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Abstract.  The evolution of adiabatons in electromagnetically 
induced transparency in the L scheme of degenerate quantum tran-
sitions J = 0 ® J = 1 ® J = 2 with Doppler broadening of spectral 
lines has been numerically simulated taking into account the effect 
of resonance detunings. It is shown that, in the case of linearly 
polarised fields, an increase in the probe-field resonance detuning 
(under exact-resonance conditions for the control radiation) leads 
to a transformation of electromagnetically induced transparency 
into electromagnetically induced absorption at certain stages. 
When the control-field resonance detuning is varied, the transpar-
ency of the medium for the probe (exactly resonant) radiation 
monotonically decreases with increasing detuning because of the 
rising role of single-photon absorption. In the case of circularly 
polarised control radiation and linearly polarised input probe field, 
a probe pulse propagating in the medium splits into two pulses with 
oppositely directed circular polarisations. An increase in the probe 
pulse resonance detuning (under exact-resonance conditions for the 
control radiation) leads primarily to an increase in the absorption 
by the medium of the probe pulse, the direction of circular polarisa-
tion for which coincides with the circular-polarisation direction for 
the control radiation.

Keywords: electromagnetically induced transparency, adiabaton, 
inhomogeneous broadening, degeneracy of levels, resonance 
detuning. 

1. Introduction 

Electromagnetically induced transparency (EIT) [1] is one of 
most important quantum interference effects in laser phys-
ics. Intensive study of EIT has led to significant progress in 
the development of quantum storage [2] and quantum com-
munication [2 – 4] systems, the theory of quantum informa-
tion [1, 2, 5], the design of systems for exact magnetic mea-
surements [6], and in chronometry [7]. In addition, EIT is 
efficiently used to form large optical nonlinearities [5, 8]. To 
date, this effect is observed not only in atomic and molecular 
systems but also in solids with rare earth impurities [9], semi-
conductors with quantum wells [10], superconducting struc-
tures [11], and metamaterials [12]. Another important and 
widely studied quantum interference effect is electromagneti-

cally induced absorption [13, 14], which is in essence opposite 
to EIT.

Adiabaton is a pulsed EIT pair. It is composed of a probe-
radiation pulse and a dip in the flat top of a control field 
pulse, which propagate jointly and without distortions 
through a medium. The first theory of adiabaton was reported 
in [15 – 17]; then it was refined in [18, 19]. In these studies, the 
quantum-transition levels were considered as nondegenerate, 
and the frequencies of the probe and control fields were 
assumed to be equal to the frequencies of the corresponding 
resonant transitions; the inhomogeneous broadening of spec-
tral lines was disregarded.

In this paper, we report the results of numerical analysis 
of the influence of resonance detunings of probe and control 
pulses on the adiabaton parameters. An increase in the afore-
mentioned detunings is expected to lead, on the one hand, to 
an increase in attenuation of the adiabaton probe component 
in the medium because of the deviation from the adiabatic-
following conditions [20, 21] and, on the other hand, to reduc-
tion of this attenuation because of the decrease in the single-
photon absorption efficiency. The purpose of our study was 
to determine the result of the competition of these tendencies. 
We did not use the adiabatic-following approximation (char-
acteristic of [15 – 19]) as a start point; however, the calculation 
parameters were chosen so as to make approximation appli-
cable in principle. The calculations were performed for the L 
scheme of inhomogeneously broadened quantum transitions 
between the degenerate energy levels 3Р0, 3Р2 and 3Р

0
1 of the 

208Pb isotope, in vapour of which EIT of circularly polarised 
laser fields was observed [22].

2. Statement of the problem 

Let us consider a L scheme including a nondegenerate lower 
level (J = 0), a fivefold degenerate intermediate level (J = 2), 
and a triply degenerate upper level (J = 1), formed by the 3Р0, 
3Р2, and 3Р

0
1 levels of the 

208Pb isotope. Let  fk (k = 1, 2, . . ., 9) 
be an orthonormal set of common eigenfunctions of Hamilton 
operators, the angular momentum, and its component in the 
z axis for an isolated atom, which correspond to the lower (k 
= 1, M = 0), upper (k = 2, 3, 4, M = 1, 0, 1, respectively), and 
intermediate (k = 5, 6, . . ., 9, M = – 2,– 1, 0, 1, 2 , respectively) 
levels. Let D1 and D2 be reduced electric dipole moments of 
the J = 0 ® J = 1 and J = 2 ® J = 1 transitions, respectively, 
and w10 and w21 be the frequencies of these transitions for an 
atom at rest. We assume also that T1 = 1/D1, where D1 is the 
half-width at the level of e–1 height of the density distribution 
of the frequencies w'10 of the J = 0 ® J = 1 quantum transitions 
as a result of the Doppler effect.
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The electric field of two laser pulses with carrier fre-
quencies w1 and w2 (the probe and control pulses, respec-
tively; w1 > w2), propagating along the z axis, can be pre-
sented in the form

( ) [ ( )]Re exp if g t k zE e el
l

l l l l
1

2

m w= + -
=

+ -/ ,	 (1)

where (| | )l D T2 1 –1
l 1 1'm = + ; e+ = e*– = (i + ij)/2; i, j are the 

unit vectors of the x and y axes, respectively; fl and gl are the 
complex amplitudes of the right- and left-handed circularly 
polarised components of the probe (l = 1) and control (l = 2) 
fields, which are functions of z and t; and kl = wl /c. When 
studying the case of quasi-resonance, we suggest that the dif-
ferences between the frequencies w10 and w1, as well as 
between the frequencies w21 and w2, are much smaller than 
these frequencies. The e10 and e20 values, which are called 
below the resonance detunings of the probe and control fields, 
respectively, are determined by the formulas

( ) / , ( ) /10 10 1 1 20 21 2 1e w w e w wD D= - = - ,	 (2)

they play the role of dimensionless parameters specifying the 
measure of this difference.

The atomic wave function can be presented as 
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where  xl = wlt – klz; l = 1, 2. Let us introduce quantities ci,

, , , , (1/ ) , ,c p c c c c c c p c c p c c p c6*
1 1 1 2 2 4 4 5 2 5 7 2 7 9 2 9= = = = = =r r r r r r

where pl = 2Dl /|Dl|; l = 1, 2. Then, we will determine the nor-
malised independent variables s and w as 

/ , ( / ) /s z z w t z c T0 1= = - ,	 (3)

where 3 /(2 | | )z c N D T0 1
2
1 1' p w= , and N is the atomic concen-

tration. Using the Maxwell and Schrödinger equations, we 
obtain the following system of equations in the approxima-
tion of slowly varying amplitudes:
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In view of the selection rules (DM = ± 1) for the transitions 
under the action of circularly polarised field components (1), 
the amplitudes c3, c6, and c8 do not enter system (4). The 
energy diagram for the states that can be involved in the inter-
action of waves is shown in Fig. 1. The consideration of the 
Doppler broadening of quantum-transition lines via averag-
ing of the field-induced dipole moments of individual atoms 
over the parameter e1, which is unambiguously related to the 
thermal velocity of each atom along the z axis, gave rise to 
integrals in the first four equations of system (4) and to a pecu
liar relationship between e1 and e2 (here, e2 = (w'21 – w2)/D1, 
where w'21  is the frequency of the J = 2 ® J = 1 quantum tran-
sition in a moving atom.)

States 2 and 4 of the 208Pb isotope are subjected to sponta-
neous decay with a transition to the other states of the L 
scheme under consideration (states 1, 5, 7, and 9) and to the 
states that are not covered by the L scheme. The latter include 
states 6 and 8 of the intermediate energy level, as well as states 

+1 –1

–2+2

4

9 7

2

0

0
1

5

e10 e20

s+ s–

Figure 1.  Schematic diagram of quantum transitions. The numbers on 
the left from the horizontal lines enumerate states, and the numbers 
from above or below are the quantum numbers M of the states. The 
arrows inclined to the left (to the right) indicate transitions induced by 
the s+ (s–) field components.
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located below the 3P1 level. Estimates based on the oscillator 
strengths of the 208Pb isotope [23] show that the probability of 
the spontaneous transition from each of the upper states of 
the L scheme (states 2 and 4) to the states that do not enter 
this scheme is approximately equal to the spontaneous transi-
tion probability to all lower states included in the L scheme. 
We assume for simplification that the lifetime of each from 
states 2 and 4 with respect to the spontaneous decay is deter-
mined by only the transition to the states that do not enter the 
L scheme. To take into consideration this spontaneous decay, 
we phenomenologically introduced relaxation terms – gc2 and 
– gc4 into the equations for c2 and c4. Here, g = T1/(2t) (t is the 
radiative lifetime of the 3Р01 level). According to [23], w21/w10 
= 0.7, x = 2.11, and (at T = 900 – 1000 K) g = 1.5 ́  10–2 for the 
chosen transitions in 208Pb.

Below we use the parameters al, al, and gl for the polarisa-
tion ellipse of the probe (l = 1) and control (l = 2) pulses. 
Here, al is the semimajor axis of the ellipse (measured in ml 
units), al is its tilt angle with respect to the x axis, and gl is the 
contraction ratio (al H 0, 0 G al < p, –1 G gl G +1 [24]). The |gl | 
value is the ratio of the minor axis of ellipse to its major axis. 
The condition 0 < gl < +1 (–1 < gl < 0) corresponds to the 
right-handed (left-handed) elliptical polarisation; gl = 0 indi-
cates linear polarisation; and, at gl = 1 and –1, we have right-
handed circular polarisation (s– polarisation) and left-handed 
circular polarisation (s+ polarisation). When   |gl | = 1, the 
angle al is not determined and is formally assumed to be –0.1.

The initial conditions for system (4) correspond to the 
situation where all atoms occupy the lower energy level at the 
initial instant (w = 0). The boundary conditions, which 
describe the probe radiation at the input (s = 0) of the reso-
nant medium, were chosen in the form

0.5, 0.22 [( 170)/38], 0secha w1 1 1a g= = - = ,	 (6)

and the input field of the control radiation was set by the rela-
tions

, [( ) / ] ,tha a w 30 10 12 20 2 20 2 20a a g g= = - + =" , ,	 (7)

where a20, a20, and g20 are constants.
Equalities (6) describe the input bell-shaped pulse of 

probe radiation, the FWHM of which is about 70 (on the time 
scale w). This pulse is linearly polarised, with a polarisation 
direction making an angle of about 30° with respect to the x 
axis. Equality (7) describes the field of the control radiation 
incident on the input surface of the resonant medium so that 
its intensity remains constant while the probe pulse intersects 
this surface. The parameter a20 determines the field strength 
for the flat top of the input control pulse; its value is chosen 
so as to exceed the peak field strength of the input probe pulse 
by a factor of about 20.

The calculation results are presented in terms of intensities 
Il (l = 1, 2), i.e., the energy flux densities of the probe (l = 1) and 
control (l = 2) fields, measured in cm21/(8p) units. The trans-
mittance Tr, which characterises the transparency of the 
medium for the probe radiation, is given by the formula Tr = 
W1(s)/W1(0), where W1(0) and W1(s) are, respectively, the 
energies (per cross-sectional area unit) of the probe pulse at 
the resonant-medium input and at a distance of s in the 
medium bulk.

3. Calculation results 

(1) Let us consider the case of fields of probe and control 
pulses linearly polarised in the same direction by assuming 
that a20 = 0.5, a20 = 3.5, and g20 = 0 in (7). Under these condi-
tions, each pulse has circular s+ and s– components of equal 
intensity, which provide transitions between all states shown 
in Fig. 1. Here, the variable parameter is e10 (probe-field reso-
nance detuning), while the control-radiation resonance detun-
ing is absent (e20 = 0).

The solid lines in Fig. 2 are the dependences of the probe 
pulse intensities on w at several fixed distances s for e10 = 0, 
1.2, and 7. According to Fig. 2, the transparency of the 
medium for the probe radiation is the highest for an exactly 
resonant probe field [e10 = 0, curve ( 1 ) in Figs 2b – 2d], which 
is in good agreement with the general concepts of the EIT 
theory [1]. With an increase in e10, the probe-pulse absorption 
first increases and then decreases, as follows from the com-
parison of curves ( 2 ) (e10 = 1.2) and ( 3 ) (e10 = 7) in Figs 2b – 2d.

Figure 3 shows the dependence of the transmittance Tr of 
probe radiation on e10 (e10 H 0) for the distances s = 10, 100, 
and 500, in the presence of control radiation [curves ( 1 ), ( 2 ), 
and ( 3 ), respectively] and in its absence [curves (1' ), ( 2' ), and 
( 3' ), calculated for a20 = 0]. Note that Tr is an even function 
of the argument e10 in this case. According to Fig. 3, the trans-
mittance Tr is maximum and practically complete (Tr = 1) for 
all distances s at e10 = 0 (i.e., when the exact-resonance condi-
tions are satisfied for both interacting pulses). With an 
increase in |e10|, the transmittance decreases almost to zero 
and the transmittance curves near the point e10 = 0 are bell-
shaped [see curves ( 1 – 3 ) in the range e10 < 2 in Fig. 3]. The 
FWHM of the transmission band found from these curves 
decreases with an increase in the distance s and amounts to 
4.4D1, 3.2D1 and 2.4D1 for s = 10, 100 and 500, respectively. In 
other words, the transmission bandwidth is approximately 
one to two Doppler widths of the J = 0 ® J = 1 transition, 
which is resonant with the probe field. As curves ( 1 – 3 ) indi-
cate, the transmittance monotonically increases at sufficiently 
large e10 values (e10 > 3 – 4). The dependences of Tr on e10 
exhibit dips with a width of few D1 values.

A comparison of the curves in Fig. 3 shows that the region 
that is characterised by almost complete absorption of probe 
radiation in the presence of the control field exhibits a signifi-
cant transmittance of the probe pulse in the absence of the 
control field. Moreover, beyond the absorption range, from 
the side of large e10 values (the range e10 > 3 – 4 in Fig. 3), the 
probe-pulse transmittance in the presence of control radia-
tion remains smaller than without it. These facts can be inter-
preted as a transition from EIT to electromagnetically induced 
absorption with an increase in the absolute value of the detun-
ing e10.

The width of the central transmittance peak, where EIT 
plays a key role in the adiabaton evolution, and the range of 
resonance detuning, where absorption dominates, exceed the 
Doppler width of the inhomogeneously broadened profile of 
the J = 0 ® J = 1 transition. This circumstance is explained 
(see, for example, [5]) by the choice of such a high control field 
strength in our calculation that the Rabi frequency of each its 
circular component exceeds D1 by a factor of about 5. Note 
that, at fairly low Rabi frequencies of the control field, both 
EIT and absorption manifest themselves in the form of reso-
nances, which are much narrower than the Doppler (or even 
uniform) profiles of spectral lines [1, 13, 14].
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Figure 4 shows the dependence of the c/c1 ratio on e10 (c is 
the speed of light in vacuum and c1 is the average probe-pulse 
velocity in the medium for a specified distance s, which is 
determined as the displacement velocity of the point of maxi-
mum intensity). The c/c1 value depends strongly on the con-
centration N of active-medium vapour. When plotting Fig. 4, 
it was assumed that N = 3.4 ́  1013 cm–3, which corresponds to 
the concentration of saturated lead vapour at T = 950 K (the 
details of choosing the numerical values of the parameters of 

the medium are presented in Section 4). The c/c1 ratio was 
determined for s = 30 and 100. At e10 ~ 2 – 4 the probe radia-
tion is completely absorbed at these distances; therefore, the 
dependences of c/c1 on e10 are omitted for this range.

The discrepancy between curves ( 1 ) and ( 2 ) indicates that 
the instantaneous pulse velocity is not a constant. At e10 = 0 
(case of exact resonance) c/c1 , 19 for both distances, and 
near the points e10 = 2 and 4 the c/c1 value is larger by a factor 
of about 13. At large e10 detunings (e10 > 4, see Fig. 4), the c/c1 
ratio monotonically decreases, reaching ~4 at e10 = 8. Thus, 
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Figure 2.  Evolution of the intensity I1 of the adiabaton probe component at different s values and e10 = ( 1 ) 0, ( 2 ) 1.2, and ( 3 ) 7 and the control-field 
intensity I2 at e10 = 0 (dashed lines).
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the velocity of the adiabaton probe pulse depends strongly on 
the detuning e10.

An analysis of the complex amplitudes f1 and g1 of the 
right- and left-handed circularly polarised components of the 
probe field showed that their phases are independent of the 
variable w. This means that during propagation of a probe 
pulse its instantaneous frequency w1 remains constant and 
equal to its value at the input of the resonant medium. 
However, the phases of these amplitudes linearly depend on 
the variable s. For example, at e10 = 0.5 and s = 45, the com-
plex-amplitude phases increase by p.

The dashed curves in Fig. 2 are the dependences of the 
control-field intensity on w for several distances s in the case 
of e10 = 0 (the scale for these curves is smaller than the scale 
for the dependences of the probe-field intensities by a factor 
of 10). It can be seen that a characteristic ‘hump’ arises in the 
flat top of the control pulse, which propagates with a speed of 
light in vacuum, and that there is a dip in the region of the 
probe pulse. This control-field structure, which is characteris-
tic of EIT adiabatons [15 – 18], is also observed for other reso-
nance detunings e10 considered in our calculations.

(2) The a20, a20, and g20 values are retained, but now the 
control-field resonance detuning e20 is varied, whereas the 
probe-pulse resonance detuning is absent (e10 = 0). Figure 5 
shows the dependence of the probe pulse intensities on w at 
several fixed distances s for e20 = 0, 1.5, and 2.5.

Figure 6 shows the dependences of the probe-radiation 
transmittance Tr on e20 (e20 H 0) for s = 10, 100, and 500 (Tr 
is an even function of detuning e20.) As follows from the shape 
of the curves in Figs 5 and 6, an increase in |e20| leads to a 
monotonic decrease in the probe-pulse transmittance. This 
effect is related to the decrease in the EIT efficiency with an 
increase in the control-field resonance detuning [5]. Under 

these conditions, the probe-pulse propagation velocity mono-
tonically decreases. With the same values of the resonant-
medium parameters, which were used above to estimate the c/c1 
ratio, we found that the probe pulse velocity at e20 = 2.5 
[Fig. 5, curve ( 3 )] is smaller than that at e20 = 0 [Fig. 5, curve 
( 1 )] by a factor of 3. 

Since dependences of the control-field intensity I2 on w at 
fixed distances s are similar to the corresponding curves cal-
culated in Section 1, they are omitted here.

(3) Let us assume that a20 = – 0.1, a20 = 2.46, and g20 = –1 
in (7). This situation corresponds to the case of s+ (left-
handed circular) polarisation of the input control radiation 
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with the same height of the flat top as in the calculations per-
formed in Sections 1 and 2. Here, the variable parameter is 
the resonance detuning e10 for the probe-field frequency, 
whereas the control field is assumed to be exactly resonant 
(e20 = 0).

The solid curves in Fig. 7 are dependences of the probe-
pulse intensity on w at several fixed distances s for e10 = 0 and 
0.2. According to the calculations for both detunings, the 
probe-radiation pulse is split into two individual pulses dur-
ing its propagation through the medium (Figs 7b – 7d). A 
similar splitting was found and described in detail in [25]; 
therefore, we will only briefly dwell on its physical nature.

The linearly polarised field of the input probe pulse is a 
superposition of circular s+ and s– components, whereas the 
input control field contains only a s+ component. As a 
result, one can select two L schemes from the L scheme of 
degenerate levels (see Fig. 1) by excluding the short right-
inclined arrows from it. The s+ component of the probe field 
evolves in the L scheme composed of states 1, 4, and 7, while 
the s– component evolves in the L scheme containing states 
1, 2, and 5. Each circular component of the input probe radi-
ation generates its own probe pulse with the same polarisa-
tion in the medium. In view of the difference in the propaga-
tion velocities of these pulses, the input probe pulse splits 
into two pulses; note that the s– component of the probe 
field has a higher intensity. This consideration is confirmed 
by the data in Fig. 8, which presents the dependences of I1 
and g1 on w at s = 360 and e10 = 0.2. The shape of the curve 
describing the evolution of g1 suggests that g1 = 1 (s– polari-
sation) in the localisation region of the first pulse of the 
probe field, whereas in the second-pulse localisation region 
g1 = –1 (s+ polarisation).

The coincidence of curves 1 and 2 in the region of the 
probe pulse with s– polarisation (the probe pulse with left-
handed polarisation in Figs 7c and 7d) indicates that, in the 
case of small detuning e10, a probe pulse with this polarisation 
barely differs from the corresponding pulse under exact-reso-
nance conditions (e10 = 0). However, the evolution of 
s+-polarised probe pulses with such a change in detuning e10 
is significantly different: at e10 = 0.2, the damping of this 
probe-radiation component is much larger, while the propa-
gation velocity is smaller than at e10 = 0. At e10 > 1, as addi-
tional calculations showed, the s+ component of the probe 
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Figure 7.  Evolution of the intensity I1 of the adiabaton probe component at different s for e10 = ( 1 ) 0 and ( 2 ) 0.2 and the control-field intensity I2 
at e10 = 0 (dashed lines).
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field is absorbed by the medium at a distance s < 10. At larger 
distances, only the s–-polarised probe pulse remains in the 
medium. This fact can be interpreted as the control-field-
induced circular dichroism [26] for the probe field.

The dashed curves in Fig. 7 are the dependences of the 
control-field intensity at e10 = 0. One can see (Figs 7c and 7d) 
that a ‘hump’ arises in the control-pulse top, which is fol-
lowed by two dips above each probe pulse.

A change in the sign of detuning e10 = 0 does not change 
the shape of the curves presented in Figs 7 and 8. If the input 
control field is s–-polarised, one should replace s– with s+ and 
vice versa where necessary and invert the curve g1 (thin line in 
Fig. 8) with respect to the abscissa axis. Note that the calcu-
lations in Sections 1 and 2 were performed without changing 
the polarisation state of the fields propagating in the 
medium.

4. Dimensional estimates

The concentration of 208Pb-isotope vapour N is an important 
parameter for estimating the possibility of experimental veri-
fication of the theoretical conclusions. Another important 
parameter of the theory is the inhomogeneous-broadening 
‘time’ T1. These values enter the normalisation conditions (3). 
In the case of saturated vapour, N and T1 are interrelated 
through the absolute temperature T. 

For the temperature T = 950 K, according to [27], N = 
3.4 ́  1013  cm–3 and T1 = 1.63 ́  10–10  s for saturated 208Pb 
vapour.

Using the data of [23] on the oscillator strengths of quan-
tum transitions, we find that z0 = 0.03 cm. Note that at this 
distance the probe-pulse energy W1 in the absence of control 
field decreases by a factor of about 20. The width of the input 
probe pulse (s = 0) is about 10 ns (at half maximum of the 
intensity envelope I1).

The intensities of the probe and control fields (I1  and I2, 
respectively) in the range of absolute temperatures from 900 
to 1000 K can be estimated in kW  cm–2 from the for-
mula 1.3I Il l= , l = 1, 2. In particular, the above calculations 
showed that the peak intensity of the input probe pulse is 
~65 W cm–2 and the intensity corresponding to the flat top of 
the input control-field pulse is ~20 kW cm–2.

Our simplified procedure for taking into account the 
relaxation processes ignores the fact that the spontaneous 
decay of states 2 and 4 of the 208Pb isotope involves not only 
transitions beyond the scheme under study (i.e., the external 
transitions) but also the transitions to the states of the L 
scheme (states 1, 5, 7, 9; internal transitions). This way for 
taking into account relaxation in the case under consideration 
can be substantiated as follows. The resulting effect of each 
relaxation decay of states 2 and 4 is reduced to a decrease in 
the probe energy. The difference of external spontaneous 
transitions from internal ones is that the former transfer the 
atom from the state of interaction with the radiation field, 
whereas the internal transitions allow the atom to be involved 
in this interaction even after they are finished. However, 
according to [23], the radiative lifetime of states 2 and 4 is 
17 ns, whereas the pulse width obtained in our calculations is 
close to 10 ns. Since the probe-pulse duration is shorter than 
the radiative lifetime of states 2 and 4, an internal spontane-
ous transition occurs after the probe pulse leaves the localiza-
tion region of atom. This means that the atoms undergoing an 
internal spontaneous transition are also transferred from the 

state of interaction with the radiation field. Therefore, the 
internal transitions can be taken into account by including 
them in the number of external transitions.

5. Conclusions

We presented the results of the calculations modelling the 
influence of detunings of the probe and control frequencies 
from the central frequencies of the corresponding inhomoge-
neously broadened quantum transitions on the evolution of 
adiabatons. It was assumed that the Rabi frequencies of the 
circular components of the input control radiation exceed the 
Doppler width for the quantum transition that is resonant 
with the probe field. The Rabi frequency of the input probe 
pulse was assumed to be lower than the aforementioned width 
by a factor of about 10. The main conclusions of our analysis 
can be formulated as follows.

(1) In the case of identical linear polarisations of the inter-
acting radiations (under the condition of exact resonance for 
the control field), we revealed a nonmonotonic dependence of 
the transparency of the medium for the probe radiation of 
adiabaton on the detuning of its frequency from the central 
frequency of the corresponding quantum transition. If a 
medium has a sufficient length, a transmission band centred 
at zero resonance detuning and an absorption band adjacent 
to it are formed in the frequency range of the probe radiation. 
The presence of the transmission band is explained by the EIT 
phenomenon. During propagation, the probe-pulse attenua-
tion in the range of absorption bands exceeds the attenuation 
that the same pulse would undergo in the absence of control 
radiation. This means that, at sufficiently large detunings of 
the probe radiation from resonance, EIT is replaced with elec-
tromagnetically induced absorption. At even larger detunings 
the influence of both effects on the probe-pulse evolution 
gradually disappears, and the transmittance monotonically 
increases, tending to that for nonresonant radiation. The 
spectral widths of the transparency window and the absorp-
tion windows for the probe radiation are of the same order of 
magnitude as the Doppler width of the transition that is in 
resonance with the probe pulse. This is explained by the 
choice of a high Rabi frequency of the control field in the 
calculations.

(2) The probe-pulse velocity in the case of exact resonance 
is lower than the speed of light in vacuum (by an order of 
magnitude under our conditions). With an increase in reso-
nance detuning within the transparency window, it decreases 
by one more order of magnitude. At detunings exceeding the 
ones corresponding to absorption windows, the probe pulse 
velocity tends to the speed of light in vacuum.

(3) In the case of linearly polarised fields and exact reso-
nance for the probe field, an increase in the resonance detun-
ing for the control field leads to a monotonic decrease in the 
transmittance for the probe pulse. The probe-pulse velocity 
decreases under these conditions.

(4) For linearly polarised probe radiation and circularly 
polarised control radiation, the adiabaton probe pulse is split 
into two isolated pulses with oppositely directed circular 
polarisations. An increase in the probe-field resonance detun-
ing leads primarily to the absorption by the medium of the 
probe-field component for which the circular polarisation 
direction coincides with the direction of the control-field cir-
cular polarisation.
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