.Ломоносова, Россия, 119991 Москва, Воробьевы горы; e-mail: e.lariontsev@yahoo.com

чения встречных волн предполагается заданной и определяется единичными векторами $e_{1,2}$ для встречных направлений. Исходная система уравнений векторной модели имеет вид

$$\frac{\mathrm{d}}{\mathrm{d}t}\tilde{E}_{1,2} = -\frac{\omega_{\mathrm{c}}}{2Q_{1,2}}\tilde{E}_{1,2} \pm \mathrm{i}\frac{\mathcal{Q}}{2}\tilde{E}_{1,2} + \frac{1}{2}\tilde{m}_{1,2}\tilde{E}_{2,1} \\
+ \frac{\sigma l}{2T}(N_0\tilde{E}_{1,2} + N_\pm\tilde{E}_{2,1}), \\
\frac{\mathrm{d}N_0}{\mathrm{d}t} = N_{\mathrm{th}}[1 + \eta(t)]/T_1 - [N_0 + N_0a(|\tilde{E}_1|^2 + |\tilde{E}_2|^2) \\
+ N_+a\tilde{E}_1\tilde{E}_2^* + N_-a\tilde{E}_1^*\tilde{E}_2]/T_1 + \xi(t), \\
\frac{\mathrm{d}N_+}{\mathrm{d}t} = -[N_+ + N_+a(|\tilde{E}_1|^2 + |\tilde{E}_2|^2) + \beta N_0a\tilde{E}_1^*\tilde{E}_2]/T_1.$$
(1)

Здесь $\tilde{E}_{1,2}(t) = E_{1,2} \exp(i\varphi_{1,2})$ – комплексные амплитуды полей встречных волн; N_0 , N_{\pm} – пространственные гармоники инверсной населенности N, определяемые выражениями

$$N_0 = \frac{1}{L} \int_0^L N dz, \quad N_{\pm} = \frac{1}{L} \int_0^L e_1 e_2 N \exp(\pm i2kz) dz.$$
(2)

Система уравнений (1) отличается от уравнений стандартной модели [8] лишь присутствием в последнем уравнении поляризационного фактора

$$\beta = (e_1 e_2)^2 = \cos^2 \gamma, \tag{3}$$

где γ – угол между единичными векторами $e_{1,2}$.

В уравнениях (1) использованы следующие обозначения: $\omega_c/Q_{1,2}$ – ширины полос резонатора, $Q_{1,2}$ – добротности резонатора для встречных волн, Т-время обхода светом резонатора, L – периметр резонатора, $k = 2\pi/\lambda$ – волновое число, l – длина активного элемента, T₁ – время продольной релаксации, $a = (T_1 c \sigma) / (8 \hbar \omega \pi)$ – параметр насыщения, σ – сечение лазерного перехода, $\Omega = \omega_1 - \omega_2$ – частотная невзаимность резонатора, ω_1, ω_2 – собственные частоты резонатора для встречных волн. Скорость накачки представлена в виде $N_{\rm th}(1+\eta)/T_1$, где $N_{\rm th}$ – пороговая инверсная населенность, $\eta = P/P_{\rm th} - 1$ – превышение мощности накачки над пороговой мощностью. Линейная связь встречных волн, обусловленная обратным рассеянием внутри резонатора, определяется феноменологически вводимыми комплексными коэффициентами связи, записываемыми в виде

$$\tilde{m}_1 = m_1 \exp(i\vartheta_1), \quad \tilde{m}_2 = m_2 \exp(-i\vartheta_2),$$
(4)

где $m_{1,2}$ – модули коэффициентов связи; $\vartheta_{1,2}$ – их фазы.

Периодическая модуляция накачки описывается зависящим от времени превышением накачки над порогом:

$$h(t) = \eta_0 + h\sin(2\pi f_{\rm p}t), \tag{5}$$

где η_0 – превышение накачки над порогом в отсутствие модуляции накачки; h и f_p – глубина и частота модуляции накачки.

Будем считать, что шумовая модуляция накачки производится белым шумом и задана случайной функцией $\xi(t)$ в уравнении (1) для N_0 . Корреляционную функцию шума запишем в виде

$$\langle \xi(t)\xi(t')\rangle = 2D_{\rm p}\delta(t-t'),\tag{6}$$

где *D*_р – коэффициент диффузии (интенсивность) шума.

4. Численное моделирование

Численное моделирование проводилось при параметрах, близких к экспериментально измеренным параметрам кольцевого чип-лазера на Nd:YAG. Время релаксации $T_1 = 240$ мкс. Ширина полосы резонатора определялась по релаксационной частоте $\omega_r = \sqrt{\eta \omega/QT_1}$. В исследуемом лазере при $\eta_0 = 0.2$ основная релаксационная частота $\omega_r/2\pi = 98.5$ кГц, что дает $\omega_c/Q = 4.37 \times 10^8$ с⁻¹. Значение поляризационного параметра $\beta = 0.75$ было найдено (как и в [9]) по экспериментально измеренной зависимости дополнительной релаксационной частоты ω_{r1} от частотной невзаимности резонатора Ω .

При численном моделировании были выбраны следующие значения модулей коэффициентов связи: $m_1 =$ 1986400 с⁻¹ и $m_2 =$ 861356 с⁻¹. При этих значениях коэффициентов связи частота автомодуляционных колебаний и отношение средних значений интенсивностей встречных волн близки к экспериментально измеренным. Разность фаз комплексных коэффициентов связи $\tilde{m}_{1,2}$ трудно оценить по характеристикам автомодуляционных колебаний. Для простоты разность фаз коэффициентов связи $\vartheta_1 - \vartheta_2$ полагалась равной нулю. Предполагалось также, что частотная и амплитудная невзаимности кольцевого резонатора отсутствуют ($\Omega = 0$, $\Delta = \omega_c/2Q_2 - \omega_c/2Q_1 = 0$).

Параметры исследуемого двунаправленного чип-лазера были выбраны таким образом, что в отсутствие шумовой модуляции накачки он работал в автомодуляционном режиме первого рода. В спектре мощности лазера, работающего в этом режиме, имеется один пик на частоте автомодуляции f_m. В проведенных ранее исследованиях по синхронизации автомодуляционных колебаний [3-7] рассматривалась синхронизация, возникающая при частотах модуляции накачки fp, близких к частоте автомодуляционных колебаний f_m (синхронизация порядка 1/1). В настоящей работе исследована синхронизация автомодуляционных колебаний при частотах модуляции $f_{\rm p}$, близких к $2f_{\rm m}$ (синхронизация порядка 1/2). В этом случае при малой глубине модуляции накачки h отсутствует субгармоника $f_p/2$, на которой мог бы возникнуть захват частоты автомодуляции внешним сигналом ($f_{\rm m} = f_{\rm p}/2$). С увеличением h может произойти параметрическая раскачка субгармоники $f_p/2$ и при $h \ge h_1$, где h_1 – граница области синхронизации, частота автомодуляционных колебаний захватывается субгармоникой $f_p/2$. После того как возникла синхронизация, она будет сохраняться и при плавном уменьшении *h* вплоть до второй границы области синхронизации h₂. В диапазоне между двумя границами $(h_2 \le h \le h_1)$ имеет место бистабильность. Границы области синхронизации порядка 1/2, найденные путем численного моделирования при $\eta_0 = 0.15$, показаны на рис.1. В этом случае при отсутствии модуляции накачки частота автомодуляционных колебаний $f_{\rm m} = 208.5$ кГц. Отметим, что ширина области синхронизации порядка 1/2 значительно (на порядок и более) уже, чем в случае синхронизации порядка 1/1 (см. [3-7]).

Рис.1. Границы h_1 , h_2 области синхронизации порядка 1/2 при воздействии на чип-лазер периодического сигнала модуляции накачки с частотами f_p , близкими к удвоенной автомодуляционной частоте f_m .

Рис.2. Спектры интенсивности автомодуляционных колебаний при периодической модуляции накачки с частотой $f_p = 414 \text{ к}\Gamma \mu$ и глубиной модуляции h = 0.15 в отсутствие шума (D = 0) и при наличии шума с интенсивностью D = 0.1 (a), 3 (δ) и 5 (e).

Рис.3. Зависимость отношения сигнал/шум при синхронизации порядка 1/2 от интенсивности шума D (частота модуляции накачки $f_p = 412 \ \kappa \Gamma \mu$, h = 0.3, $\eta_0 = 0.15$).

Рассмотрим влияние шума на синхронизацию автомодуляционных колебаний порядка 1/2. На рис.2,*а* пунктирной кривой показан спектр интенсивности автомодуляционных колебаний в отсутствие шумовой модуляции накачки. В этом случае имела место периодическая модуляция накачки на частоте $f_p = 414$ кГц с глубиной модуляции h = 0.15, однако (поскольку $h < h_1$) синхронизация порядка 1/2 не возникала, и частота автомодуляционных колебаний оставалась такой же, как и при отсутствии периодической модуляции ($f_p = 208.5$ кГц). Сплошной линией на рис.2,*а* показан спектр, наблюдаемый при наличии шума накачки с интенсивностью (коэффициентом диффузии) $D_p = 1 \times 10^{13}$ с⁻¹. Здесь и далее для сравнения с экспериментом интенсивность шума дается в относительных единицах: $D = D_p/10^{14}$.

Под действием шума происходит переход в режим синхронизации порядка 1/2: частота автомодуляционных колебаний захватывается субгармоникой периодического сигнала модуляции накачки $f_p/2 = 207$ кГц. Спектр, приведенный на рис.2,*a*, характерен для случая шума с достаточно малой интенсивностью (D < 0.5). С увеличением интенсивности шума возрастает диффузия фазы автомодуляционных колебаний и происходит их десинхронизация (см. рис.2, *б* и *в*).

На рис.3 показана зависимость отношения сигнал/шум для синхронизации порядка 1/2 (при частоте модуляции накачки $f_p = 412 \text{ к}\Gamma \text{µ}$) от интенсивности шума D, полученная при численном моделировании в случае h = 0.3, $\eta_0 = 0.15$. Для вычисления отношения S/N проводилось усреднение по 150 реализациям. Как видно из рисунка, синхронизация порядка 1/2 возникает скачком, начиная с некоторого порогового значения интенсивности шума D. С увеличением D отношение сигнал/шум изменяется так же, как в случае стохастического резонанса [10-12] – растет при малых интенсивностях и уменьшается при больших.

5. Эксперимент

Экспериментальные исследования, как и в случае численного моделирования, проводились на ТКЛ, работающем в автомодуляционном режиме первого рода. При этом интенсивности встречных волн совершают противофазные гармонические колебания. Спектры интенсивности излучения для встречных волн в таком режиме оказываются идентичными, по этой причине ниже приводятся лишь спектры для одной из волн. На рис.4,*a* приведен спектр интенсивности одной из волн в окрестности часто1.0

0.5

3

2

0

Рис.4. Спектры интенсивности одной из волн в окрестности частоты автомодуляционных колебаний в отсутствие шумовой модуляции накачки (a), а также при D = 0.05 (b), 0.5 (b) и 1 (г). Частота модуляции накачки f_p = 420 кГц, глубина модуляции h = 0.27.

ты автомодуляционных колебаний в отсутствие шумовой модуляции накачки ($D = 0, h = 0.27, f_p = 420$ кГц), показывающий, что частота автомодуляционных колебаний в исследуемом чип-лазере оказывается нестабильной и флуктуирует; ширина спектра составляет ~5 кГц. В этом случае синхронизации автоколебаний не происходит. В режиме синхронизации порядка 1/2 (рис.4, б, в), возникающем при добавлении шума к периодической модуляции накачки, в спектре интенсивности излучения появляется узкий пик на субгармонике периодического сигнала модуляции ($f_p/2 = 210 \, \mathrm{k}\Gamma\mathrm{u}$). С увеличением *D* интенсивность этого пика сначала растет, но затем происходит десинхронизация, и пик на субгармонике периодического сигнала уширяется и исчезает.

Сравнение экспериментально измеренных спектров (рис.4) с рассчитанными при численном моделировании (рис.2) позволяет сделать вывод о конструктивной роли шума накачки, которая проявляется в стохастическом возбуждении синхронизации автоколебаний порядка 1/2 при достаточно малых интенсивностях шума. В области относительно больших интенсивностей шума возникает десинхронизация. Различие между спектрами, полученными в эксперименте и при численном моделировании, вызвано тем обстоятельством, что в эксперименте (даже при отсутствии внешнего шума, создаваемого генератором) имеются значительные шумы, приводящие к флуктуациям частоты автомодуляционных колебаний и уширению их спектра. При численном моделировании в отсутствие шумовой модуляции такие флуктуации отсутствуют, и спектр автомодуляционных колебаний значительно уже. Другой причиной несовпадения результатов эксперимента и численного моделирования может быть пренебрежение шумом спонтанного излучения в используемой теоретической модели ТКЛ.

6. Заключение

Исследовано влияние шума на синхронизацию порядка 1/2 автомодуляционных колебаний излучения ТКЛ периодическим сигналом, модулирующим мощность излучения накачки. Установлено, что при малых интенсивностях шумовой модуляции накачки шум положительно влияет на синхронизацию автоколебаний периодическим сигналом: без внешнего шума синхронизация может отсутствовать, а при добавлении достаточно слабого шума происходит стохастическое возбуждение синхронизации порядка 1/2. При последующем увеличении интенсивности шума синхронизация постепенно пропадает.

- Пиковский А., Розенблюм М., Куртс Ю. Синхронизация: фун-1 даментальное нелинейное явление (Москва, Техносфера, 2003).
- 2. Balanov A., Janson N., Postnov D., Sosnovtseva O. Synchronization: From Simple to Complex (Berlin: Springer, 2009).
- 3. Золотоверх И.И., Клименко Д.Н., Ларионцев Е.Г. Квантовая электроника, **23**, 625 (1996).
- Kravtsov N.V., Lariontsev E.G., Pashinin P.P., Sidorov S.S., 4. Firsov V.V. Laser Physics, 13, 305 (2003).
- Кравцов Н.В., Пашинин П.П., Сидоров С.С., Фирсов В.В. 5. Квантовая электроника, 32, 562 (2002).
- Аулова Т.В., Кравцов Н.В., Ларионцев Е.Г., Чекина С.Н. Кван-6. товая электроника, 41, 504 (2011).
- 7. Дудецкий В.Ю., Ларионцев Е.Г., Чекина С.Н. Квантовая электроника, 44, 23 (2014).
- 8. Кравцов Н.В., Ларионцев Е.Г. Квантовая электроника, 36, 192 (2006).
- 9 Золотоверх И.И., Кравцов Н.В., Ларионцев Е.Г., Фирсов В.В., Чекина С.Н. Квантовая электроника, 37, 1011 (2007).
- 10. Jung P., Hanggi P. Phys. Rev. A, 44, 8032 (1991).
- Золотоверх И.И., Кравцов Н.В., Ларионцев Е.Г., Фирсов В.В., 11. Чекина С.Н. Квантовая электроника, 39, 853 (2009).
- 12. Кравцов Н.В., Ларионцев Е.Г., Чекина С.Н. Квантовая электроника, 43, 917 (2013).