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Abstract.  For a laser gyro with a four-mirror square resonator we 
have developed a mathematical model, which allows one to simulate 
the temporal behaviour of the synchronisation zone parameters of 
the frequencies of counterpropagating waves in a situation when the 
device operates in the self-heating regime and is switched-on at dif-
ferent initial temperatures. 

Keywords: laser gyro, ring gas laser, synchronisation of counter-
propagating wave frequencies. 

1. Introduction 

Among the main types of laser gyros widely used in practice, 
we can single out the devices based on a ring gas He – Ne laser 
(the ratio of isotope concentrations, [20Ne] : [22Ne] = 1:1) with 
a flat N-mirror (N = 3, 4) resonator ensuring generation of 
linearly polarised radiation in the sagittal plane. The laser, 
usually operating at 0.6328 mm, is pumped by a dc parallel 
discharge obtained by a common cathode and two anodes 
[1 – 3]. 

According to relations (5.55) – (5.57) from [3] and to 
expressions (6.45) – (6.47) from [4], when the currents are bal-
anced in the discharge arms, the resonator is fine tuned to the 
centre of the emission line and the losses are identical, the sys-
tem of equations describing the dynamics of the dimension-
less intensities Ij (j = 1, 2) and the phase difference y of coun-
terpropagating waves of such a laser gyro can be written as 

( ) 2 ( )cosI I I I r I I1 1 2 1 2 1 2 2a b q y e= - - - +
:

,

( ) 2 ( )cosI I I I r I I2 2 1 2 1 1 2 1a b q y e= - - - -
:

,	 (1)

/ ( ) / ( )sin sinM r I I r I I2 2 1 2 1 1 2 1y y e y eW= + + + -
:

.

In deriving these equations it was taken into account that 
the wave with j = 1 propagates in the direction of the laser 
gyro rotation. In system (1) a, b, and q are the Lamb coeffi-
cients characterising the properties of the active medium; M = 
(1 + Ka)Mg is the scale factor of the laser gyro, primarily 
determined by its geometrical component Mg = 8pS/(lL) and 
also taking into account the properties of the medium through 

a small parameter Ka; L is the perimeter of the axial contour; 
S is the covered area; W is the angular velocity of rotation of 
the device in inertial space; and rj and ej are the moduli and 
arguments of complex integral coefficients rj exp(iej) of the 
linear coupling of the counterpropagating waves, characteris-
ing their interaction through backscattering, absorption and 
transmission of radiation on the mirrors. 

In our paper [5], based on the analysis of system (1) we 
obtained formulas for calculating the parameters of the syn-
chronisation zone of the frequencies of counterpropagating 
electromagnetic waves generated in the laser gyro. These 
parameters are, respectively, the coordinates ( )W -  and ( )W +  of 
the left and right boundaries of the synchronisation zone on 
axis of the angular velocity W, the coordinate of its centre  

( ) /2( ) ( ) ( )0W W W= ++ -  and the half-width of this zone 
( ) /2( ) ( )sW W W= -+ - . The relations obtained in [5] supplement 

the results of earlier theoretical studies [3, 6 – 13] and have the 
form 

22 2( )

M

r r r r

1

2
( )

p m

2

2 2
2 1

!
!

m

m m
W =

-

+ -
! , 

2 2 2 2 22 ( ) ( )

M

r r r r r r r r

2 1

2 2
( )

p m p m
0 2

2 2
2 1

2 2
2 1

m

m m m m
W =

-

+ + - - + - -
,	(2)

2 2 2 2 2 2( ) ( )

M

r r r r r r r r

2 1

2 2
s

p m p m

2

2 2
2 1

2 2
2 1

m

m m m m
W =

-

+ + - + + - -
.

In view of the condition |r2 – r1| << (r1 + r2)/2 (see, for 
example, [3]) implemented in practice, expressions (2) can be 
approximately written in a more compact form: 
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Here rp and rm are the combinations of parameters of the lin-
ear coupling of counterpropagating waves; ap and am are the 
inverse relaxation times of the sum and difference of the 
intensities of counterpropagating waves, respectively; g is the 
linear unsaturated gain of the active medium; G is the resona-
tor losses per trip; h is the parameter depending on the total 
pressure of the He – Ne mixture [14]; and m is a quantity char-
acterising the effect of the active-medium gain on the param-
eters of the synchronisation zone. (Equations (2) and (3) are 
valid under the condition of weak coupling of counterpropa-
gating waves, which suggests that in the entire range of work-
ing discharge currents used in laser gyros, the ratios  rp/ap and 
rm/am are much less than unity. In modern devices operating 
at sufficiently large excesses of the pump power over the 
threshold [3], the condition is usually satisfied.) 

At the laser gyro design stage, in developing, for example, 
the methods of its tests in a heat chamber, of paramount 
importance is the problem of construction of a mathematical 
model that would allow one to simulate the temporal behav-
iour of parameters W(–), W(+), W(0), Ws of the synchronisation 
zone of the counterpropagating wave frequencies of the 
device in a situation when it is switched on at different values 
of the initial temperature, and thereafter operates in the self-
heating regime. 

In the literature known to the author, this problem was not 
considered in detail; therefore, the solution to this problem is 
the aim of this paper. The data presented below can comple-
ment the results of earlier works in this area [11, 15 – 22]. 

2. Description of a laser gyro 

Following [3], as an example we will choose a laser gyro with 
a four-mirror square resonator having a nominal arm length l 
= 50 mm and a perimeter L = 4l = 200 mm. According to [3], 
such a device is characterised by the half-width of the syn-
chronisation zone, Ws » 0.05 deg s–1. The angular resolution 
qq of the laser gyro is 2.61'', and the geometric scaling factor is 
Mg = 496459. The gyroscope operates at a total pressure of 
the He – Ne mixture of 6.5 Torr and a five-fold excess of the 
gain g over the losses G (i.e., the parameter of relative excita-
tion is Nrel = g/G = 5). In order not to present (together with 
the comments) cumbersome formulas for calculating the 
small parameter Ka, as well as expressions for the estimates of 
b and q, we assume M = Mg = 496459 and, in addition, set h = 
0.652. 

The laser gyro described was considered in [23] in study-
ing the dependence of the parameters W(–), W(+), W(0), and Wsof 
the synchronisation zone of the counterpropagating wave fre-
quencies on the active-medium gain g. From this work we 
borrow all the data necessary for description. 

Thus, following [23], we assume that the resonator of the 
laser gyro in question is formed by two flat signal mirrors 
(M1, M2) and two spherical mirrors (M3, M4) with radii of 
curvature R = 1000 mm mounted on the piezocorrectors (mir-
rors are numbered clockwise). For flat mirrors M1 and M2 we 
have specified the following energy parameters: the integral 
coefficient of light scattering,  K scat

f , into the full solid angle 
4p sr; absorption losses, absorp

fG ; and useful transmission 
losses, transm

fG . For spherical mirrors M3 and M4 we have spec-
ified the integral coefficient of light scattering, K scat

s , and 
absorption losses absorp

sG . Moreover, we have specified the dif-
fraction losses due to the presence of an aperture in the laser 
gyro resonator. Then, the total losses of the gyroscope, G, can 
be calculated as 

mirr diffrG G G= + ,

f s2( )K Kmirr scat absorp
f

transm
f

scat absorp
sG G G G= + + + + ,	

(5)

where Gmirr are the mirror losses and Gdiffr are the diffraction 
losses. As in [23], we will use K scat

f  = 5 ́  10–6, absorp
fG  = 55 ́  10–6, 

transm
fG  = 60 ́  10–6, K scat

s  = 10 ́  10–6, and absorp
sG  = 50 ́  10–6. 

Then, Gmirr = 360 ́  10–6. Furthermore, we set Gdiffr = 40 ́  10–6. 
As a result, we obtain G = 400 ́  10–6. 

Then, according to formula (7) from [23], as applied to 
this laser gyro resonator, we calculate complex integral coef-
ficients rj exp(iej) of the linear coupling between counterprop-
agating waves by using the expression 

( )exp exp expi i ic
L r a

2 2f f fj j 1 2! !
p pe c j c j= - + -` `j j8 8B B$ .

+  exp expi ia
2 2s s s3 4! !
p pc j c j- + -` `j j8 8B B$ .

+  [ ( ) ( )] [ ( ) ( )]exp exp exp expi i i ib bf s1 2 3 4! ! ! !j j j j+ + + ,	(6)

which describes the result of summation of complex local 
coupling coefficients of these waves with respect to all four 
mirrors. (Here and below the upper arithmetic signs in the 
formulas correspond to j = 1, and the lower ones  –  to j = 2.) 

From expression (6) we obtain the resulting relations for 
the estimates of rj and ej (  j = 1, 2): 

, arctanr L
c A B B

A
2j j j j

j

j2 2 pe= + = - ,	 (7)

where

[ ( ) ( )]sin sinA af f fj 1 2" "c j c j= +

	 + [ ( ) ( )]sin sinas s s3 4" "c j c j+

	 + ( ) ( )cos cos cos cosb bf s1 2 3 4j j j j+ + + ;

[ ( ) ( )]cos cosB af f fj 1 2" "c j c j= + 	
(8)

	 + [ ( ) ( )]cos cosas s s3 4" "c j c j+

	 ( ) ( )sin sin sin sinb bf s1 2 3 4! !j j j j+ + .

Expressions (8) feature two groups of parameters. The 
parameters of the first group  –  af, cf, bf and as, cs, bs  –  respec-
tively characterise individual properties of flat and spherical 
mirrors. In particular, af and as are the moduli of local com-
plex dimensionless coefficients of counterpropagating wave 
coupling through backscattered radiation on flat and spheri-
cal mirrors; cf and cs are the ‘loss angles’ due to scattering by 
these mirrors; bf are the moduli of local complex dimension-
less coefficients of counterpropagating wave coupling through 
absorption and transmission of radiation by flat mirrors; and 
bs are the moduli of local complex dimensionless coefficients 
of counterpropagating wave coupling through absorption by 
spherical mirrors. The above parameters will be considered as 
the known constants. On the basis of formulas (8) from [23] 
(which for the sake of brevity we do not present here) for the 
above characteristics of the mirrors, we have for these quanti-
ties the following numerical estimates: af = 1.15 ́  10–6, as = 
1.72 ́  10–6, cf = 461'', cs = 652’’, bf = 5.91 ́  10–8, bs = 2.72 ́  10–8. 

The second group parameters in expressions (8) are the 
phase angles jn (n  =  1,..., 4), which describe the influence of 
a change in the axial contour geometry [24, 25] of the laser 
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gyro resonator when the device is switched on and subse-
quently operates in the self-heating regime. These values are 
not yet known. Looking ahead, we note only that under these 
conditions they will change over time [which, in turn, will lead 
to a deviation of the synchronisation zone parameters W(–), 
W(+), W(0), Ws]. Therefore, to solve this problem we need to 
derive the corresponding formulas for calculating jn. 

3. Additional information required 
for the formulation of the problem 

In this section we will introduce into consideration the physi-
cal quantities necessary for the formulation of the problem, 
define them and present some numerical estimates. We will 
also dwell on the circumstances of laser gyro switching, in 
particular, on its automatic extremal perimeter control sys-
tem (PCS). 

We assume that at a fixed reference temperature Tql of the 
laser gyro monoblock (for example, when Tql = 25 °С), an 
integer (even or odd) number q of wavelengths l is fitted on 
the perimeter L of the resonator axial contour, i.e., 

4L L q lq l= = =l .	 (9)

We assume that when the laser gyro monoblock is heated 
by DTl degrees relative to the reference value of Tql, the 
perimeter of resonator axial contour increases (in the case of 
a switched off PCS) by the value of DLl, equal to one wave-
length l, i.e., 

L LK TTElD D= =l l .	 (10)

Here KTE is the coefficient of a relative linear thermal expan-
sion of the material of which the laser gyro monoblock is 
made. We assume that the material is a Zerodur glass ceramic 
[3, p.  3-7], for which according to [2, p.  95] KTE » 
5.27 ́  10–8 1/ °С. Without introducing a large error, in the cal-
culations below KTE = 6.328 ́  10–8 1/ °С, which will make it 
possible to use a more convenient rounded value DTl = 50 °С 
that (for a given L = 200 mm) can be found from (10). The 
parameter DTl in its physical sense is conveniently defined as 
the intermode temperature interval of the laser gyro. 

Let the current temperature T of the laser gyro monob-
lock vary with time t according to the law 

( ),T T T t T T Tini SH ini iniqD D= + = +l ,

( ) [1 ( / )]expT t T tmax
SH SH SHtD D= - - ,	

(11)

where Tini is the initial temperature of the monoblock at time 
t = 0 of switching-on of the laser gyro; DTini is the initial incre-
ment in the monoblock temperature relative to the basic value 
of Tq l; DTSH(t) is the increment in the monoblock tempera-
ture increasing in time (relative to Tini) during the laser gyro 
operation in the self-heating regime; T max

SHD  is the maximum 
increment in the monoblock temperature after the termina-
tion of the thermal transition process; tSH is the time constant 
of the monoblock self-heating. According to experimental 
data [3] (see Fig. 4.2 on p. 3-17), for the given device   T max

SHD  
= 7 °С, and roughly, tSH = 2400 s. We will use these values in 
the calculations below. 

The values introduced allow us to consider now the cir-
cumstances of the laser gyro switching on. Thus, let the device 
be switched on at time t = 0. Then, its PCS, according to the 

algorithm of its work, with two controlled spherical mirrors 
M3 and M4 mounted on piezocorrectors will first adjust the 
axial contour perimeter L so that an integer number of wave-
lengths l is fitted on it, i.e., will provide the resonance condi-
tion 

)( ) ( , , ,...kL L q k 0 1 2( )q k ! !l == = +l+ ,	 (12)

and then for the entire time of operation of the gyro will sta-
bilise the value of L, continuously compensating for the ther-
mal expansion of the monoblock. (We assume that the PCS 
works without errors and almost instantly; we neglect its 
searching motion and take into account only the working 
motion aimed at maximising the generation power.) 

In formula (12) the sum q + k is the resulting index of the 
longitudinal working mode, at which, after an initial PCS 
adjustment generation will occur, and k is the ‘adjustment’ 
index that is automatically ‘selected’ by the system so as to 
ensure the fulfilment of the two-sided inequality 

( 1/2)T k Tq D+ -l l  < Tini G ( 1/2)T k Tq D+ +l l .	 (13)

Thus, for example, at the above parameters Tql = 25 °С, DTl = 
50 °С and the initial laser gyro monoblock temperature Tini 
ranging from 1 to 50 °С, the index k will be automatically 
‘selected’ equal to zero by the system. When Tini varies from 
51 to 100 °С, the index is equal to unity. In other words, 
depending on the initial temperature, generation in the first 
case occurs on the qth longitudinal mode at L = Lql = q l, and 
in the second  –  on the (q + 1)th mode at L= L(q + 1)l = (q + 1) l. 

Strictly speaking, the value Mg of geometric scale factor of 
the laser gyro in question during its operation on the qth lon-
gitudinal mode will be different from the corresponding value 
on the (q + 1)th mode. However, this difference is very small 
and, therefore, will not be considered below. 

To solve the problem, we assume that the material from 
which the laser gyro monoblock is made is homogeneous and 
isotropic, and the monoblock is thermally deformed only in 
the axial plane of the resonator. 

4. Formulation and solution of the problem 

For the laser gyro in question we need to obtain, taking 
(9) – (13) into account, such expressions for jn (n = 1, . . ., 4)
appearing in formulas (7) and (8) for rj and ej (  j = 1, 2), which 
together with the initial relations (3) and (4) would allow one 
to simulate the temporal behaviour of the synchronisation 
zone parameters W(–), W(+), W(0), and Ws of the counterpropa-
gating wave frequencies in a situation when the device oper-
ates in the self-heating regime, its switching on occurring at 
different initial temperatures. 

To calculate the values of jn we use relation (9) [23]: 

4 Sn n
pj
l

= .	 (14)

Here Sn is the distance measured along the axial contour 
(clockwise) between the reference plane (located at the origin 
of the coordinates) and the centre of the mirror Mn. The ori-
gin of the coordinates is chosen on the surface of the mirror 
M1 at a point where the centre of the light spot of a Gaussian 
beam is located (at this point the axial contour touches the 
surface of the mirror M1 and is ‘reflected’ from it). 

To estimate the values of Sn, in expression (14) we will use 
formula (10) [23]: 
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sinS t L( )
n n n m

m

m

n
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1

q=- + -

=

/ ,	 (15)

where 0L( )
0
1 /  and L( )

m
m

1-  (m = 2, 3, 4) is the length of the laser 
gyro resonator arm between the mirrors Mm – 1 and Mm (which 
is the distance measured along the axial contour between the 
centres of light spots of the Gaussian beam on the surfaces of 
these mirrors); tn is the displacement of the centre of the light 
spot of the Gaussian beam at the surface of the mirror Mn 
relative to its centre (which is measured in the axial plane to 
the right); and qn is half the angle between the arms of the 
laser gyro resonator at the mirror Mn (in our case, qn = p/4). It 
follows from (15) that 

, ,S t S t L S t L L
2
2

2
2

2
2( ) ( ) ( )

1 1 2 2 1
2

3 3 1
2

2
3

=- =- + =- + + , 
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2
2 ( ) ( ) ( )

4 4 1
2

2
3

3
4

=- + + + .	
(16)

The methods for calculating the quantities tn and L
( )
n
n
1-  for 

plane N-mirror misaligned (i.e., with displaced mirrors) laser 
gyro resonators of arbitrary (flat) form, containing, in the 
general case, plane-parallel plates in the arms, have been pro-
posed in [26] and [27], respectively. Based on these techniques, 
with the laser gyro resonator under study, when, in the case of 
the switched off PCS, all four mirrors due to thermal expan-
sion of the monoblock move together with its mounting sur-
faces in the axial plane linearly, normally and outwards to a 
distance wn, for the mentioned values we can obtain the 
expressions 

[(2 )( ) (6 2 )( )]t w w w w
8 3
1

1 1 3 2 4x
x x=

-
- - + - - ,

[(6 2 )( ) (2 )( )]t w w w w
8 3
1

2 1 3 2 4x
x x=

-
- - + + - - + ,	 (17)

( )t t w w w w
8 3
2

3 4 1 2 3 4x= =
-

- - +

and

( /2)( )L L l w w2( ) ( )
1
2

3
4

3 4= = + + ,

/ [(8 2 ) (8 4 ) ( )]L l w w w w
8 3
2 2( )

2
3

1 2 3 4x
x x x= +

-
- + - + - + ,	 (18)

/ [(8 4 ) (8 2 ) ( )]L l w w w w
8 3
2 2( )

4
1

1 2 3 4x
x x x= +

-
- + - + - ,

where x = pl  is a small dimensionless parameter introduced 
for brevity and ( / )p R2 2=  is the optical power of each of 
the spherical mirror in the axial plane. Given l = 50 mm, R = 
1000 mm, we have the following numerical estimates: p = 
0.0028 mm–1, x = 0.14. 

By substituting expressions (17) and (18) into (16) we 
obtain 

/2 [(2 )( ) (6 2 )( )]S w w w w
8 3
2

1 1 3 2 4x
x x=

-
- - + + - - + ,

/2 [(6 2 )( ) (2 )( )]S l w w w w
8 3
2

2 1 4 2 3x
x x= +

-
- + + - + ,

2 /2 [(6 2 )( ) (10 4 )( )]S l w w w w
8 3
2

3 1 4 2 3x
x x= +

-
- + + - + ,	(19)

3 / [(6 2 ) (10 4 )S l w w
8 3
2 2

4 1 2x
x x= +

-
- + -

	 +(18 7 ) (14 5 ) ]w w3 4x x- + - .

In order to make use of formulas (19) below, we need an 
expression for the axial contour perimeter L of the laser gyro 
resonator. The perimeter of the resonator is by definition 
equal to the sum of all the lengths of its arms, i.e., L = L 1

(2) + 
L 2
(3) + L 3

(4) + L 4
(1). Thus, taking into account (9) and (18) 

L = q l + DL,  ( )L w w w w2 1 2 3 4D = + + + ,	 (20)

where DL is the perimeter increment caused by linear, normal 
movements wn of all the four mirrors of the laser gyro resona-
tor due to thermal expansion of the monoblock when its tem-
perature T rises by DT (DT = T – Tql) degrees relative to the 
basic value Tql. 

Given that in this laser gyro resonator the mirrors M1 and 
M2 are signal and the mirrors M3 and M4 are mounted on 
piezocorrectors and controlled by the PCS, we represent wn in 
(20) in the expanded form: 

,w w h w h w hPCST T1 2 3= = = - +D D ,

w h w hPCST4 = + +D .	
(21)

Here hDT is movement of each mirror Mn together with the 
mounting surface of the monoblock due to a temperature 
increment DT; w are the oppositely directed displacements of 
the mirrors M3 and M4 (the mirror M4 moves from the reso-
nator at a distance w, and the mirror M3, on the contrary, 
moves into the resonator at exactly the same distance) speci-
fied [23] for the purpose of initial adjustment of the parame-
ters rj and ej of the linear coupling of counterpropagating 
waves; and hPCS are the PCS-controlled like-directed displace-
ments of the mirrors M3 and M4. 

To explicitly define the law governing the variation of the 
hPCS values in a situation when the PCS is switched on and 
operates normally, we substitute (21) into (20): 

(4 2 )L q h h2 PCSTl= + +D .	 (22)

Comparing (22) with expression (12), which represents in a 
mathematical form the problem whose solution is provided 
by the PCS, we obtain 

( ) (4 2 )q k q h h2 PCSTl l+ = + +D ,	 (23)

whence

2h k h
4
2

PCS Tl= - D .	 (24)

Then, by substituting (24) into (21) we find refined relations 
for wn, which already take into account the fact of the normal 
PCS operation: 

,w w h w k h w
4
2

T T1 2 3 l= = = - -D D ,

w k h w
4
2

T4 l= - +D .	
(25)

Taking (25) into account expressions (19) take the form
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Relations (26) include the nominal arm length l of the laser 
gyro resonator. On the basis of (9), we have l = ql/4. 
Substituting this expression into (26) and then (26) into (14), 
we find 

4 2k h w2
8 3
4 2

1
Tp p pj

l x
x

l
= - +

-
-D ,

( ) 2q k w
8 3
4 2

2 p pj
x
x

l
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-
- ,	

(27)
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4 2 2
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x
x

l
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-
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3 4 4 2q k h w2
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4 2 2T
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l x

x
l
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-
-D .

Formulas (27) can be simplified by omitting the term 2p(q 
+ k) in the expression for j3, and by omitting the term 4pk 
and substituting pq instead of 3pq into the expression for j4. 
As a result, we obtain 

4k h2
f

T
1 p pj

l
j= - +D ,

( ) ,q k f s2 3pj j j j= + + = ,	 (28)

4q h2
s

T
4 p pj

l
j= - +D ,

where

2 , 2w w
8 3
4 2

8 3
4 2 2

f sp pj
x
x

l
j

x
x

l
=

-
-

=-
-
- 	 (29)

are the phase angles [23] depending on the oppositely directed 
displacements w of the spherical mirrors M3 and M4. 

Now the resulting expressions (28) must be supplemented 
with the calculation formula for hDT. On the one hand, in the 
case of hPCS = 0 (PCS is switched off) it follows from (22) that 
the thermal expansion of the perimeter caused by the tem-
perature increment DT of the monoblock is 4 h2 TD . On the 
other hand, the same value is equal to qlKTE DT. Thus, 
4 h2 TD  = qlKTE DT, which, with DT = T – Tql, yields 

( /8) ( )h q K T T2 TET ql= - lD .	 (30)

As a result, substituting (30) into (28), we finally obtain 

( ) , ( )k qK T T q kTE f fq1 2p p pj j j j= - - + = + +l ,

, ( )q qK T Ts TE sq3 4 p pj j j j= = - - +l .	
(31)

Formulas (31) are the desired relations. The current 
temperature T of the laser gyro monoblock is determined 
by (11). 

To use relations (31) for modelling the dynamics of the syn-
chronisation zone parameters of the counterpropagating wave 
frequencies of the laser gyro in question, we must first specify 
(or, more precisely, calculate) two characteristic values of the 
parameter q. This can be done by using the formulas 

q = qfloor = floor (L/l),  q = qceil = ceil(L/l),	 (32)

where qfloor and qceil are two integers of the parameter q differ-
ing by unity. One of them during the calculations will be even/
odd, and the other, on the contrary, odd/even. [The MATLAB 
function floor (x) of a real argument x returns the value 
rounded to the nearest integer x1 G x, while the function 
ceil (x) acquires the value rounded to the nearest integer x2 H x.] 
The obtained values of the parameter q should be then substi-
tuted into formulas (31). Note that the simulation results in 
the first and second cases will be qualitatively different. 

Finally, with respect to the parameter k in (31): Its value 
(k = 0, ± 1, ± 2, . . .) should be chosen so that to ensure the 
fulfilment of inequality (13) at the initial temperature Tini of 
the laser gyro monoblock. 

Thus, formulas (31) obtained in this section for calculat-
ing values of jn together with expressions (3), (4), (7), (8), 
(11), (13) and (32) form a mathematical model that allows the 
modelling of the dynamics of the synchronisation zone 
parameters W(–), W(+), W(0), Ws of the counterpropagating 
wave frequencies of the laser gyro during its operation in the 
self-heating regime. 

5. Examples of modelling the dynamics 
of the half-width of the synchronisation zone 
of counterpropagating wave frequencies 
in the laser gyro under study 

Unfortunately, limitations on the volume of the article do not 
allow us to present in full the results of modelling of the 
dynamics of all four synchronisation zone parameters [W(–), 
W(+), W(0), and Ws] of the counterpropagating wave frequen-
cies of the laser gyro in question, i.e., for all possible quanti-
ties appearing in (31). Therefore, we consider only the sim-
plest case when oppositely directed controlled displacements 
w of the mirrors M3 and M4 are absent (w = 0). To this end we 
assume  jf = js = 0 in (31). In this situation, the linear cou-
pling of counterpropagating waves during the laser gyro 
operation in the self-heating regime will always remain sym-
metric (r1 = r2) and the displacement W(0) of the centre of the 
synchronisation zone of the frequencies of these waves along 
the axis of the angular velocity W, as follows from (3), will be 
zero. Thus, the problem reduces to the modelling of the 
dynamics of only one synchronisation zone parameter –   its 
half-width Ws. 

In addition, with the aim of further simplification of the 
problem, we confine ourselves to a single case (of two possi-
ble) when, for example, an even number of wavelengths l is 
fitted on the axial contour perimeter of the resonator at a 
basic temperature Tql of the laser gyro monoblock. By using 
(32) with L = 200 mm we have qfloor = 316055 and qceil = 
316056. Therefore, we should use q = qceil = 316056 in (31). 

Now, to start modelling the dynamics of Ws, we must 
specify (and for the convenience of the reader gather in one 
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place) numerical values of all variables used in the calcula-
tions: 

1. Formulas (3) involve the parameter M. For the laser 
gyro in question it equals 496459. 

2. Expressions (4) contain the parameter am. As found 
above, the resonator losses G of the gyro are 400 ́  10–6. The 
device operates at five-fold excess of the gain g over the losses 
G, i.e., g = 5G = 2000 ́  10–6. Therefore, by using (4) with ap = 
2400000 s–1 and h = 0.652, we have am  =  505810 s–1. 

3. In relations (8) af = 1.15 ́  10–6, as = 1.72 ́  10–6, cf = 
461'', cs = 652'', bf = 5.91 ́  10–8, bs = 2.72 ́  10–8.

4. Finally, in formulas (11), (13) and (31) Tql = 25 °С, DTl 
= 50 °С, KTE = 6.328 ́  10–8 1/ °С, T max

SHD  = 7 °С, tSH = 2400 s. 
Figure 1 shows the results of modelling the dynamics of 

the synchronisation zone half-width Ws of the counterpropa-
gating frequencies of the laser gyro in question when it worked 
five times during four hours at the initial monoblock temper-
atures Tini = 5, 15, 25, 35 and 45 °С from the interval 1 – 50 °С. 
To ensure that inequality (13) is met at the mentioned Tini, the 
parameter k in formulas (31) was chosen to be zero. This 
means that in all five tests the device, every time after its 
switching on, worked on the same ‘even’ longitudinal mode 
(because its resulting index q + k = 316056 is an even 
number). 

The results of modelling the Ws dynamics, when the laser 
gyro worked five times during four hours at the initial mono-
block temperatures Tini = 55, 65, 75, 85 and 95 °С from the 
interval 51 – 100 °С are presented in Fig. 2. With such values 
of Tini the parameter k in (31) was taken equal to unity. 
Therefore, in these tests the gyro, every time after its switch-
ing on, worked on the same ‘odd’ longitudinal mode (because 
its resulting index q + k = 316057 is an odd number). 

From these graphs it is clear that the synchronisation zone 
half-width Ws of the counterpropagating wave frequencies of 
the laser gyro in question during its operation in the self-heat-
ing regime changes over time. The character of the Ws dynam-
ics is determined by parameter KTE, the law T = T(t) of the 
increase in the laser gyro monoblock temperature and, most 
significantly, by the initial value Tini at time t = 0 when the 
device is switched on. These circumstances should, appar-

ently, be taken into account when developing the method for 
experimental assessment of Ws at the stage of certification of 
the laser gyro parameters. 

The results of modelling suggest that the measurement of 
the synchronisation zone half-width Ws of the counterpropa-
gating wave frequencies of the laser gyro in question should 
be carried out in a wide range of temperatures (on a con-
trolled uniaxial rotating bench placed in a heat chamber). The 
most reliable estimate of Ws should be its maximum measured 
value. The Ws for any given stabilised value of the air tem-
perature in the chamber should be measured immediately 
after switching on the laser gyro, rather than after termina-
tion of thermal transients occurring in it. 

6. Conclusions 

In this paper, for a laser gyro with a four-mirror square reso-
nator we have obtained formulas (31), which together with 
(3), (4), (7), (8), (11), (13) and (32) form a mathematical model 
that allows one to simulate the temporal behaviour of the syn-
chronisation zone parameters of the frequencies of counter-
propagating waves in a situation when the device operates in 
the self-heating regime, and is switched on at different initial 
temperatures. 
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