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Abstract.  A method for rapid detection of absorbing inhomogene-
ity in a strongly scattering medium having the properties of a bio-
logical tissue before the image reconstruction is described based on 
the principles of diffuse optical tomography. The method is based 
on preliminary processing of a three-dimensional surface obtained 
from the set of time-resolved data in the Cartesian coordinate sys-
tem, followed by its conformal transformation into two surfaces in 
the cylindrical coordinate system. A specific feature of the method 
is the use of late-arriving photons, scattered and diffusely transmit-
ted through an optically turbid object. 

Keywords: diffuse optical tomography, early-arriving photons, 
late-arriving photons, strongly scattering media, conformal map-
ping, randomly inhomogeneous media.

1. Introduction

Diffuse optical tomography (DOT) is a set of methods for 
studying biological tissues to the depth of 10 – 15 cm, based 
on extracting the information from the strongly scattered 
(diffuse) component of probing radiation [1 – 3]. With respect 
to the key characteristic – the type of probing radiation, the 
DOT methods are usually divided into three large groups, 
namely, the pulsed ones (time-resolved or time-of-flight opti-
cal tomography), the amplitude-modulated ones (frequency 
domain optical tomography), and the continuous ones (cw 
optical tomography). Besides, DOT is often combined with 
other diagnostic methods, e.g., with laser fluorescent diagnos-
tics (diffuse fluorescence tomography).

It is important to note, that in a number of cases, DOT 
can replace the X-ray computed tomography (CT) and the 
magnetic resonance tomography (MRT), and sometimes it 
can be used as a complementary diagnostic method. In the 
process of CT and MRT examinations the patient has to stay 
immobile during a long time, which gives rise to additional 
problems in diagnostics of new-born and prematurely born 
infants. Their examination has to be performed under the twi-
light anaesthesia, which is not always acceptable and can give 
rise to additional complications. The DOT allows diagnostics 
of haematomas, tumours, brain cysts, including those in neo-
nates [4]; in this case the optical waveguides are painlessly 
attached to the patient’s head and he can move free enough.

The existing methods of two- and three-dimensional 
medical imaging, including DOT, require a large RAM and 
a considerable computation rate of computer systems. While 
for solving most problems the required RAM can be easily 
provided by adding memory units to the existing system, the 
speed of a computing unit (processor core) has a definite 
limit [5]. This problem is solved by performing the calcula-
tions using graphics processors, which essentially increases 
the processing power. The technology of general-purpose 
graphics processing units (GPGPUs), i.e., using graphics 
processors for calculations, usually performed by the central 
processor unit, is rather new, the first ‘open’ codes having 
become available in the beginning of 2007 [5]. That is why in 
the present paper particular attention is paid to the possibil-
ity of direct detection of optical inhomogeneities without 
solving the inverse problem, i.e., in real-time regime, and, 
therefore, without the necessity of high-performance com-
puter calculations.

The visualisation of a set of time-dependent point spread 
functions (TPSFs) in the form of a three-dimensional surface 
in the Cartesian coordinate system, proposed for time-
resolved DOT in Ref. [6], allows inhomogeneities to be regis-
tered by observing the valleys in the corresponding parts of 
the resulting three-dimensional surfaces. Such an approach is 
simple and reliable; however, at the present stage it is appli-
cable only to sufficiently large and strongly absorbing inho-
mogeneities. This is because in the image there is no unam-
biguous intensity level of the pulsed IR radiation, diffusely 
passed through the object and detected for different angles 
with high temporal resolution (less than 20 ps) that could 
allow unique differentiation between homogeneous and inho-
mogeneous cases. 

The aim of the present paper is to improve the efficiency 
of direct detection of inhomogeneities in DOT, preceding the 
solution of the inverse problem, at the expense of a conformal 
transformation of TPSF surfaces from the Cartesian to the 
cylindrical coordinate system in homogeneous and inhomo-
geneous cases. 

2. Diffusion model of photon migration

When using a pulsed radiation source, i.e., in the process of 
time-resolved DOT, it is common to pay attention to the ini-
tial and middle parts of each TPSF curve [7 – 9]. These parts 
correspond to the photons with small and medium times of 
flight. However, it is possible to use the final part of the dif-
fusely passed radiation as well. This part of the TPSF corre-
sponds to late-arriving photons (LAPs) [9] that practically do 
not contribute to the calculation of the mean time of flight for 
the diffusely transmitted radiation pulse [7, 8].
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Being presented as two-dimensional plots, characterising 
the dependence of the radiation intensity on time for different 
angles, the TPSFs in the homogeneous case converge into a 
single line [3,10], while in the inhomogeneous case they are 
parallel lines [3]. The type of convergence is most distinguish-
able in the end part of the TPSF. To confirm this assumption, 
using the physical model [2, 3] and the computer model [2] 
implemented in the graphics programming language G of the 
LabVIEW system-design platform and development environ-
ment for visual programming, the experimental and theoreti-
cal TPSFs were obtained for homogeneous and inhomoge-
neous cases.

The theoretical TPSFs, presented in this paper, were 
obtained numerically using the model of a drop, i.e., the radi-
ation pulse containing a fixed initial number of photons that 
appears in the object near its surface and diffuses within the 
object, decaying exponentially and moving mainly towards its 
centre [2]. Such an approach that allows sufficiently precise 
description of experimental data for homogeneous and inho-
mogeneous cases (Fig. 1) is based on the solution of the radia-
tive transfer equation [9] for a light pulse, containing a finite 
number of photons. According to the diffusion equation, the 
density of diffusing photons is described as 
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is the diffusion coefficient at the position r; ma(r) and ms(r) are 
the absorption and scattering coefficient at the point r; g is the 
mean cosine of the scattering angle (the anisotropy parame-
ter) equal for all r; and S(r, t) is the photon source function, 
i.e., the time dependence of the number of photons intro-
duced into the modelled object W at a single point q of the 
boundary ¶W.

The majority of errors in modelling photon propagation 
through strongly scattering media are rather due to the 
boundary conditions and photon sources than to the diffu-
sion approximation [11]. In this connection, the boundary 
condition of the third kind (the Robin condition) is used to 
describe the photon flux at all points of the boundary ¶W of 
the domain W, except the point q. The flux of photons, leav-
ing the finite domain through the boundary, is equal to the 
flux at the boundary, multiplied by the coefficient that takes 
into account the reflection of light back into the object 
[8,  12, 13]:
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are the coefficients [13]; and nmed is the relative refractive 
index of the medium surrounding the object (usually it is air 
and, therefore, nmed = 1).

The numerical solution of Eqn (1) with the boundary con-
dition (2) was carried out using the finite-difference method. 
The implicit difference scheme was constructed using a seven-
point pattern. The initial approximation of the function f(r, t) 
in all mesh nodes was generated with the photon source posi-
tion and the injected photons number taken into account. The 
criterion for terminating the iteration process was either 
attaining the prescribed precision (fitting criterion) or time-out.

The results of the photon density simulation in the homo-
geneous and inhomogeneous objects with cylindrical geome-
try are shown in Fig. 2. The described computer simulation 
completely repeats the experimentally implemented physical 
model [2, 3]. It is a regular cylinder having the diameter d = 
68 mm and similar height. Figure 2a shows the distribution of 
photons in the homogeneous case over the cross section of the 
modelled cylinder at the height of the source and the detector 
for the moment of time t = 0.5 ns. The absorption ma(r) and 
reduced scattering m¢s(r) coefficients for r d6 W  amount to 
0.004 and 0.5 mm–1, respectively. In the inhomogeneous case, 
for which the distribution of photons is also presented as a 
cross-section (Fig. 2b), in the modelled object at an angle of g 
= 180° with the axis of the incident radiation (see Fig. 1) at the 
depth d/7 an absorbing inhomogeneity with the dimension of 
2d/7 is present having the absorption coefficient 0.04 mm–1. 
The mesh spacing in all three coordinate axes was chosen 
equal, h = 0.5 mm. The time step was Dt = 1 ps. 

3. Comparison of theoretical  
and experimental results

Figure 3 presents the data of physical experiment [3] and the 
computer simulation for the homogeneous case. The relative 
deviation of theoretical curves from the experimental ones is 
D = 4.3 %. The TPSFs are shown for the following five detec-
tor positions: 36°, 72°, 108°, 144°, and 180°. The experimental 
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Figure 1.  Schematic diagram of the studied object for the inhomoge-
neous case. The pulsed radiation is simulated as a drop that falls near 
the boundary and diffuses towards the object centre. 
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and theoretical curves converge into a single line, the best 
agreement being attained at the end parts of the TPSFs, i.e., 
for the LAPs. In the inhomogeneous case (Fig. 4) the type of 
convergence (into parallel lines) becomes apparent only at the 
end part of TPSFs, too. The relative deviation is D = 3.32 %.

In connection with the above considerations, it is pro-
posed to simplify the three-dimensional imaging problem by 
using only the last part of the diffusely transmitted radiation, 
i.e., the LAP part of each TPSF.

Note that if we present all TPSFs for one object as a func-
tion R(a, t), where a = 360°/N, 2(360°/N), . . . , 360° are the 
angles between the optical waveguides of the radiation source 
and the detector; N is the number of detectors; and t = n, 2n, 
. . . , T are the discrete time values separated by the step n, and 
visualise them as a three-dimensional surface in the Cartesian 
coordinate system, then in the homogenous case we get a sad-
dle function smoothly transforming into a plane (Fig. 5a), 
while in the inhomogeneous case (absorbing inhomogeneity) 
the analogous surface (Fig. 5b) demonstrates a valley in the 
part, corresponding to the TPSF recorded by the detectors 
closest to the inhomogeneity [3, 7]. The advantage of this 
approach is that in all asymmetric cases it allows direct real-
time detection of the inhomogeneity without solving the 
inverse problem. However, at the present stage the calcula-

tions are applicable only to sufficiently large and strongly 
absorbing inhomogeneities. If the dimension of the inhomo-
geneity is smaller than 0.05d and it is located close enough to 
the centre of the object (at the distance smaller than 0.4d), 
then the valley in the three-dimensional surface will be insig-
nificant (the relative deviation from the homogeneous case 
smaller than 1 %). 

4. Three-dimensional visualisation  
in a cylindrical coordinate system

In connection with low informativity of the classical two-
dimensional representation of time dependences of the radia-
tion intensity (Figs 3 and 4) and insufficient informativity of 
the three-dimensional representation, described above 
(Fig. 5), we propose a visualisation method based on a con-
formal transformation. The method consists in the prelimi-
nary processing of the function R(a, t) followed by its repre-
sentation in the form of three-dimensional surfaces in a cylin-
drical coordinate system. For such a representation of the 
TPSF in the homogeneous case the distance from the genera-
trix of the cylindrical surface to its directrix (the cylinder axis) 
is constant. Any deviations from this distance (the unit radius) 
are characteristic only for inhomogeneous cases. Due to the 
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Figure 2.  Distribution of photons in (a) the homogeneous and (b) inhomogeneous cylindrical object.
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Figure 3.  Comparison of results of numerical simulation and experi-
ment (homogeneous case). The optical characteristics of the model ob-
ject are similar to those in Fig. 2a.
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Figure 4.  Comparison of results of numerical simulation and experi-
ment (inhomogeneous case). The optical characteristics of the model 
object are similar to those in Fig. 2b.
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use of the cylindrical system the inhomogeneous case will be 
not simply distinguishable from the homogeneous one. The 
angle between the axis of the incident radiation and the direc-
tion towards the detector, nearest to the inhomogeneity will 
be detectable and, therefore, for spherical and cylindrical 
objects the approximate position of inhomogeneity will be 
detectable.

To visualise late-arriving photons in all TPSFs the initial 
parts, corresponding to the early arrived photons, and the 
middle parts, corresponding to photons with medium time of 
light, are removed, i.e., the tail parts of the TPSFs are found 
by the logical subtraction of two functions:

Rp(a, t1) = R(a, t)\R (a, t2),

where t2 = n, 2n, . . . , Tisot; t3 = Tisot, Tisot + n, . . . , T; Tisot is the 
minimal time interval from the moment of pulse incidence on 
the object to the moment of reaching the diffusion centre, 
when all lines can be considered to be parallel within the mea-
surement error; and the sign ‘\’ denotes the logical subtrac-
tion. After the logical subtraction of functions, the normalisa-
tion of Rp(a, t3) with respect to Rp(360°/N, t3) is carried out, 
which means the division of the TPSFs for all angles by the 
TPSF for the minimal angle:
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each TPSF becoming approximated by a straight line.
Based on the function Rn(a, t3) the etalon function 

Rst(a, t3) is created, in which the TPSFs for all angles are equal 
to the TPSF with the angle a = 360°/N:

Rst(a, t3) = Rn(360°/N, t3).

With the additional transformation coefficient K taken 
into account, the function Rn(a, t3) is modified (amplification, 
curvature reduction) in the following way:
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The coefficient K is specified by the user and can be any 
real number except zero. 

Obviously, the function Rst(a, t3) and also (in the homoge-
neous case) the function RK (a, t3) will be equal to one for any 
a, t3, and K from the admitted region. To visualise them as 
three-dimensional surfaces in the cylindrical coordinate sys-
tem, let us transform the coordinates from Cartesian to cylin-
drical ones:

, arctanq t t
2

3
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3
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= + = .	 (4)

To provide the correctness of the transformation, the angles a 
= 360°/N, 2(360°/N), . . . , 360° are expressed in radians instead 
of angular degrees. As a result of mapping, the functions 
Rst
* (q, y) and RK

* (q, y) are obtained 

Rst(a, t3) ® Rst
* (q, y),	 (5)

RK (a, t3) ® RK
* (q, y),	 (6)

which represent two exactly coincident cylindrical surfaces 
(like those of regular circular cylinders).

In the inhomogeneous case the function RK (a, t3) will be 
unambiguously equal to one only if a = 360°/N and any 
admissible t3. For other values of a, i.e., for other TPSFs the 
value of the function RK (a, t3) will differ from one upward or 
downward depending on the inhomogeneity type (absorbing, 
scattering), its location, size and the value of the coefficient K. 
The application of the transformation RK (a, t3) to the func-
tion (6) using Eqn (4) yields an irregular cylindrical surface, 
and from the character of its distortion with respect to a regu-
lar circular cylindrical surface Rst

* (q, y) one can draw conclu-
sions about the size and location of the inhomogeneity.

5. Results and discussion

The proposed method of preliminary processing of the set of 
TPSFs followed by their visualisation in the form of two 
three-dimensional surfaces in the cylindrical system of coordi-
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Figure 5.  Three-dimensional representation of the TPSF temporal dependences in the Cartesian coordinate system for (a) the homogeneous and (b) 
inhomogeneous case. The surfaces are plotted using the theoretical TPSFs, presented in Figs 3 and 4.
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nates was implemented as a special-purpose software product 
in the LabVIEW environment [14]. The results of its opera-
tion for the homogeneous and inhomogeneous case are shown 
in Fig. 6. In the inhomogeneous case the surfaces are pre-
sented using the coefficient K = 3. It is seen that at K > 1 the 
distorted part of the cylindrical surface is amplified by K 
times and sticks out of the regular circular cylindrical surface. 
In other words, the etalon cylindrical surface provides a lower 
boundary that separates the homogeneous case from all inho-
mogeneous ones, thus enhancing the efficiency of inhomoge-
neity direct detection. 

With the aim of additional estimation of the proposed 
method, we compared the results of two kinds of three-
dimensional representation of the TPSF time dependences 
(Fig. 7). In the case shown in Figs 7a and 7b the model object 
was used, for which the distribution of photons is shown in 
Fig. 2b, but with the inhomogeneity absorption coefficient 
being equal to 0.005 mm–1. For the cylindrical surfaces of 
the inhomogeneous case (Figs 7c and 7d) the absorption 
coefficient in the inhomogeneity of this model object was 
doubled. In the case shown in Figs 7e and 7f the absorption 
coefficient was doubled again. In the conformal transforma-
tion into the cylindrical coordinate system the value K = –7 
was used.

From Fig. 7 it follows that the recalculation of the cylin-
drical surface wall distortion using Eqn (3) and its visualisa-
tion against the background of the etalon surface allows the 
detection of the inhomogeneity presence without solving the 
inverse problem. It is also seen that for K < –1 the curved part 
of the inhomogeneous cylindrical surface is enhanced by K 
times and located inside the etalon surface. For absorbing 
inhomogeneities it is more preferable to use K < –1. Obviously, 
for a scattering inhomogeneity the influence of K is opposite 
[4], i.e., for K > 1 the scattering inhomogeneity is mapped 
inwards the etalon surface and for K < –1 – outwards the 
etalon surface.

Real biological objects possess a complex structure of the 
inhomogeneity distribution, thus making it reasonable to esti-
mate the efficiency of the proposed method in such cases. As 
a modelled object we continue to use the cylinder, similar in 
its geometric parameters to the one used in the physical exper-
iments (Fig. 1). The fact that the inhomogeneity has the diam-

eter 2d/7, i.e., about 20 mm, generally corresponds to many 
clinical cases, since the region of angiogenesis that surrounds 
a real tumour a few millimetres in diameter has the size of a 
few centimetres [15]. Both the tumour itself and the region of 
pathological formation of new blood vessels (angiogenesis) 
will be modelled as one distinctly expressed inhomogeneity 
with diffuse boundaries. Both the healthy tissue and the inho-
mogeneity will be considered as randomly inhomogeneous 
with respect to the value of ma(r) and strongly scattering media 
[8, 16], but the mean value of the absorption coefficient for 
the tumour and the region of new blood vessels formation will 
be taken to be considerably higher than that for the healthy 
tissue [16, 17]. Figure 8a presents the fluctuations of ma(r) in 
the cross section of the modelled object at the height of the 
source and the detectors. The mean value of the absorption 
coefficient for the inhomogeneous part (the tumour and the 
angiogenesis region) was taken equal to 0.01 mm–1, for 
healthy tissue 0.0045 mm–1 [16]. The scattering coefficient 
m¢s(r) for the modelled object was constant (Fig. 8b) and equal 
to 1 mm–1 [16].

The TPSFs obtained as a result of modelling are presented 
in Fig. 9. From the figure it follows that the randomly inho-
mogeneous structure of the healthy tissue affected all detec-
tors and, therefore, the shape of all TPSFs in a nearly similar 
way. The effect appeared to consist in a general reduction of 
the time-resolved signal intensity and, therefore, was not dis-
tinctly observable. But the region with the mean absorption 
coefficient value 0.01 mm–1, i.e., the inhomogeneity to be 
detected, essentially changed the shape of some TPSFs, par-
ticularly, their parts corresponding to LAPs (Table 1). The 
nearer the detector to the inhomogeneity, the stronger the 
decrease in the intensity of the time-resolved signal at this 
detector.

Figure 10 presents the three-dimensional surfaces in the 
cylindrical coordinate system, obtained as a result of process-
ing the TPSF (Fig. 9) by means of the proposed method. The 
distorted part of the cylindrical surface clearly indicates the 
presence of the absorbing inhomogeneity at the angle g 
»180° to the incident radiation axis. The fact that the distor-
tion appeared in several adjacent TPSFs (separated by the 
angle 36°) provides an indirect evidence of the size and 
approximate depth of the inhomogeneity.
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Figure 6.  Three-dimensional representation of LAP for (a) the homogeneous and (b) inhomogeneous case for K = 3. The surfaces are plotted using 
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6. Conclusions

The present paper describes the method for detecting inho-
mogeneities in diffuse optical tomography by three-dimen-
sional representation of the tail part of TPSFs in a cylindrical 

coordinate system. In all asymmetric cases the method allows 
real-time direct detection of an absorbing inhomogeneity in 
cylindrical and spherical objects, avoiding the solution of the 
inverse problem. In contrast to the three-dimensional repre-
sentation in the Cartesian coordinates, this representation 

1.04
2.03

3.02
4.01

–33.06

–39.00

–27.12

–21.18

–15.24

–9.30

Time/ns

In
te

n
si

ty
 (

re
l. 

u
n

it
s)

0

72

72
144

216
288

360 Angle/deg

1.04
2.03

3.02
4.01

Time/ns

0

144
216

288
360 Angle/deg

72
1.04

2.03
3.02

4.01
Time/ns

0

144
216

288
360 Angle/deg

0.05

–33.06

–39.00

–27.12

–21.18

–15.24

–9.30

In
te

n
si

ty
 (

re
l. 

u
n

it
s)

0.05

–33.06

–39.00

–27.12

–21.18

–15.24

–9.30

In
te

n
si

ty
 (

re
l. 

u
n

it
s)

0.05

180°

180°

180°

270°

270°

270°

0°

0°

0°

90°

90°

90°

2.60

2.00

3.20

3.80

4.40

5.00

T
im

e /
n

s

2.60

2.00

3.20

3.80

4.40

5.00

T
im

e /
n

s

2.60

2.00

3.20

3.80

4.40

5.00

T
im

e /
n

s

a b

c d

e f

Figure 7.  (a, c, e) Three-dimensional representation of the TPSF in the Cartesian coordinate system and (b, d, f) the corresponding mapping in the 
cylindrical system for different values of ma(r) for the absorbing inhomogeneity (see text).



	 A.Yu. Potlov, S.G. Proskurin, S.V. Frolov180

with the mapping coefficients correctly chosen, K < –1, pos-
sesses clearly expressed boundaries, i.e., the surface and the 
directrix of the etalon cylindrical surface, between which all 
possible cases of inhomogeneity are located.

The proposed method can be used in time-resolved DOT 
for rapid detection of haematomas, tumours, cists, etc., in 
mammographic studies and diagnostics of brain structures. 
Since the conformal transformations of TPSFs in the cylindri-
cal coordinate system does not require high-performance cal-

culations, it can be used to detect the pathology inside the 
studied object in real time, after which one can reconstruct the 
image using the known techniques [7, 8, 12, 13, 16], or use an 
alternative diagnostic method.

Further efforts will be focused at considering the objects 
with the structure randomly inhomogeneous with respect to 
ms(r) and at solving the inverse problem with the use of LAPs.
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