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Abstract.  We have derived analytical expressions, verified by the 
methods of numerical simulation, to evaluate the angular divergence 
of nondiffractive laser beams containing smooth aberrations, i.e., 
spherical defocusing, astigmatism and toroid. Using these expres-
sions we have formulated the criteria for admissible values of 
smooth aberrations. 

Keywords: laser radiation, wavefront, smooth wavefront aberration. 

1. Introduction 

In optics, including laser optics, known are rigorous analytical 
expressions for calculating the characteristics of diffraction 
beams. Thus, for a Gaussian beam with an initial radius v0 of 
its cross section (at the 1/e level of the field amplitude) at a 
distance z, a new value of the transverse radius v(z) is deter-
mined from the expression [1] 
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where l is the wavelength. For such a beam an analytical 
expression is also known for the angular divergence q (at the 
0.5 intensity level) in the presence of a spherical component of 
the wavefront with a radius of curvature R [2]:
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The Maréchal rule [3] allows a reduction in the intensity I 
to be calculated on the axis of a diffraction-limited beam in 
the case of perturbation of the wavefront with a standard 
deviation (SD) swf £ l/14: 
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Also known is the analytical expression for the joint 
account of the angular radiation divergence j1 of a nondiffrac-

tive beam (W = pj1
2/4 is the solid angle, which contains half the 

beam power) with a Gaussian angular distribution of the local 
slopes of the wavefront and the error of the guidance system sgs 
that also obeys the Gaussian distribution. With the same con-
tribution of both factors, a new value of the time-averaged 
angular divergence j2 is determined from the expression [4] 

j2
2 = j1

2 + 8 ln 2s2gs.	 (4)

Relations (1) – (4) almost exhaust the set of analytical expres-
sions to account for the influence of aberrations on the char-
acteristics of the laser radiation. 

In the above formulas, joint consideration of the initial 
characteristics of radiation and of the introduced uncorrelated 
wavefront perturbations leads to the procedure of a root-
mean-square addition or subtraction to calculate the resulting 
characteristics of radiation. 

For lasers with a nondiffractive beam quality similar ana-
lytical expressions are not available, although these lasers are 
of great practical importance, since laser radiation with a high 
average power, as a rule, has a nondiffractive quality [5 – 7] 
and the angular divergence of radiation at the output of these 
lasers is more than an order of magnitude higher than the 
diffraction divergence. There are realistic projects of remote 
energy supply to spacecrafts [6] and laser engines [7], which 
will employ sufficiently high-power lasers with nondiffractive 
angular beam divergence. To correctly construct such laser 
systems, it is needed to derive analytical expressions, which 
take into account the contribution of nondiffractive smooth 
wavefront aberrations into the angular divergence of radiation. 

In this paper we have found the criteria for admissible 
values of smooth wavefront aberrations for laser radiation of 
nondiffractive quality. From our point of view, these criteria 
allow us to solve three groups of problems. The first group 
arises from the need to develop optical laser channels with 
small angular divergence of radiation. 

Let us enumerate the problems we can solve with the help 
of these criteria. We assume that the angular divergence of 
laser radiation is equal to j and the beam aperture – to a. One 
of the questions, which arises during the adjustment of an 
optical system, is about the value of the error, such as spherical 
defocusing, related to the amplitude (wavefront deflection) hs, 
so that the angular divergence of radiation does not change 
significantly. 

This group of problems also involves the admissible value 
of astigmatism, which arises at oblique incidence of the beam 
on the rotating mirror at an angle a. Any flat mirror has a 
finite radius of curvature, which is due to a manufacture error 
or thermal distortion of mirrors, including the case when 
they are irradiated by high-power laser pulses. Regardless of 
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the cause of curvature, the wavefront after reflection in the 
meridional plane obtains a jump-like additive 
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and in the sagittal plane – an additive 
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The astigmatism amplitude ha is given by 
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We have formulated the criteria for the admissible value ha, 
which insignificantly increases the angular divergence of a 
beam with an aperture a. 

Finally, this group of problems also includes the one about 
the admissible amplitude of circular toroid-type aberrations 
arising under the circular loading of laser mirrors. The shape 
of aberrations resembles an axisymmetric Zernike polynomial 

Z = 7 (20r6 – 30r4 + 12r2 – 1) ,

where r = x y2 2
+ . Thus, the first group of problems is 

related to the influence of smooth aberrations on the angular 
divergence j of the beam. 

The second group of problems arises when evaluating the 
performance of an adaptive system [8]: At what values of the 
above-listed smooth aberrations does an adaptive system not 
require their compensation (since such compensation does not 
make sense)? 

The third group of problems is related to the possibility of 
high-precision measurement of aberrations, such as the fact 
whether there are physical or technical limitations on imple-
mentation of sufficient accuracy of measurements. 

In this paper we restrict our consideration to the first 
group of problems, whose solution is of key importance for 
the second and third groups. 

2. Methodical approach 

The criteria for the admissible values of smooth aberrations 
at a given angular divergence j and beam aperture a can be 
designed by using analytical expressions, which jointly take 
into account both the intrinsic angular divergence of the beam 
and its wavefront aberrations. Obviously, in this case the 
additional terms in the analytical expression for the total 
angular divergence of the beam must be significantly less than 
the initial divergence j. 

First, let us agree to what is meant by a model of a beam 
with an angular divergence that is higher than the diffraction 
divergence. It is known [2, 3, 9] that in the case of spherical 
deflection of a diffraction-limited beam wavefront with a deflec-
tion hs ³ l, it is needed to apply geometrical optics approxi-
mation. Further analysis will be given in this range of the 
wavefront perturbation amplitudes. Figure 1a shows the wave-
front characterised by the SD s1 of its angular local slopes in 
the case of their Gaussian distribution. The power density dis-
tribution at the aperture of diameter a is assumed uniform. 
We call such a beam a Gaussian-like beam. Then, the angular 
intensity dependence has the form 
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where f is the polar angle. The Gaussian angular intensity 
distribution over the coordinate f in (8) is wider than the dif-
fraction distribution. For the beam in question we have the 
following relation between the angular divergence (i.e., the 
solid angle, which contains half the power of the beam) with 
the SD of the wavefront tilt [4]: 

j = 2 ln2 2 s1 » 2.36s1.	 (9)

The Gaussian-like angular intensity distribution is typical 
of high-power laser systems with a large number of mirrors 
and numerous uncorrelated perturbations factors and is con-
firmed experimentally. 

3. Derivation of analytical relations and results 
of numerical simulations 

3.1. Criteria for the admissible value of spherical defocusing 
aberrations 

Figure 1a shows the wavefront of a nondiffractive beam with 
an aperture a and SD s1. On the average, the wavefront is 
a plane. 

Figure 1b presents the same wavefront with an added 
spherical component having a radius of curvature R >> a. 
The wavefront is a sphere with an average radius of curvature 
R, which has local slopes with the SD s2. With the constraint 
hs << a << R, the following relation 

h
R
a
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is valid. The solid angle W1.0 of the cone, where a set of all rays 
of the beam with a spherical wavefront uniformly distributed 
over the aperture propagates, is defined as 
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Figure 1.  Model of a Gaussian-like beam (a) without a spherical compo-
nent and (b) with a spherical component having a radius of curvature R. 
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half of all rays propagates. A flat angle js we are interested in, 
which corresponds to the solid angle W0.5, is given by 

a
h4 2

s
sj =  » . .a

h5 64 s 	 (13)

Thus, in the geometrical optics approximation (hs ³ l) 
formula (13) is valid when js is about six and more diffraction 
limits l/a.

We define the SD ss of local slopes of a spherical wave-
front (Fig. 1). For a section of a sphere with a chord of length 
a << R and the wavefront deflection hs << a (Fig. 1b) the 
local slopes are described by the expression 

q(x) = x/R, 

where x is the current coordinate on an aperture of diameter a. 
The SD of local slopes of the sphere section ss on the chord of 
length a is determined from the ratio

.da
R

R
x

R
x

a
h

3
16

/

/

s
s

a

a
2 2

2

2 2

s = =
-

+

b b dl l ny 	 (14)

The angular divergence of the laser beam in the case of 
smooth aberrations is taken into account by adding the 
quadratic quantities from the analytical expressions because 
the quantities being added are uncorrelated. Thus, the new 
values of the SD, taking into account the two factors, are 
found from the expression 
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and, consequently, the angular divergence j2 is related to the 
initial one by the expression 

,a
h1

3
16 s

2
2

1
2

1

2
j j s= + c m; E 	 (16)

which can also be written in a simplified form [4]: 

j2 = 2.36s2.	 (17)

The criterion for the admissible defocusing is the ratio 

a
h

3
16 s

1

2

sc m  << 1, whence hs << 
4
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In the case of an axially symmetric initial beam and axially 
symmetric wavefront perturbation, formulas (15) – (17) can 
be derived differently, provided that hs << as1. We assume 
that the discrete values of the local wavefront slopes ji are 
obtained by the Hartmann method in N equidistant points on 
the aperture of diameter a.

The SD s1 of local slopes is determined from the expres-
sion (at N >> 1) 
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When we add a spherical component of radius R on an 
aperture of diameter a, there appears a regular wavefront 
perturbation with an amplitude in the centre hs; in this case, 
hs << а << R. Then, the first local slope (from the centre) on 
the right semi-aperture will have an angular increment a/(RN) 
and become equal to 
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and the last will be equal to 
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The first local slope (from the centre) on the left semi-aperture 
will be equal to 
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and the last will be equal to 
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The new value of the SD s2 is determined from the 
expression 
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Without loss of generality of the approach, we assume 
that the large number N is even. Using the relation [10] 
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and expression (24), we finally obtain 
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which coincides with (15). Then, the angle js, corresponding 
to half the radiation power, in view of (14) is 

.ln a
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It is important that this expression virtually coincides with 
(13), we have obtained in the geometrical optics approximation. 
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Figure 2 shows the results of numerical simulation of the 
angular power distribution of a diffraction-limited beam in a 
circular aperture with spherical defocusing, and Fig. 3 shows 
the fraction of the total laser radiation power in a cone with a 
flat angle js = 5.6hs /a. One can see from Fig. 3 that formula 
(13) for spherical defocusing is fairly accurate at hs ³ 3l and 
can also be used at hs ³ l. 

3.2. Criterion for the admissible value of toroid aberrations 

Analytical apparatus we have developed for the case of spher-
ical defocusing describes more accurately the axially sym

metric aberration, which we have conventionally called a 
toroid (Fig. 4). 

For simplicity, we assume that the profile of the toroid-
type aberrations in the cross section is close to a circular 
segment. Then, the current deflection z can be described with 
good accuracy by the expression (at b = ae £ r £ a) 
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where e = b/a is the ratio of the inner and outer diameters of 
the circular loading zone. 

At R = [(a – b)/2]2/(8ht) the plane angle corresponding to 
the solid angle containing the half the power is given by the 
relation 

( )
.

R
a b

a
h

4 1
8

t
tj
e= - =

-
	 (27)

The results of numerical simulation of the angular power 
distribution at e = 0 are presented in Fig. 5, and Fig. 6 shows 
the fraction of the total laser radiation power in a cone with a 
plane angle jt (27) at e = 0. Figures 7 and 8 demonstrate the 
results in the case of e = 0.5. It follows from Figs 6 and 8 that 
formula (27) is valid at ht > l.

The dispersion of the angular distribution of the slopes 
with the account for the aberration of toroid type is found 
from the expression 
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where the dispersion st
2, caused by the toroid aberration, is 

added to the initial dispersion s1
2. 

The angular divergence of the radiation, taking into account 
the toroid aberration and the initial divergence j1, is determined 
from the expression 
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The criterion for the admissible value of the toroid-type 
aberration is the ratio 
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Figure 2.  Far-field intensity distribution in the case of the spherical 
wavefront deflection hs = ( 1 ) 0, ( 2 ) l/4, ( 3 ) l/2, ( 4 ) 3l/4, ( 5 ) l, ( 6 ) 3 l/2 
and ( 7 ) 2 l. Hereinafter, f' is the angular coordinate f normalised to 
the angular divergence of a diffraction-limited beam 1.22 l/a. 
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Figure 3.  Dependence of the fraction of the total power P in a solid 
angle with a corresponding plane angle js = 5.6 hs /a on the spherical 
wavefront deflection hs. 
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Figure 4.  Axially symmetric aberration of toroid type and the angular 
divergence introduced. 
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3.3. Criteria for the admissible value of astigmatism 

Consider the effect of astigmatism on the angular divergence 
of the beam, bearing in mind that the cylindrical wavefront 
perturbation affects the diffraction pattern in both planes. 
For calculations we represent astigmatism as a cylindrical 
wavefront z  = –x2/(2R) (Fig. 9). Figure 9 also shows the 
expressions for calculating the divergence of radiation due to 
the cylindrical wavefront. 

The SD of the angular slopes sx and sy with respect to x 
and y axes, resulting from the initial SD and astigmatism, can 
be written at hа << s1a in the form 
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Thus, the geometric mean value of the variance due to 
astigmatism has the form 
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Figure 5.  Far-field intensity distribution in the case of the toroidal wave-
front deflection ht = ( 1 ) 0, ( 2 ) l/4, ( 3 ) l/2, ( 4 ) 3 l/4, ( 5 ) l, ( 6 ) 3 l/2 and 
( 7 ) 2l at e = 0. 
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Figure 6.  Dependence of the fraction of the total power P in a solid 
angle with a corresponding plane angle jt = 8ht /[a(1 – e)] at e = 0 on the 
toroidal wavefront deflection ht. 

1

2

3

4

5

6

5

7
N

o
rm

al
is

ed
 in

te
n

si
ty

N
o

rm
al

is
ed

 in
te

n
si

ty

1.000

0.875

0.750

0.625

0.500

0.375

0.250

0.125

0 0.67 1.33 2.00

0.109

0.094

0.078

0.063

0.047

0.031

0.016

0 0.67 1.33 2.00 Normalised f' 

Normalised f' 

Figure 7.  Far-field intensity distribution in the case of the toroidal wave-
front deflection ht = ( 1 ) 0, ( 2 ) l/4, ( 3 ) l/2, ( 4 ) 3 l/4, ( 5 ) l, ( 6 ) 3 l/2 and 
( 7 ) 2l at e = 0.5. 
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Figure 8.  Dependence of the fraction of the total power P in a solid 
angle W0.5 with a corresponding plane angle jt = 8ht /[a(1 – e)] at e = 0.5 
on the toroidal wavefront deflection ht.
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where (11/12)(ha /a)2 is the additive introduced by astigma-
tism. Taking into account the initial divergence j1 the angular 
divergence caused by astigmatism is determined from the 
expression 
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The criterion for the admissible value of astigmatism is the 
ratio 
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To estimate the divergence of the cylindrical wavefront at 
the half power level, use was made of the angular size ja of an 
equivalent circle corresponding an ellipse with angular sizes 
of the axes qx = 3.2ha/a and qy = 1.22l/a. Then 
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The results of numerical simulation of the angular intensity 
distribution for a circular aperture are presented in Figs 10 
and 11, and Fig. 12 shows the fraction of the total laser radia-
tion power in a cone with a plane angle ja = (2/a) hal . 

4. Examples of application of the criteria 

Consider the examples of application of the criteria we have 
derived for the three above-mentioned types of aberrations, 
but at a constant angular divergence and aperture. We assume 
that at the output of the aperture with a = 1 m the laser beam has 
an angular divergence j1 = 5 ́  10–5 rad (s1 = (5/2.36) ́  10–5 rad 
= 2.12 ́  10–5 rad). These calculations corresponding to the three 
formulated criteria are summarised in Table 1. One can see 
that the most significant aberration results from a toroid, and 
the least significant – from astigmatism. 
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Figure 9.  Wavefront aberration of astigmatism type in the form of a cylin-
drical surface z = –x2/(2R), bounded by a circular aperture of diameter a.
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Figure 10.  Far-field intensity distribution in the case of deflection ha of 
a cylindrical wavefront along the axis x, equal to ( 1 ) 0, ( 2 ) l/4, ( 3 ) l/2, 
( 4 ) 3l/4, ( 5 ) l, ( 6 ) 3l/2 and ( 7 ) 2l.
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Figure 11.  Far-field intensity distribution in the case of deflection ha of 
a cylindrical wavefront along the axis y, equal to ( 1 ) 0, ( 2 ) l/4, ( 3 ) l/2, 
( 4 ) 3l/4, ( 5 ) l, ( 6 ) 3l/2 and ( 7 ) 2l. 
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Figure 12.  Dependence of the fraction of the total power P in a solid 
angle W0.5 with a plane angle  ja = (2/a) hal  on the deflection ha of a 
cylindrical wavefront.

Table  1.  Admissible values of the amplitudes of smooth aberrations 
for a beam with an angular divergence of  5 ́  10–5 rad and a 1-m aperture.

Type of wavefront 
aberrations

Criteria
Admissible values 
of aberrations

Spherical defocusing hs << 3s1a/4 hs £ 1 mm
Toroid ht << 0.3s1a(1 – e) ht £ 0.3 mm (e = 0.5)
Astigmatism ha << s1a ha £ 2 mm
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5. Conclusions 

Thus, we have derived simple analytical expressions for the 
angular divergence of nondiffractive beams when smooth 
aberrations, such as spherical defocusing, astigmatism and 
toroid, are introduced. 

The results of mathematical simulation of the angular 
power distribution of the diffraction-limited beams with the 
smooth aberrations introduced have shown the correctness of 
the derived analytical expressions for the angular divergence. 

The proposed criteria are an important tool of analysis 
in designing laser systems. They can be used to evaluate the 
effectiveness of adaptive optical systems in suppressing smooth 
wavefront aberrations. 

There is a practically important question: Are there physical 
and technical capabilities to measure such a small value of 
smooth wavefront distortion (~1 mm) on an aperture 1 m 
in  diameter at least in the laboratory? We have technically 
realised such a capability by means of linear adaptive optics 
using the wavefront doubled-frequency spherical probing 
method [11]. Therefore, the criteria proposed will be of prac-
tical use. 
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