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Abstract.  We have proposed a technique for calculating the propa-
gation of laser radiation in biaxial optical crystals in arbitrary 
directions. The technique is based on the use of the Fourier space 
method and takes into account both diffraction and angle beween 
the eigenpolarisations of the spatial spectrum components, phase 
shift differences for them with account for all orders of the spatial 
dispersion and also the features of the boundary conditions at the 
input and output facets. Using internal conical refraction as an 
example, we have compared the results of calculations with experi-
mental data. 

Keywords: biaxial crystals, propagation of laser radiation, Fourier 
space method. 

1. Introduction 

Optical crystals are widely used in a broad range of applica-
tions [1]. Initially, uniaxial crystals were generally employed. 
Born and Wolf [2] derived for such crystals the equations 
describing the propagation of radiation. In recent decades, a 
large number of biaxial crystals were synthesised, which con-
siderably extend the functionality of different applications [3]. 
In solving many applied tasks, use is made of the crystal with 
the cuts in the principal planes of the crystal-optic coordinate 
system. In this case, their properties are described with high 
accuracy by the equations for uniaxial crystals. Nevertheless, 
in some cases it is needed to use the most arbitrary cuts. This, 
in particular, involves the realisation of wavelength- and tem-
perature-noncritical interactions, i.e., birefringence and non-
linear optical frequency conversion [4 – 6]. In such cases, it is 
necessary to take into account all the processes proceeding in 
the crystal. For biaxial crystals, they include the angle between 
the eigenpolarisations with respect to the crystal coordinate 
system when the propagation direction of radiation changes; 
misorientation for different components of the spatial spec-
trum of the radiation beams manifests itself even upon inter-
action of the multiple beams with different wavelengths. This 
work is devoted to the account for such processes. A method 
is proposed for calculating the propagation of laser radiation 
in an arbitrary direction in biaxial crystals and the boundary 

conditions at the input and output facets of the crystal. The 
theoretical and experiemtnal results are compared for the case 
of conical refraction. 

2. Optical properties of biaxial optical crystals 

We present the basic expressions determining the optical 
properties of biaxial crystals and the features of variation in 
the parameters of propagating radiation. Expressions for the 
refractive indices of s- and f-waves have the form [2]: 
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where nx, ny, nz are the principal values of the refractive indi-
ces of the medium; 

sx = sinq cosj,   sy = sinq sinj,   sz = cosq	 (2)

are the direction cosines of the wave vector; and q and j are 
the angles that define the direction of the wave vector with 
respect to the principal axes of the crystal (Fig. 1). 
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Figure 1.  Normal surfaces for s- and f-waves in a biaxial crystal with a 
ratio of the refractive indices nx < ny < nz. 
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The distributions of the characteristic surfaces for both 
waves are shown in Fig. 1. One of the significant differences 
of biaxial crystals from uniaxial ones is the angle dependence 
of the eigenpolarisations for both components on the direc-
tion of the wave vector k. In uniaxial crystals the angles 
between the eigenpolarisations remain unchanged through-
out the entire range of angles of the wave vector in the crystal 
coordinate system. For the o-components it is parallel to the 
xy plane, and for e-component it is perpendicular to it and lies 
in the cutting plane passing through the z axis and the wave 
vector k. The angle between the eigenpolarisations for differ-
ent directions of radiation propagation in the case of biaxial 
crystals is shown in Fig. 2. The expression for the rotation 
angle (angle d in Fig. 2) has the form: 
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where Vz is the angle from the z axis to the optical axis, which 
is defined by the expression 
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Most strongly the angle d changes in the vicinity of the 
optical axis (Fig. 3). 

Wavelength-noncritical processes are realised in the direc-
tions located in the vicinity of the optical axis of the crystal 
[6]. As soon as the angle Vz has a dispersion, the angle between 
the eigenpolarisations for a given direction, corresponding to 
the process being realised, will also have a dispersion. Figure 
4 shows the dispersion dependences of the angle Vz for some 
biaxial crystals. They imply that for different interacting 
waves the angle between the eigenpolarisations, for example 
upon parametric generation of radiation, may be several tens 
of degrees. 

Obviously, in the general case, for radiation beams with 
finite divergence different spatial components (components 
of the spatial spectrum* ) will have different orientations of 
eigenpolarisations. In the case of a focused laser beam, the 
angle of the eigenpolarisations between the edge components 
of the spatial spectrum can reach tens of angular minutes, and 
in the vicinity of the optical axis of the crystal – units of 
degrees. 

Thus, in solving the problem of radiation propagation in 
a biaxial crystal in the most general case it is necessary to take 
into account the changes in the angle between the eigenpo-
larisations. 

3. Methods for solving the problem of radiation 
propagation in a biaxial crystal 

Calculation of radiation propagation in crystals requires the 
use of numerical methods. Already in the late 1960s conser
vative grid methods were developed (see, for example, [10, 
11]), which can be effectively used for solving the problems of 
radiation propagation in uniaxial crystals, and in some spe-
cial cases – in biaxial crystals. However, these methods have 
limitations caused by the instability, which, in particular, is 
manifested in solving the problems of frequency conversion 
when it is needed to take into account not only the group 
velocity mismatch, but also the dispersion spreading of the 
pulses of the second, third and higher orders. 

The overall analysis shows that the problem of propaga-
tion and interaction should be solved in the representation, in 
which manifestation of limiting and related mechanisms is 
most simply addressed. The combined action of both diffrac-
tion and the angle between the eigenpolarisations is most sim-
ply described in the spectral representation of propagating 
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Figure 2.  Orientations of eigenpolarisations for different sets of angles 
q and j in biaxial crystals.
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*
          Here and below by the spatial dispersion of the medium is meant the 
nonlocality of the response to the dielectric tensor [7 – 9]. In this case, it 
determines the dependence of the refractive index on the orientation 
angle of the vector k.
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(interacting) radiation beams – spatial spectrum components. 
Fourier space methods for solving the problems of nonlinear 
frequency conversion of radiation beams in uniaxial crystals 
were considered in [11 – 29], and of femtosecond pulses – in 
[30]. In both cases, use was made not of an approximate 
description of the dispersion of the refractive indices but of a 
more accurate description of the dispersion, described by the 
Sellmeier equation, which yielded good results (see, for 
example, [24, 30 – 32]). 

One of the effective methods for solving the problem of 
radiation propagation is the Fourier space method, which is 
based on the solutions in the spectral space and allows the 
most accurate account of all the main mechanisms manifested 
in biaxial crystals. This method, the mathematical representa-
tion of which was first presented in [11 – 14], is based on solv-
ing a system of parabolic differential equations for slowly 
varying amplitudes of the spectral components. A further 
development of this method is the split-step method, which 
consists in a separate and successive solution of problems of 
linear propagation of radiation and nonlinear interaction 
with a medium. For uniaxial crystals, this method was com-
prehensively considered for the first time in [19, 20]. 

In the analysis of linear processes the most applicable is 
the first method, whereas in the analysis of nonlinear interac-
tion of radiation with a medium (nonlinear optical frequency 
conversion, stimulated scattering, etc.) the second method is 
used, which is due to a higher operation speed, since the con-
volution of the functions is computed slower than the Fourier 
transform is performed by modern methods. The authors of 
Refs [25, 26] compared these two methods in solving the same 
problem. Also note that when it is necessary to take into 
account the boundary conditions on the sides of crystal ele-
ments (e.g., in the case of waveguide propagation of radia-
tion), the second method is only applicable.

Here we restrict our consideration to propagation of radi-
ation in a linear medium, since this problem can be easily gen-
eralised in the future to other practical problems. 

4. Propagation of radiation in a biaxial crystal 
with an arbitrary cut 

We will consider the process of propagation in a biaxial crys-
tal with an arbitrary cut for a linear nonmagnetic and nongy-
rotropic medium. In this case, the problem can be reduced to 
a scalar diffraction problem for the propagation of the radia-
tion field between two layers – the input and output facets of 
a biaxial crystal [33]. In combining it, for example, with the 
problem of nonlinear interaction, only the number of layers 
will change, whereas all other approaches to the solution will 
remain the same. 

Radiation at the entrance to a biaxial medium can always 
be represented as a superposition of linearly polarised mono-
chromatic waves, whose field strength is written in the com-
plex form: 

( , ) { ( , ) [ ( , )]exp jE x y A x y x y
2
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where Ai (x, y) is the amplitude distribution of the radiation 
field and ji (x, y) is the phase distribution of the radiation 
field. 

For definiteness we assume below that a linearly polarised 
wave is incident on the biaxial crystal. The results obtained 
can be easily generalised to the case of depolarised radiation 
with both a uniform and a nonuniform degree of depolarisa-
tion across the radiation beam cross section. 

Mathematically, propagation of radiation with the dif-
fraction between the two layers in an arbitrary medium taken 
into account is reduced to the calculation of the diffraction 
integral (Fig. 5): 
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where xi, yi are the transverse coordinates; Ei (x1, y1) is the ini-
tial distribution of the radiation field; E0(x2, y2) is the result-
ing distribution of the radiation field; and z is the length of the 
medium. 

The wave number k in (6) contains all the information 
about the spatial dispersion of the medium and the angle 
between the eigenpolarisations of radiation. Since expression 
(6) is a convolution integral, it will be solved by the Fourier 
space method. The general structure of such a solution has 
the well-known form [34]: 
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where kx, ky are the components of the spatial spectrum; 
Fi (kx, ky) is the spatial spectrum of initial radiation; F0(kx, ky) 
is the spatial spectrum of the resulting radiation; ks,f (kx, ky) is 
the wave number [ks,f  = 2p ns,f (kx, ky)/l], dependent on kx and 
ky; and ns,f (kx, ky) is the refractive index for s- and f-compo-
nents of radiation. 

In the case under study, the initial distribution of the field 
Ei (x1, y1) is expanded in a series of plane monochromatic 
waves of the spatial spectrum Fi (kx, ky), taking into account 
the fact that each of these spatial component has its own 
angle of eigenpolarisations (s- and f-components). Therefore, 
even for linearly polarised input radiation in the general case 
a couple of waves (spatial components) with orthogonal 
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Figure 5.  Geometry of the diffraction problem. 
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polarisations [Fis(kx, ky) and Fif (kx, ky)] propagate, each of 
which has its own phase shift. In this case, all the orders of 
spatial dispersion are taken into account, since use is made of 
expression (1), rather than its approximation. When calculat-
ing E0(x, y), we should take into account all peculiarities of 
the expansion in the eigenpolarisations and the phase shift of 
each component. 

Apart from the above-mentioned features of the prob-
lem in question, we should also take into account the differ-
ences in the boundary conditions on the input and output 
facets of the crystal, which are caused by the difference in 
the transmittances of the components with polarisation ori-
entation parallel and perpendicular to the plane of inci-
dence. Because for each component of the spatial spectrum 
kx,y the decomposition into s- or p-polarised components is 
different, the transmittances for them will also differ from 
each other. 

By using the approach presented above, the calculation of 
radiation propagation in an anisotropic medium consists in 
sequential solving the following sub-problems: 

(i) Calculation of refractive indices nf (kx, ky) and ns(kx, ky)  
for each component of the spatial spectrum kx,y and for s- or 
f-components of eigenpolarisations of radiation. 

(ii) Calculation of the rotation angles d(kx, ky) of eigenpo-
larisations with respect to the cutting plane (the plane passing 
through the z axis and the vector k, see Fig. 1) for each com-
ponent kx,y of the spatial spectrum. 

(iii) Calculation of transmittances of radiation on the 
input facet and its expansion in the eigenpolarisations of the 
anisotropic crystal for each component kx,y of the spatial 
spectrum. 

(iv) Solution of the diffraction problem of propagation of 
radiation in an anisotropic medium between the input and 
output facets on the basis of equations (7) – (9). 

(v) Calculation of transmittances for s- or f-polarisations 
of the radiation at the output facet and expansion in two 
orthogonal polarisations for each component kx,y of the spa-
tial spectrum. 

5. Calculation of the refractive indices  
and the rotation angle of eigenpolarisations 

Calculation of the refractive indices for each component kx,y 
of the spatial spectrum is reduced to solving the inverse prob-
lem, i.e., finding the values of the refractive indices ns,f (kx, ky) 
and angles j and q by the specified value of kx and ky. It 
should be noted that in an anisotropic medium the spatial 
spectrum is equidistant in the expansion parameters kx and 
ky, but not equidistant in the angular deviations of the wave 
vectors of the corresponding spatial components. 

To calculate the refractive indices ns,f (kx, ky), it is neces-
sary to know the direction cosines of the wave vector of the 
spectral components in the crystal coordinate system. 
However, from the initial data for the radiation beam we only 
know the distribution of the spatial spectrum in the coordi-
nate system tied to the direction of its propagation. To find 
the solution, we must recalculate the known distribution of 
the spatial spectrum from one coordinate system in the direc-
tion cosines of the wave vector in the crystal coordinate sys-
tem. 

Figure 6 shows the crystal coordinate system xyz and the 
coordinate system tied to the propagation direction of the 
radiation beam, x¢y¢z¢ (radiation propagates along the axis z¢ 
– vector k0). The axis x¢ lies in the plane zz¢, the axis y¢ – in 

the orthogonal plane. Then each component of the spatial 
spectrum of radiation with the specified values of kx¢ and ky¢ 
in the coordinate system x¢y¢z¢ will have projections on the 
axis: 
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where |k| = |k(kx¢ , ky¢ | is the modulus of the wavenumber for 
the component of the spatial spectrum. 

The rotation matrix used to recalculate the projections of 
the wavenumbers in the crystal coordinate system has the 
form 
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Then, using (10) and (11) the direction cosines of the spec-
tral components for (1) are calculated as follows: 
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where |ki (kx, ky)| = 2pni (kx, ky)/l is the modulus of the wave-
number of each component of the spatial spectrum. 

The values of the direction cosines (12) are substituted 
into (1), and the systems of equations, obtained for each com-
ponent of the spatial spectrum, are solved by iterative numer-
ical methods (e.g., modified Newton method) in the range of 
refractive indices nx ̧   nz. The minimised function, such as the 
f-polarised component, has the form: 

epsF n
B B C4

2
f

2
G= -

+ -

,	 (13)

where eps is the error in determining the refractive index. 
Likewise, for each spectral component the refractive indices 
for the s-polarised component were determined. 

Figure 7 shows the example of the calculated distributions 
of the refractive index of s- and f-polarised components in the 
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Figure 6.  Transformation of the coordinate system of the radiation 
beam to the crystal coordinate system. 
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direction of the optical axis of a biaxial LBO crystal for the 
spatial spectrum corresponding to the range of angular devia-
tions ±0.3° in both coordinates. 

To each component of the spatial spectrum kx, y   there 
corresponds its own angle of eigenpolarisations (3). Figure 8 
presents the example of the calculated distribution of the 
rotation angle of eigenpolarisations in the direction of the 
optical axis of a biaxial LBO crystal for spatial spectrum cor-
responding to the range of angular deviations ±0.3° in both 
coordinates. 

6. Boundary conditions on the input  
and output facets of a biaxial crystal 

The reflection coefficient of radiation falling on the interface 
between the media depends on the angle of incidence and 
polarisation of radiation, is described by the Fresnel formulas 
and differs for orthogonal s and p-polarised components of 
the incident wave. At the same time, in a biaxial medium there 
are two intrinsic s- and f-polarised components of the wave 
with different refractive indices. Then, to describe the wave 

propagation through the interface between the media, four 
transmittances are required for the field strength, relating the 
four defined polarisations. These are the coefficients [2] 
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where the subscript i corresponds to the s- or f-polarised com-
ponent; a is the angle of incidence of the wave; and bi is the 
angle of refraction of the wave of the s- or f-polarised com
ponent. 

For each component kx, y of the spatial spectrum, the 
angle of the wave incidence on the interface between the 
media for the input and output facets is calculated in the 
same way: 
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Expressions for the refraction angles of the wave for s- 
and f-polarised components at the input and output facets are 
different: 
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Consider how the component of the spatial spectrum of 
linearly polarised light is expanded in the eigenpolarisations 
of a biaxial crystal on its front facet (Fig. 9). 

Let us consider the most general case of a linearly polar-
ised wave E0 incident on the interface between the media. In 
this case there are two projections of the wave vector k on the 
interface between the media – kx and ky, orientations and val-
ues of which determine the mutual orientation of the plane of 
incidence and eigenpolarisations of radiation in the crystal. 
This, in turn, will determine the refractive indices for each of 
the radiation components by the eigenpolarisations propa-
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Figure 7.  Refractive index distribution for (a) s- and (b) f-polarised components in the direction of the optical axis of the LBO crystal (the plane xz 
is directed horizontally). 
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Figure 8.  Distribution of the angle of rotation of eigenpolarisations in 
the direction of the optical axis of the LBO crystal (the plane xz is di-
rected horizontally). 
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gating in the crystal. In the general case, the plane wave polar-
isation is rotated with respect to the x axis by the angle y. 
Each component of the spatial spectrum of this wave will 
have the same polarisation. Each mth component of the spa-
tial spectrum in the working coordinate system is rotated by 
an angle g = arctag(ky /kx). The choice of the coordinate sys-
tem (x and y) is due to the necessity of matching the orienta-
tions of eigenpolarisations for the zero component of the spa-
tial spectrum with the orientation of these axes. Then, the 
expansion of the spatial spectrum components in s and p- 
polarised components of the field strength will have the form: 

Es = E0cos(g – y),      Ep = E0sin(g – y).	 (18) 

Since each component of the spatial spectrum has its own 
rotation angle of eigenpolarisations d, by using expressions 
(11) and (18) the expressions for the s- and f-polarised compo-
nents of the field strength in the biaxial medium are as fol-
lows: 

Es = EsTs
s sin(g – d) – EpTs

p cos(g – d),	
(19)

Ef = EsTf
s cos(g – d) + EpTf

p sin(g – d).

The components of the spatial radiation spectrum propa-
gate through the output facet as follows (Fig. 10). At the out-
put of the medium, each component of the spatial spectrum 
will generally have an elliptical polarisation. For definiteness, 
beyond the output facet we represent each such component of 
the spatial spectrum as a sum of two orthogonal linearly 
polarised components E1 and E2, directed along the axes x 
and y, respectively. S- and f-polarised components whose 
planes are rotated by the rotation angle of eigenpolarisations 
d are incident on the output facet. Each component of the 
spatial spectrum is rotated by the angle g = arctan(ky /kx). 
Then, using (11) the expansion of the spectral components in 
s- and p-polarisations will have the form: 

Es = EfTf
s cos(g – d) + EsTs

s sin(g – d),	
(20)

Ep = EfTf
p cos(g – d) + EsTs

p cos(g – d), 

where Ef and Es are f- and s-polarised components. 

In view of (20) at the output of a biaxial crystal two 
orthogonal linearly polarised components have the form: 

E1 = Es cosg + Ep sing,	

(21)

E1 = Es sing – Ep cosg.

7. Results of calculations 

Accounting for all orders of spatial dispersion and the angle 
between the eigenpolarisations for different spectral compo-
nents in the solution method allows one to calculate accu-
rately the change in the profile of the radiation beam with a 
wide angular spectrum and its walk-off during propagation in 
an anisotropic medium. 

The calculation was performed for the 20-mm-long non-
linear bismuth triborate (BiB3O6) crystal. This biaxial medium 
has a strong birefringence, which allows one to observe more 
clearly the effects of deformation of the beam profile. The 
principal values of the refractive indices for this crystal at a 
wavelength of 540 nm are: nx = 1.7869, ny = 1.8185, nz = 
1.9613. The crystal cut angle q was chosen close to the optical 
crystal axis angle and was equal to 25° at j = 0°. At the crystal 
input the beam has a Gaussian amplitude profile (radius of 
0.2 mm at the 1/е2 level, divergence of 4 mrad). The plane of 
radiation polarisation at the crystal input lies at an angle of 
45° to the orientations of its eigenpolarisations. 

Figure 11 shows the profiles of the radiation beam before 
and after its propagation through a biaxial crystal. To empha-
sise the deformation of the beam profile, the cutting angle was 
chosen specially close to the optical axis of the crystal. It is 
seen that the s-and f-polarised components of the beam dur-
ing its propagation through the biaxial crystal are deformed 
in orthogonal directions. In addition, the f-polarised compo-
nent experiences a walk-off during propagation. When radia-
tion propagates in the xz plane at the cut-off angle q < Vz, the 
walk-off angle of the f-polarised wave component in the lin-
ear approximation is described by the expression 
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2
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n n

2
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z x
2 2 2 2
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-

^
^

h
h
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For the initial data presented above, the walk-off angle is 
3.86°. The results of calculations by the above-described 
method give an angle of 3.83°. 
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Figure 9.  Expansion of the spatial component of radiation in the eigen-
polarisations of a biaxial crystal at its input facet; s and p are the orien-
tations of the polarisation planes of radiation incident on the crystal, 
perpendicular and parallel planes of the interface between the media. 
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Figure 10.  Propagation of radiation through the output facet of a bi-
axial crystal.
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8. Comparison of calculation results  
with experimental data 

The adequacy of the proposed Fourier space method for 
calculating the propagation of radiation in a biaxial medium 
can be most clearly checked by the example of calculation of 
the internal conical refraction – a phenomenon which is 
observed when a collimated unpolarised beam of monochro-
matic radiation propagates along the optical axis of a biaxial 
crystal. During propagation in a medium the transverse beam 
profile will diverge along the trajectory of a hollow cone, and 
after escaping from the medium – a hollow cylinder. Diffrac
tion of the radiation beam leads to the fact that at the crystal 
output the beam profile will have the form of two thin con-
centric rings. Analytical description of the internal conical 
refraction for a nongyrotropic biaxial medium is considered 
in [35 – 37]. 

Schell and Bloembergen [37], using a biaxial aragonite 
crystal (nx = 1.53, ny = 1.68, nz = 1.685) as an example, com-
pared the results of experimental studies of conical refraction 
with theoretical calculations. The optical axis of aragonite lies 
at an angle Vz = 80.4° to the z axis. 

In the experiment, linearly polarised single-mode radia-
tion of a 0.6328-mm He – Ne laser propagated along the opti-
cal axis of aragonite (the length of the crystal along the x axis 
of the crystal coordinate system was 9.5 mm). At the input 
facet of the crystal the beam had a Gaussian profile and the 
waist size r = 34 mm. Figures 12a, b show the experimentally 
measured [37] transverse profiles of the radiation beam at the 
output facet of the crystal after the conical refraction for two 
orthogonal polarisations of radiation, and Figs 12c, d – simi-
lar profiles calculated by the method described in this paper. 

Figure 13 illustrates the beam cross sections at the output 
of aragonite along the xz plane for two orthogonal polarisa-

y

a b

Figure 11.  Profiles of the radiation beam (a) before and (b) after its passage through a biaxial crystal (the principal plane xz of the biaxial crystal is 
directed horizontally). 

a b c d

Figure 12.  (a, b) Experimentally measured [37] and (c, d) calculated distributions of the radiation beam at the output facet of aragonite for linearly 
polarised radiation in the plane xz (a, b) and the orthogonal plane (b, d). 



41Fourier space method for calculating the propagation of laser radiation

tions of linearly polarised radiation – in the plane xz (left 
peaks) and in the orthogonal plane (right peaks). It can be 
seen that the positions of the extrema of the experimental and 
calculated distributions coincide with high accuracy. Some 
discrepancy is due to the fact that we failed to accurately sim-
ulate the experiment of [37] due to the lack of description of 
the spatial structure of the beam inside the crystal. 

9. Conclusions 

The paper presents a method for calculating the propagation 
of radiation in a biaxial crystal with an arbitrary direction of 
the cut. The method takes into account all the orders of the 
spatial dispersion of the medium, which defines the action of 
diffraction and changes in angles of eigenpolarisations for 
different spatial components and features of the reflection 
coefficients at the input and output facets. 

We have compared the experimental data and simulation 
results in the case of conical refraction of radiation propagat-
ing along the optical axis of the crystal. In the case of conical 
refraction it is required to take into account all the features of 
radiation propagation in the biaxial medium. Agreement of 
the results shows the accuracy of the data obtained using the 
proposed calculation method.
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Figure 13.  Comparison of the experimentally obtained [37] and calcu-
lated cross sections of the radiation beam at the output facet of arago-
nite along the plane xz. 


