
Quantum Electronics  44 (1)  17 – 22  (2014)	 © 2014  Kvantovaya Elektronika and Turpion Ltd

Abstract.  The problem of synchronisation of three lasers is consid-
ered within the phase approximation. The domains of complete syn-
chronisation, partial synchronisation, two-frequency resonant 
regimes, and three-frequency quasi-periodicity have been found 
using bifurcation analysis, the method of Lyapunov exponent maps, 
and construction of phase portraits. The differences in the proper-
ties of a three-element chain and ring, as well as the influence of the 
coupling type, are discussed. 

Keywords: laser synchronisation, quasi-periodic oscillations, bifur-
cation.

1. Introduction

The problems related to synchronisation of sets of few lasers on 
the one hand and large laser arrays on the other hand are popu-
lar in laser physics [1 –11]. Synchronisation makes it possible to 
increase significantly the intensity and quality of laser radia-
tion. There are several ways to obtain synchronous lasing: 
injection of the external field of a single-frequency laser syn-
chronising a laser ensemble, use of a spatial filter or Talbot 
cavity, synchronisation by Fourier coupling, etc. [1 – 11]. For 
example, optical coupling between two waveguide lasers was 
implemented in [2, 3] using a spatial filter. To this end, a dif-
fraction grating was introduced into the lens system as a spatial 
filter. Optical coupling was provided by the radiation diffracted 
from this grating. The problem of synchronising even three 
lasers [2, 3, 6] (as well as the classical problem of synchronising 
three oscillators [12 – 15]) is complex. The following regimes 
may occur in this case: complete laser synchronisation, partial 
synchronisation of laser pairs (which corresponds to two-fre-
quency quasi-periodicity), and more complex regimes of three-
frequency quasi-periodicity. Note that an individual laser is in 
fact a self-oscillating system, where the presence of negative 
friction is provided by the active medium. Therefore, the prob-
lems of laser dynamics are fundamental and can be solved 
using the methods of nonlinear dynamics and bifurcation the-
ory (see, for example, [8, 9, 11]). Recently, some new approaches 

and methods for studying these systems have been developed in 
nonlinear dynamics [13 – 19]. They allow one to analyse the 
structure of the parameter space and correctly reveal regimes of 
different types and the conditions for their occurrence (disap-
pearance). We will apply this approach to the problems consid-
ered in [2, 3, 6].

2. Adler – Khokhlov equation and its 
generalisation

The essence of the synchronisation phenomenon in systems of 
any physical nature is in mutual phase tuning of interacting 
subsystems [12, 20, 21]. Therefore, the factor of fundamental 
importance for describing synchronisation is the formulation 
of the corresponding phase equation

sinq m qD= -o .	 (1)

Here, q is the relative phase of the subsystems; m is the cou-
pling coefficient; and D is the frequency detuning of the sub-
systems. Equation (1) describes also the problems of forced 
synchronisation (in this case, the variables and parameters are 
determined with respect to an external signal). Equation (1) 
was derived for the first time by Adler in 1946 [22]. He consid-
ered the radio-engineering problem of a triode generator 
excited by an external signal. Nevertheless, Adler understood 
the universal character of Eqn (1) and proposed also a 
mechanical model in the form of a pendulum in a highly vis-
cous medium.

A similar equation was derived by Khokhlov in 1954 [23], 
who also formulated an important method of nonlinear the-
ory, which consists in passing from the initial system to trun-
cated equations for slow amplitudes with subsequent transi-
tion to phase equations*. Within this approach, a number of 
fundamental problems have been solved and some practical 
problems have been considered (in particular, synchronisa-
tion of reflex klystrons and molecular generators). Afterwards, 
the Adler – Khokhlov equation and its generalisations were 
also obtained for the problems of synchronising lasers of dif-
ferent types, coupled in different ways (semiconductor lasers, 
CO2 lasers, etc.) [25, 5, 2, 3, 7 – 11].

A conventional generalisation of the Adler – Khokhlov 
equation is the transition to a system of several interacting 
elements. The generalised Adler – Khokhlov equation for 
three optically coupled lasers, combined into a chain, was 
reported in [6]. The initial equations have the form
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(2a)

Here, Ei is the complex field generated by the ith laser in the 
ensemble; di is the population difference in this laser; d0i is the 
corresponding unsaturated inverse population; G is the cou-
pling constant; g and Gi are, respectively, the relaxation rates 
of the population and field in the cavity of the ith laser; wi is 
the fundamental frequency of the ith-laser cavity; w0 is the 
lasing-transition frequency; and mij is the coupling-coefficient 
matrix.

The equations for the real amplitudes Ai and phases yi can 
be written as [6] 

j( )cosj y y-A A G A m Ai i i i i ij i
j

dG=- + +o / ,

j
j( ) ( )sinm

A
A

i i ij
i

i
j

0y w w y y= - + -o / .	
(2b)

The following phase equations can conventionally be 
obtained for three lasers connected into a chain [6]:

sin sin21 1 2q m q m fD= - +o ,

sin sin23 1 2f m f m qD=- - +o .	
(3)

Here, q = y1 – y2 is the relative phase of the first and second 
lasers with the coupling coefficient m1 and f = y2 – y3 is the 
relative phase of the second and third lasers with the coupling 
coefficient m2. The parameters D21 and D23 are the frequency 
detunings of the pairs of first and second and second and 
third lasers, respectively. The derivation of system (3) was 
described in detail in [6]. 

As was shown in [6], system (3) can be considered analyti-
cally to find the condition for complete synchronisation of all 
three lasers. In this case, all lasers are locked so that their 
phases yi are constants. Then the derivatives of the relative 
phases are zero and Eqns (3) describe the equilibrium state:

0sin sin21 1 2m q m fD - + = ,

0sin sin23 1 2m f m qD- - + = .	
(4)

Equation (4) can be solved with respect to the sines of the 
phases:

sin
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(5)

Equations (5) can be solved analytically; the solutions are 
presented in the form of pairs q1 and q2 (for the first equation) 
and f1 and f2 (for the second equation):
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Thus, the equilibrium states in the phase plane correspond to 
the vertices of a rectangle with the coordinates (q1, f1), 
(q1, f2), (q2, f1), and (q2, f2) (Fig. 2a). 

Let us now vary the frequency detunings so as to increase 
the magnitude of the right-hand side of the first equation in 
system (5). When this value becomes unity, the solutions in 
the pair merge, and all four equilibrium states disappear 
simultaneously. The situation for the second equation in (5) is 
similar. Thus, the condition for disappearance of the solu-
tions is the equality of the right-hand sides in (5) to ± 1:

( )1 21 2 23 1
2

2
2!m m m mD D- = - ,

( )2 21 1 23 1
2

2
2!m m m mD D- = - .	

(7)

Relations (7) set two pairs of mutually parallel lines in the 
frequency-detuning plane; the intersections of these lines 
form a parallelogram determining the complete-synchronisa-
tion domain. This result was obtained in [6] and discussed in 
[2,  3]. However, we should note that a similar result was 
described within the oscillation theory by Landa in 1980 [12]*. 
Therefore, the complete-synchronisation domain can be 
referred to as Landa’s parallelogram (Fig. 1a). 

However, it was found that even a slight complication in 
the transition from Eqn (1) to Eqns (3) highly enriches the 
pattern of possible oscillation regimes. An analysis of these 
regimes requires a numerical investigation applying the 
methods of the theory of dynamic systems and nonlinear 
dynamics.

First of all, we present several phase portraits of system 
(3) in the plane of relative phases q and f to illustrate the main 
behavioural types. Due to the phase property of 2p periodic-
ity, the phase dynamics can be considered in the ranges 0 < q 
< 2p and 0 < f < 2p. If a phase trajectory leaves this square, 
for example, through the right side, it appears at the corre-
sponding point on the left side. The same holds true for the 
upper and lower boundaries. 

Figure 2 shows the phase portraits corresponding to the 
main types of regimes provided by system (3). The system in 
Fig. 2a has four equilibrium states. This situation is consistent 

*  This result was published in an English monograph in 1996 [26].
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Figure 1.  a) Lines (7) and the complete-synchronisation domain of sys-
tem (3) (DSN is one of four segments of the degenerate saddle – node 
bifurcation line). (b) Corresponding Lyapunov map (P is the complete-
synchronisation domain and T2 and T3 are the domains of two- and 
three-frequency quasi-periodicity). The frequency detuning of the third 
and first lasers D31 = D21 – D23 is plotted on the abscissa axis; m1 = 0.6, 
m2 = 0.3.
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with the analytical consideration. One can see a stable site (1), 
two saddles (2, 3), and an unstable site (4). The relative oscil-
lator phases tend to the stable equilibrium point in the course 
of time. The rates of change in the phases of each oscillator 
become constant and equal. This is the regime of complete 
synchronisation of all three lasers.

While approaching the boundaries of the parallelogram in 
Fig. 1a, the equilibrium points become closer pairwise (for 
example, 1 and 3, as well as 2 and 4) and simultaneously 
merge and disappear. It is a kind of degenerate saddle – node 
bifurcation, when the stable equilibrium point and a saddle, 
as well as the unstable equilibrium point and a saddle, simul-
taneously merge. 

Let us now consider Fig. 2b. It reveals two new objects: 
attractive and repulsive invariant curves. The stable curve 
is indicated by the letter I. Here, the phase q in the regime 
corresponding to the stable invariant curve is not steady-
state; it oscillates around some averaged value. Since  
q = y1 – y2 by definition, this oscillation indicates that the 
phases of the first and second oscillators are close and their 
difference does not increase. This regime can be character-
ised as locking of the first and second lasers. However, this 
locking is partial rather than complete: the relative phase 
changes with time. Note that the relative phase q in Fig. 2b 
oscillates near zero; therefore, lasers are almost in-phase 
synchronised.

Figure 2c shows another version of arrangement of the 
attractive invariant curve. In this case, the phase f = y2 – y3 
oscillates around a stationary value, whereas the phase q 
changes in the entire possible range. Thus, we have the regime 
of partial locking of the second and third lasers in this case. 

Figure 2d shows one more version of the oscillation 
regime of the system. Here, one can see a ‘flow’ of phase tra-

jectories, which closely fill the phase square. Each phase 
changes in the entire possible range: 0 < q < 2p, 0 < f < 2p. 

How do the above-described regimes manifest themselves 
in the dynamics of the initial system? In this case, the number 
of fundamental frequencies is the sum of the number of fun-
damental frequencies for phase equations (3) and the funda-
mental optical frequency w0. Therefore, the state of stable 
equilibrium corresponds to the limiting cycle. The invariant 
curve corresponds to the regime of two-frequency quasi-peri-
odicity and two-frequency invariant torus, whereas the trajec-
tory flow in Fig. 2d corresponds to the regime of three-fre-
quency quasi-periodicity and invariant torus of higher dimen-
sion.

Now it is of interest to find out how the regimes of these 
types are represented in the frequency-detuning plane. To 
solve this problem, we will use a numerical method of non
linear dynamics: analysis of Lyapunov exponent maps 
[13,  14,  18,  19]. Lyapunov exponents characterise compres-
sion (expansion) of the phase volume of a dynamic system 
[27]. System (3) is of second order; therefore, it is character-
ised by two Lyapunov exponents, L1 and L2. Using the stan-
dard technique [27], we will calculate both Lyapunov expo-
nents at each point in the plane of parameters D31 and D21. 
Afterwards, we will colour this plane according to the expo-
nent values to visualise the following regimes:

(i) L1 < 0, L2 < 0 (stable equilibrium state P);
(ii) L1 = 0, L2 < 0 (stable invariant curve, two-frequency 

quasi-periodic regime T2);
(iii) L1 = 0, L2 = 0 (phase-trajectory flow, three-frequency 

quasi-periodic regime T3). 
A Lyapunov exponent map obtained in this way is shown 

in Fig. 1b. One can see a complete-synchronisation domain, 
which corresponds to analytical consideration. In addition, 
there are wide domains (bands) of two-frequency regimes, 
determined by two possible resonant conditions for the 
system:

D21 = 0,  D21 = D31.	 (8)

The fundamental frequencies of the first and second (sec-
ond and third) lasers coincide in the first (second) case. 
Accordingly, there are two bands in Fig. 1b that correspond 
to the two-frequency regimes and lie in a finite range in the 
vicinity of values (8). These bands adjoin the boundaries of 
Landa’s parallelogram. Thus, the exit beyond the parallelo-
gram boundaries leads to destruction of the complete-syn-
chronisation regime and transition to partial synchronisation 
of a particular laser pair. 

In turn, the stable and unstable invariant curves merge at 
the boundaries of two-frequency regime bands. In terms of 
the initial system, one can say that a saddle – node bifurcation 
of the invariant tori arises. Afterwards, the tori disappear and 
the regime of three-frequency quasi-periodicity occurs. Note 
that the destruction of the regime of laser-pair synchronisa-
tion due to this bifurcation does not correspond to lines (7), as 
one would expect at the first glance; i.e., the occurrence of a 
pair of solutions for one relative phase is not related to the 
destruction of the synchronisation regime for the correspond-
ing oscillator pair.

Another specific feature of the pattern in Fig. 1b is the 
presence of many thin tongues, corresponding to the two-
frequency regime; their shape is most complex in the vicinity 
of the parallelogram vertices. These domains reflect the pres-
ence of resonant two-frequency regimes of different types. 
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Figure 2.  Phase portraits of system (3): (a) regime of complete synchro-
nisation of all oscillators (D21 = – 0.25, m1 = 0.75, and m2 = 0.375), (b) 
regime of partial locking of the first and second oscillators (D21 = 0.125, 
m1 = 0.25, and m2 = 0.125), (c) regime of partial locking of the second 
and third oscillators (D21 = – 0.375, m1 = 0.25, m2 = 0.125), and (d) three-
frequency quasi-periodic regime (D1 = –1 and m = 0.25). The detuning is 
D31 = – 0.5.
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Their invariant curves have a more complex configuration 
and various (including large) numbers of intersections with 
the phase-square sides in comparison with the curves of sim-
plest types shown in Figs 2b and 2c (see [14, 18] for details). 

Let us briefly consider the coupling type. Positive cou-
pling coefficients in (1) and (3) correspond (in terms of the 
oscillation theory) to dissipative coupling [12, 20]. However, 
the coupling coefficient may be negative, a situation that is 
widespread in problems of laser physics [2, 3]. This case can 
be referred to as active coupling. It can easily be seen that the 
change in the coupling coefficient sign in Eqn (3) is equivalent 
to the phase replacement

q ® q + p,  f ® f + p.	 (9)

Thus, the negative coupling coefficient corresponds to the 
antiphase laser synchronisation. At the same time, the regime 
patterns for the laser chain in the parameter plane for dissipa-
tive and active couplings exactly coincide due to the replace-
ment (9).

3. Phase dynamics of three globally coupled 
lasers

The phase equations for a more general case, where coupling 
of the third and first lasers is also possible (i.e., where all three 
lasers are optically coupled), were reported in [2, 3]. Under 
these conditions, the generalised Adler – Khokhlov equation 
has the form

( )sin sin sinm21 1 2q m q m f q fD= - + - +o ,

( )sin sin sinm23 1 2f m f m q q fD=- - + - +o .	
(10)

The coefficient m takes into account the possibility of cou-
pling the third and first lasers. Note that the parameters m1 
and m2 are expressed in terms of the parameters M and c (used 
in [3]) through the relations m1 = (с + 1/c)M and m2 = M/c. In 
turn, the coefficients M and c can be calculated by optical 
methods for the initial system. The calculation details and the 
relationship with the parameters of the initial laser system 
were reported in [2, 3]. 

First, we will discuss the influence of the coupling type on 
the structure of the equations. Let us change the signs of all 
coefficients in (10). Now replacement (9) is insufficient: the 
sign of the constant m, which determines the coupling 
between the boundary lasers, must be changed additionally:

q ® q + p,  f ® f + p,  m ® –m.	 (11)

Thus, the structure of the parameter plane in the case of 
global coupling of all lasers depends on the sign of the cou-
pling parameter. At the same time, the case where all coeffi-
cients in system (10) are negative is equivalent to the situation 
where the coefficients m1 and m2 are positive, but the coeffi-
cient m is negative*. 

Now we must determine the condition for complete syn-
chronisation of all three lasers. System (10) may have equilib-
rium states, which will be sought for by equating the rates of 
change in the relative phases to zero:

( ) 0sin sin sinm21 1 2m q m f q fD - + - + = ,

( ) 0sin sin sinm23 1 2m f m q q fD- - + - + = .	

(12)

Unfortunately, the approach [6] is invalid in this case: the 
condition of equality of the sines to unity does not yield a cor-
rect solution. The conditions for bifurcation occurrence must 
be sought for more correctly. If m ¹ 0, this condition is as 
follows: the Jacobian of the perturbation matrix of system 
(10) turns to zero [21, 28]; this leads to rather cumbersome 
analytical expressions. Therefore, we will present below the 
results of numerical determination of the complete-synchro-
nisation domain**. 

The pattern of bifurcation lines for system (10) in the 
plane of laser frequency detunings D23 and D21 is shown in 
Fig. 3. This pattern was obtained numerically using the stan-
dard MatCont package. Examples of the phase portraits at 
the points indicated by lowercase letters a – f in Fig. 3 are 
shown in Figs 4a – 4f, respectively. The coefficients were cho-
sen to be m1 = 0.351, m2 = 0.108, and m =  – 0.139; these values 
correspond to the parameters M = 0.162, c = 1.5, and m 
=  – 0.139 used in [2, 3]. According to the above remark, this 
case is equivalent to the situation where all coupling coeffi-
cients are negative (case of active coupling).

The three phase portraits in Figs 4a – 4c illustrate stable 
equilibrium states of the system, which correspond to the 
complete synchronisation of all three lasers. In the cases 
shown in Figs 4a and 4b, the system has four equilibrium 
points, one of which is a stable site, another is an unstable 
site, and the two others are saddles. There are six equilibrium 
points in Fig. 4c (two stable sites, three saddles, and one 
unstable site). Thus, in contrast to the laser chain, this system 
is characterised by bistability (i.e., coexistence of two stable 
equilibrium points). 

*  Specifically this situation was considered in [2, 3].

**  This point should be emphasised, because the conditions q = ± p/2 
and f = ± p/2 (i. e. sin q = ± 1 and sin f = ± 1) were interpreted in [3] as 
the conditions determining the synchronisation-domain boundary in 
the general case, which does not hold true. One can make sure of it by 
comparing the pattern of bifurcation lines obtained below from Fig. 2 
in [3], which was also reported in [2].
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and SN2 are the saddle – node bifurcation lines for the stable and un-
stable sites, respectively, and C are the cusp points. The region where at 
least one stable equilibrium state may exist is shown in gray. 
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The lines of saddle – node bifurcations converge pairwise 
at the cusp points C [29], where characteristic spikes with a 
semicubical singularity exist. The complete-synchronisation 
domain in Fig. 3 lies within the dashed oval, which is a line of 
saddle – node bifurcation SN2, where the unstable site and 
saddle merge.

Thus, the radical difference between the system under 
consideration and a laser chain is that bifurcations of stable 
and unstable sites do not occur simultaneously if all lasers are 
intercoupled. 

The phase portraits in Figs 4d and 4e demonstrate that 
two-frequency quasi-periodicity regimes may also exist. The 
phase trajectories in Fig. 4f fill closely the entire phase square, 
which corresponds to three-frequency quasi-periodicity.

To reveal the general pattern of the regimes for system 
(10), we will construct a Lyapunov exponent map (Fig. 5). 
One can see the complete-synchronisation domain, which 
corresponds to our bifurcation analysis. However, both over-
lapping sheets in Fig. 3 are projected onto the same parameter 
plane; therefore, they are visualised in Fig. 5 as a single 
domain. Figure 5 shows the entire system of two-frequency 
quasi-periodicity domains having a complex organisation. 
The three widest bands corresponding to these regimes lie 
near the lines describing the resonant conditions

D21 = 0,  D23 = 0,  D21 = D23.	 (13)

Condition (13) corresponds to the three fundamental res-
onances in the system. The fundamental frequencies of the 
first and second, second and third, and first and third lasers 
coincide in the first, second, and third cases, respectively. For 

example, Fig. 4d illustrates the first case, and the relative 
phase of the first and second oscillators q = y1 – y2 oscillates 
around some equilibrium point. Accordingly, the regime in 
which the second and third oscillators are partially locked 
arises along the vertical band of two-frequency quasi-period-
icity in Fig. 5. Finally, the regime of partial locking of the first 
and third oscillators can be observed along the diagonal. The 
phase portrait for this case is shown in Fig. 4d. The complete-
synchronisation domain is formed by the intersection of the 
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three aforementioned bands, corresponding to three versions 
of partial synchronisation in the system.

Let us now discuss how the transition from the regime of 
partial synchronisation of the first and third lasers to the 
regime of locking the first and second lasers may occur in the 
case of global coupling. This transition can be implemented 
due to the saddle – node bifurcation of the invariant curves (as 
in the case of the laser chain). However, there may be another 
scenario. If the trajectory in the frequency-detuning plane lies 
near the complete-synchronisation domain, the following 
nonlocal bifurcation arises: the invariant curve passes through 
the saddle in the phase plane, merging with its separatrices 
(the tracking direction along the invariant curve is set by the 
unstable manifold of the saddle). This mechanism can be 
illustrated by the transition from Fig. 4d to Fig. 4e. The 
invariant curve, when rounding the saddle, turns to left (with 
respect to the phase trajectory direction) in Fig. 4d and to 
right in Fig. 4e.

4. Conclusions 

The regime pattern for three interacting lasers is rather com-
plicated even within the phase approximation. It can be 
revealed by applying jointly the bifurcation analysis and the 
method of Lyapunov maps and by constructing phase por-
traits. The main regimes are as follows: complete laser syn-
chronisation, partial synchronisation of laser pairs, resonant 
two-frequency regimes of different types, and three-frequency 
regimes. The regime pattern includes bifurcations of the equi-
librium states, as well as saddle – node and nonlocal bifurca-
tions of the invariant curves. The dynamics for a three-ele-
ment chain differs significantly from that for a ring (for exam-
ple, there are different types of bifurcations corresponding to 
destruction of the complete-synchronisation regime). In addi-
tion, bistability in the form of coexistence of two stable equi-
librium states, which correspond to the complete synchroni-
sation of three lasers, is typical of global coupling. Another 
specific feature is that the regime pattern for a laser ring in the 
parameter space depends on the sign of the coupling coeffi-
cient, whereas the pattern for a laser chain is independent of 
this parameter.
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