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Abstract.  The modulation instability in waveguides with high Kerr 
nonlinearity, characterised by a delayed nonlinear response, has 
been investigated with allowance for the self-steepening parameter 
and third-order dispersion. General expressions for the modulation 
gain are obtained. The influence of the waveguide parameters on 
the gain is analysed. It is shown that the joint effect of the delayed 
nonlinear response and negative nonlinearity dispersion leads to an 
increase in the modulation gain. The relations obtained are con-
firmed by numerical simulation. The results of this study can be 
used to design compact generators of high-frequency pulse trains.

Keywords: modulation instability, delayed nonlinear response, self-
steepening parameter. 

1. Statement of the problem and basic equations

The technology of fabricating optical media with high Kerr 
nonlinearity has been intensively developed in the last years. 
Examples of these media are semiconductor waveguides 
[1 – 3]; nanocomposites [4, 5]; and photon-crystal structures 
[6], including those based on polymer and organic materials 
[7, 8]. Materials of this type are promising for many optoelec-
tronic devices: pulse compressors, optical switches, logic 
gates, etc. [9 – 11]. High Kerr nonlinearity makes it possible to 
increase the nonlinear conversion efficiency of these devices 
and reduce their size (i.e., make it possible to use them in com-
pact optoelectronic circuits).

Generators of short-pulse trains, the principle of opera-
tion of which is based on the modulation instability (MI) of a 
continuous wave in a nonlinear dispersive medium [12], are 
another type of these nonlinear converters. The modulation 
instability is typical of nonlinear systems that support propa-
gation of localised waves and is determined by the balance 
between nonlinearity and dispersion [13]. This effect was 
experimentally revealed in quartz optical fibres with a con-
stant anomalous group-velocity dispersion, where generation 
of a pulse train from a continuous modulated wave was 
observed [14, 15]. Note that standard quartz optical fibres are 
characterised by relatively low nonlinearity; therefore, a train 
of short soliton-like pulses can be generated if their length is 
on the order of several kilometres.

In this study, we consider the MI in an optical waveguide 
with high nonlinearity. A specificity of this problem is that, 
when developing an MI model, one must take into account 
the higher order nonlinear and dispersion effects: nonlinear 
response delay, wavefront self-steepening, and third-order 
dispersion. The relations obtained can be used to design com-
pact generators and compressors of optical pulses on the basis 
of highly nonlinear waveguides.

The nonlinear response of a medium is characterised by 
the nonlinear refractive index, which is related to the real 
part of the nonlinear third-order dielectric susceptibility c(3) 
[12, 16],
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Here, n is the linear part of the refractive index of the medium 
nr . We restrict ourselves to the case of an isotropic medium 
and a linearly polarised electric field of the propagating wave. 
Under these conditions, the nonlinear polarisation of the 
medium can be represented as PNL = c(3)E 3, where E is the 
electric field strength. Thus, the ‘total’ refractive index is 
related to the field intensity |E|2 as

| |n n n E2= +
2r .	 (2)

In the approximation of slowly varying amplitudes, the 
field of a wave packet propagating in a waveguide along the z 
axis can be written as 

E(r,t) = U(x, y)|A(z, t)|exp{i[( b(w) – b0)z – (w – w0)t]},

where w0 is the packet carrier frequency,  b(w) is the propa-
gation constant, and U(x, y) is the field distribution in a 
plane oriented perpendicular to the propagation direction. 
The amplitudes A(z, t) of a wave packet in a nonlinear wave-
guide satisfy the nonlinear Schrödinger equation (NLSE), 
which can be written as follows in the related coordinate sys-
tem that moves with a group velocity ¶ ¶( / )ugr
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-
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[12,  16]:
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is the time in the related coordinate system and b2 =
¶ ¶( / )2 2 1b w w w=

-
0
 is the group-velocity dispersion in the wave-

guide. The nonlinearity coefficient has the form
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is the effective mode area. Below we will consider the wave 
propagation in a single-mode waveguide with a Seff value 
retained constant along its length.

Equation (3) describes adequately the propagation of 
wave packets with widths exceeding 0.1 ps in single-mode 
quartz optical fibres characterised by n2 » 3 ´ 10–20 m2 
W–1, which corresponds to the nonlinearity coefficient 
(depending on the wavelength and specific fibre reali-
sation) g » 2 – 30 W–1 km–1 [12]. The nonlinear refractive 
index n2 of modern highly nonlinear optical materials may 
reach ~10–14 – 10–15  m2 W–1 [1 – 8]; thus, the nonlinearity 
coefficient g of the waveguides made of these materials may 
exceed the nonlinearity coefficient of quartz waveguides by 
5 – 6 orders of magnitude. At an average modulated-wave 
power P0 » 1 W, the characteristic nonlinearity length in these 
waveguides may be only few millimetres, which is favourable 
both for miniaturising optoelectronic elements and for obtain-
ing a high degree of compression of generated soliton-like 
pulses. Their width can approximately be found from a rough 
estimate, according to which a modulated wave with a modula-
tion period T is transformed into a train of solitons with a 
width t0 and a peak power P = P0T/t0. The equality of the dis-
persion and nonlinear lengths of soliton yields t0 » | b2|/(gP0T ). 
Thus, if the characteristic parameters of highly nonlinear wave-
guides and modulated wave are used (g = 100 W–1 m–1, b2 = 
10–23 s2 m–1, P0 = 10 W, and T = 10–12 s), these waveguides 
(with a length of only few millimetres) can generate pulses with 
widths on the order of several tens of femtoseconds.

However, Eqn (3) is insufficient for exact description of 
wave-packet propagation in highly nonlinear waveguides, 
because it does not include the terms responsible for the 
higher order nonlinear and dispersion effects, which could be 
neglected in the case of low nonlinearity. The most important 
of them is the relaxation nature of high nonlinearity, which is 
related to the fact that the nonlinear response of an optical 
medium is not instantaneous but is characterised by a finite 
settling time tNL. Despite the large variety of the mechanisms 
of occurrence of optical nonlinearity, it can be noted that, in 
almost all cases, higher nonlinearities are characterised by a 
longer response time [16]. The quasi-static consideration 
based on Eqn (3) remains valid if radiation pulse width greatly 
exceeds the nonlinearity settling time tNL. Weakly nonlinear 
quartz optical fibres are characterised by a time response on 
the order of several femtoseconds, which must be taken into 
account in the case of propagation of ultrashort pulses (with 
a width below 0.1 ps) [16]. When describing the propagation 
of these pulses (with widths of few field oscillation periods), 
one has to reject the concept of slowly varying amplitudes and 
consider jointly the field wave equations and the material 
equations describing the response of the medium. In recent 
years some new methods have been developed, which are 
based on separate description of the fast (electronic) and slow 
(Raman) responses of the medium [17] and on the spatial and 
temporal multiscale expansion of the wave equation for ultra-
short pulse propagation [18].

The nonlinearity relaxation time tNL in semiconductor 
waveguides is much longer: it ranges from several tenths to 

several tens of picoseconds; the nonlinear response, which sig-
nificantly affects the propagation of wave packets, is also 
much stronger than in quartz glass [1, 7, 8, 16, 19]. Such large 
tNL values make it possible to take into account the nonlin-
earity relaxation within the approximate Debye model 
[16, 20 – 22]. In addition, high nonlinearity calls for consider-
ation of the wavefront self-steepening effect and higher order 
dispersion.

Let us restrict ourselves to the propagation of pulses with 
widths no less than 0.05 ps. In this case, we can retain the 
description of wave packets using slowly varying envelopes 
and take the nonlinear Schrödinger equation (3) as a basis. 
After introduction of the terms taking into account the third-
order dispersion and self-steepening effect, the generalised 
propagation equation in a highly nonlinear waveguide can be 
written as the system
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Here, the time-dependent nonlinear response of the medium,  
Dn(t), and the parameters of third-order dispersion b3 = 
¶ ¶( / )3 3 1b w w w=

-
0
and self-steepening are introduced. The latter 

parameter is determined by the value and dispersion of the 
optical-medium nonlinearity [16, 23]:
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It is generally assumed (with a rather high accuracy) for 
standard quartz optical fibres that  m » 2g/w0 [12], i.e., m is a 
small value, which affects weakly the dynamics of a wave 
packet if its width exceeds 100 fs and the peak power is much 
smaller than 1 MW. In highly nonlinear waveguides this 
parameter significantly increases (not only due to the rise in 
the nonlinearity coefficient but also owing to the dispersion 
factors) and may reach 10–12 – 10–11 W–1 m–1 s. Below we will 
analyse the stability of a steady-state solution for this system 
[A = A0exp(ig|A0|2z)] to small modulations and find the condi-
tions for developing modulation instability, which are neces-
sary for generating pulse trains from a modulated wave.

2. Modulation instability under conditions  
of relaxing nonlinearity

As was noted above, system (5) has a solution in the form of 
a continuous wave with a constant power P0, which under-
goes a nonlinear phase shift

( ) ( )exp iA z P P z0 0g= .	 (7)

Let us consider a small perturbation of this wave a(z, t), which 
leads to a small change in the nonlinear response dn,

( , ) ( )exp iA z P a P z0 0t g= +^ h ,	

(8)

Dn = gP0 + dn. 

System (5), linearised in small perturbations, takes the form
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Proceeding from (9), one can derive a system of linear equa-
tions for the Fourier components ( , )a kWu  and ( , )a kW- -*u :
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A system of equations has a nontrivial solution if its determi-
nant is zero. Based on this condition, we find the dispersion 
relation between the modulation frequency W and the propa-
gation constant k:
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Note that dispersion relation (10) in the limiting case 
tNL = 0 passes to the relation obtained in [24] for a medium 
with an instantaneous nonlinear response, while in the case 
b3 = 0 and m = 0 it coincides with the result obtained in [22] for 
a medium characterised by relaxing nonlinearity, with higher 
order and nonlinearity dispersions disregarded. Thus, one 
can state that the results of this study generalise the results 
obtained in the aforementioned papers.

It follows from (10) that two dispersion branches k(W) can 
be selected; they differ not only in imaginary but also in real 
parts of the propagation constant. The real part is responsible 
for the propagation of a wave with a spatial period z = 
2p/Re k, while the imaginary part determines its amplification 
or attenuation; thus, one can separately consider the propa-
gation of damping modulation and (which is most interest-
ing) rising modulation. The frequency dependence of the gain 
g(W) can be written in the form
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In the limiting case of instantaneous response (tNL = 0), with 
self-steepening disregarded (m = 0), we arrive at the classical 
case of MI [12], which arises in a waveguide with anomalous 
dispersion b2 < 0 in the frequency band Wc ¸ Wc (Wc = 
4gP0 /| b2|). It is noteworthy that the value of the third-order 
dispersion b3 does not affect the gain in the initial stage of MI. 
The coefficient g(W ), which is given by expression (11), has 
two branches. In the most typical case, where the self-steepen-
ing parameter m > 0 and
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the branches have different signs; the branch that is larger in 
modulus corresponds to modulation damping, while the 
branch smaller in modulus corresponds to its gain. If the 
waveguide has a negative dispersion nonlinearity ( m < 0), the 
modulation gain becomes larger in modulus. At  mP0W 2 tNL ® 
0 the absolute values of damping and gain become equal.

Figures 1 and 2 present the dependences of the absolute 
value of g(W) in the cases of anomalous and normal wave-
guide dispersion b2 at different tNL and m values. The g, b3, 
and P0 values were chosen typical of highly nonlinear wave-
guides. The dependences are given for only positive frequen-
cies (W > 0) because they are symmetric for negative frequen-
cies: g(W) = g(–W). This can be shown by repeating the above-
performed procedure with system (9) for the Fourier 
components ( , )a kW-u  and ( , )a kW -*u .

It follows from the plots in Fig. 1a that the nonlinear 
response rate affects strongly the value and frequency range 
of the modulation gain. As was noted above, in the case of 
instantaneous nonlinear response (tNL = 0), the MI region in 
a waveguide with anomalous dispersion is limited by the lim-
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Figure 1.  Absolute values of gain (damping) g(W ) (11) at (a) waveguide 
anomalous dispersion b2 = –10–22 s2 m–1, m = 10–12 W–1 m–1 s and differ-
ent tNL values (solid and dashed lines correspond to gain and damping, 
respectively) and (b) at tNL = 0.5 ps and different m values. In both cases 
g = 100 W–1 m–1, b3 = 10–35 s3 m–1, and P0 = 10 W.
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iting frequency Wc = 4gP0  | b2| –1. With allowance for the non-
linearity inertia, the MI region becomes unbounded. At small 
tNL values (0.01 ps), the region of strong MI, which can be 
referred to as the parametric gain region, is retained on the 
whole. A region of weak MI, caused by nonlinearity relax-
ation, arises beyond the strong-MI region. With an increase 
in tNL (0.3 ps), the parametric MI gain decreases, and the 
sharp boundary between the strong- and weak-MI regions 
becomes blurred. At long relaxation times (3 ps), there is an 
unbounded region of weak MI, where the parametric gain 
makes a small contribution only in the low-frequency range. 
The maximum modulation gain, caused by delayed nonlinear 
response, falls in the frequency range W » 1/tNL.

The influence of the positive self-steepening parameter m 
manifests itself in the ‘splitting’ of the dependences of gain 
moduli g(W ), i.e., in a decrease in the modulation gain and 
in increased damping. The influence of the parameter m on 
the modulation gain at a typical time tNL is shown in Fig. 1b 
in more detail. At small m values (10–13 W–1 m–1 s) its influ-
ence is insignificant (the dotted lines almost coincide). With 
an increase in m (3 ´ 10–12 W–1 m–1 s), the branches of the 
plots |g(W )| undergo ‘splitting’, i.e., the positive parameter m 
suppresses MI due to both factors: parametric gain and non-
linearity relaxation. In the case of large positive m values 
(10–11 W–1 m–1 s), the frequency range of modulation gain 
becomes limited; when W > 1013 s–1, g changes sign and deter-
mines the modulation damping.

It is noteworthy that the situation becomes inverted for a 
waveguide with a negative self-steepening parameter ( m < 0): 
at large negative m values the modulation gain increases. This 
MI gain can be explained by the opposite effect of the delayed 
nonlinear response, which reduces the velocity of wave max-
ima, and the nonlinear rise in the leading edge steepness. At 
m  > 0 the trailing edge becomes steeper [16, 25]; this factor, in 
combination with the delayed response, reduces the MI effect. 
It is important that MI gain arises only under joint effect of 
negative self-steepening and relaxing nonlinearity. Under 
conditions of an instantaneous nonlinear response, both neg-
ative and positive values of parameter m facilitate a decrease 
in MI.

The peculiar effect of the delayed nonlinear response is the 
MI at normal ( b2 > 0) waveguide dispersion. Figure 2a shows 
a frequency dependence g(W ) for a waveguide with b2 > 0 at 
different tNL values. It is known that MI does not arise at an 
instantaneous nonlinear response in waveguides with normal 
dispersion, i.e., the parametric gain region is absent [the sub-
radical expression in (11) is always negative]. In the case of 
fast response (tNL = 0.01 ps), MI arises in the high-frequency 
range. With an increase in tNL to 0.3 ps and then to 3 ps, the 
maximum gain decreases and passes to the low-frequency 
range. The dependence |g(W )| for a waveguide with normal 
dispersion at different m values and at a characteristic time 
tNL are shown in Fig. 2b. Note that, as in the case of anoma-
lous dispersion, positive and negative values of the self-steep-
ening parameter facilitate MI damping and gain, respectively.

3. Application of the obtained results  
to modelling pulse generators

The relations obtained in the previous section refer to the ini-
tial MI phase. Its further development leads to amplification 
of not only the spectral components with a modulation 
frequency W but also the next harmonics; this process is 
accompanied by pump depletion (the spectral component 
with W = 0, which is initially presented by a continuous wave 
with a power P0, can be considered as pump radiation). Under 
these conditions, the gain g at the modulation frequency 
decreases. Finally, the modulated wave decays into a sequence 
of soliton-like pulses (breathers) [26]. As was noted above, 
this process occurs in highly nonlinear waveguides at lengths 
on the order of few millimetres. The relations obtained can be 
useful to analyse the developed MI phase and design pulse-
train generators based on highly nonlinear waveguides.

We investigated numerically the developed MI phase in a 
waveguide with high nonlinearity. The simulation was per-
formed using the split step-by-step Fourier transform [12] of 
system (5) at different waveguide parameters. A harmonically 
modulated wave

( , ) . cosA P T0 1 0 010t t
= +` j	 (12)

with a power P0 = 10 W was considered to be the initial one.
Figure 3a shows the simulation results for the transmis-

sion of the initial modulated wave in a highly nonlinear wave-
guide with anomalous dispersion at different nonlinearity 
relaxation times tNL. The modulation period T = 1 ps, which 
corresponds to the frequency W = 2p ´ 1012 s–1. It can be seen 
that the time tNL has a decisive effect on the MI development. 
This is in agreement with the results obtained above. At short 
relaxation times (0.01 ps), a high-frequency train of short 
soliton-like pulses is formed on a small length (5.6 mm) of a 
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Figure 2.  Absolute values of gain (damping) g(W ) (11) at (a) waveguide 
anomalous dispersion b2 = –10–22 s2 m–1, m = 10–12 W–1 m–1 s and differ-
ent tNL values (solid and dashed lines correspond to gain and damping, 
respectively) and (b) at tNL = 0.5 ps and different m values. In both cases 
g = 100 W–1 m–1, b3 = 10–35 s3 m–1, and P0 = 10 W.
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highly nonlinear waveguide. With an increase in the relax-
ation time (0.1 ps), the modulation gain decreases, and a lon-
ger waveguide is required to form a pulse train. With a further 
increase in the response delay time, when it becomes compa-
rable with the modulation period (tNL = 0.5 ps), the modula-
tion gain is low, and the MI development is very weak. Thus, 
we can conclude that highly nonlinear waveguides with a long 
nonlinear response time are inefficient as generators of high-
frequency pulse trains and other ways for reducing the relax-
ation time should be sought for. As an example, we will note 
that ionising radiation can be used to reduce tNL in semicon-
ductor structures [27]. At the same time, a direct decrease in 
the relaxation time leads generally to deterioration of the 
nonlinear properties of the waveguide, which is, naturally, 
undesirable.

Based on the above results, we propose the following con-
cept of modifying a highly nonlinear pulse-train generator, 
which is based on the MI effect. To this end, it is necessary to 
design a highly nonlinear waveguide, which is characterised 
by negative nonlinearity dispersion and, therefore, by a self-
steepening parameter m < 0. This can be done, for example, 
by forming a periodic structure in the waveguide [28]. The 
results of the previous section indicate that a highly nonlinear 
waveguide with an intermediate value of nonlinearity relax-

ation time and a negative self-steepening parameter has a 
higher modulation gain than a similar waveguide with posi-
tive m and is a more efficient pulse-train generator.

Figure 3b shows the simulation results for the transmis-
sion of a modulated wave (12) with a period T = 2 ps in a 
highly nonlinear waveguide with a relaxation time tNL = 0.5 
ps at large negative ( m = – 8 ´ 10–12 W–1 m–1 s) and small pos-
itive ( m » g/w0 = 0.1 ´ 10–12 W–1 m–1 s) values of self-steepen-
ing parameter. It can be seen that a train of soliton-like pulses 
is formed in the waveguide with negative m on a small length. 
The waveguide with small positive m, which is characterised 
by a lower modulation gain, is less efficient as a generator of 
high-frequency pulse trains.

4. Conclusions

We considered the MI effect in waveguides with high Kerr 
nonlinearity, which is characterised by a delayed nonlinear 
response, taking into account the influence of the self-steep-
ening parameter and third-order dispersion. These wave-
guides are promising as compact generators of short-pulse 
trains in optoelectronic circuits. The system of equations 
describing the propagation of a wave packet in a waveguide 
of this type is analysed for stability to small perturbations. A 
general expression for the gain (damping) of small harmonic 
modulations is derived. It is shown that in particular cases 
(with the self-steepening and third-order dispersion disre-
garded or in the absence of delayed nonlinear response) our 
result coincides with the known expressions for the modula-
tion gain [22, 24]. The expressions derived by us show that the 
third-order dispersion does not affect the modulation gain, 
whereas the influence of the delayed nonlinear response and 
self-steepening parameter is complex and depends on the 
value and sign of the self-steepening parameter m.

At small values of the waveguide self-steepening parame-
ter  | m| < 1/(P0W 2tNL) its influence is insignificant. The pecu-
liar effect of the delayed nonlinear response is the formation 
of an additional frequency range of MI with a maximum 
modulation gain in the vicinity of W » 1/tNL. It is important 
that the nonlinearity relaxation effect provides the existence 
of MI in a waveguide with normal dispersion, which is impos-
sible in the case of an instantaneous response. In a waveguide 
with anomalous dispersion, an increase in tNL leads to blur-
ring of the boundary between the MI region, determined by 
the delayed response, and the region of parametric modula-
tion gain. The maximum gain rapidly decreases with an 
increase in the relaxation time tNL in waveguides with both 
normal and anomalous dispersions.

In the case of the instantaneous nonlinear response, the 
self-steepening parameter, independent of its sign, plays the 
role of a damping factor with respect to MI and decreases the 
modulation gain. Under a joint effect of nonlinear relaxation 
and significant self-steepening [ | m| > 1/(P0W 2tNL)], the result 
depends on the sign of  m. A positive self-steepening parame-
ter leads to suppression of MI, while at negative  m values, due 
to the ‘opposite’ effect of relaxing nonlinearity and increasing 
the leading-edge steepness, the modulation gain significantly 
increases. This effect can be used to design compact genera-
tors of high-frequency pulse trains based on MI in waveguides 
with high relaxing Kerr nonlinearity. The conclusions of our 
study are confirmed by the results of numerical simulation.
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Figure 3.  Modulated-signal power in the developed phase of modula-
tion instability with P0 = 10 W (a) after passage through a 5.6-mm-long 
waveguide at m = 10–12 W–1 m–1 and different tNL values and (b) after 
passage through a 9.2-mm-long waveguide at tNL = 0.5 ps and different 
m values (the dashed line shows the initial modulated wave). In both 
cases b2 = 5 ´ 10–23 s2 m–1, b3 = –5 ´ 10–37 s3 m–1, and g = 100 W–1 m–1.
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