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Abstract.  We consider the application of the method of adiabatic 
waveguide modes for calculating the propagation of electromag-
netic radiation in three-dimensional (3D) irregular integrated opti-
cal waveguides. The method of adiabatic modes takes into account 
a three-dimensional distribution of quasi-waveguide modes and 
explicit (‘inclined’) tangential boundary conditions. The possibili-
ties of the method are demonstrated on the example of numerical 
research of two major elements of integrated optics: a waveguide of 
‘horn’ type and a thin-film generalised waveguide Luneburg lens by 
the methods of adiabatic modes and comparative waveguides.

Keywords: integrated optical waveguides, smoothly irregular wave-
guides, method of adiabatic waveguide modes, method of compara-
tive waveguides, dispersion relation, numerical modelling.

1. Introduction

In our previous works [1 – 11], with the asymptotic method 
and method of coupled waves we obtained analytical expres-
sions for fields of deforming waves of a four-layer smoothly 
irregular integrated optical three-dimensional waveguide in 
the zero- and first-order approximations of the perturbation 
theory. Our consideration is based on a solution presented in 
the form of finite asymptotical series known as the adiabatic 
approximation. The quasi-wave equations obtained from 
theoretical consideration are solved in the zero- and first-
order approximations of the asymptotic method [1 – 3]. 
According to the theoretical analysis, the modes of a smoothly 
irregular integrated optical waveguide are weakly hybridised 
quasi-TE and quasi-TM modes. Retaining the summands 
proportional to a dielectric function gradient in the boundary 
conditions and in the solution of quasi-waveguide equations 
makes allowance for a vector character of propagation of a 
monochromatic electro-magnetic field along smoothly irregu-
lar domains of a multilayer multimode integrated optical 
waveguide. It was established that in such consideration, 

shifts of complex propagation constants arise in weakly cou-
pled quasi-TM and quasi-TE modes. It was found that at real 
(and positive) values of the dielectric function and magnetic 
susceptibility of smoothly irregular waveguide medium these 
shifts are purely imaginary and distinct for different quasi-
waveguide modes [1 – 3].

Our consideration is based on the method of short-wave-
length asymptotics [12, 13] with a solution U presented in the 
form of the asymptotic series

/U u km
m

m
0+/ ,

with terms proportional to k0
–m = (2p/l)–m, where l is the 

wavelength of monochromatic light in vacuum and k0 is the 
modulus of the wave vector k0. In the visible wavelength 
range we have l ® 0 (k0 ® ¥), which suggests employment of 
the solution in the form of finite asymptotic series known as 
the adiabatic approximation [1 – 14].

The method of short-wavelength asymptotics was first 
formulated by Debye for solving the scalar wave equation in 
the form

( , ) [ ( )] ( ) ( )exp i iu x S x xm
m

m

l l l j= -/ ,

where S(x) and jj (x) are certain functions. The idea of Debye 
was then developed for solving Maxwell’s equations [13]. The 
approximation in which the zero- and first-order terms are 
retained in this series is called ‘adiabatic approximation’ in 
the literature on theoretical and mathematical physics and 
‘approximation of geometrical optics’ (the geometrical dif-
fraction theory) in works on electromagnetic (optical) diffrac-
tion (see, for example, [15]).

Maslov substantially improved the asymptotic method 
for solving problems in mathematical physics (especially the 
Schrödinger equation) in a number of papers; the correspond-
ing results are presented, for example, in monograph [16]. 
This approach describes the classes of solutions correspond-
ing to spatial waves propagating in a nonuniform space. 
Nevertheless, there are also other important classes of waves 
which do not coincide with the spatial waves. In particular, 
integrated optics and waveguide optoelectronics study the so-
called surface waves. Such waves cannot be directly described 
by the methods of Debye or Maslov. However, these methods 
were modified by the authors of the present work. The modi-
fication suggests a partial separation of variables (see, for 
example, [3, 10]) based on averaging the adiabatic solution 
over fast variables [3] with a following ‘asymptotic’ continua-
tion in those variables (by analogy with the method of averag-
ing [17]). Note that the Fourier method used for separating 
variables in regular waveguides is not applicable in our case. 
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In addition, the known method of spectral decomposition of 
field over a complete system of guided (eigen) modes and 
radiation modes of a regular waveguide [18 – 24] (or the mode 
method in [22]) is not applicable for finding a solution because 
the propagation constant in this case is a complex value which 
brings a problem of orthogonality for corresponding modes. 
Note that in contrast to approximate methods of geometrical 
optics and geometrical diffraction we search for (and find) 
solutions for Maxwell’s equations that are explicit equations 
of electromagnetic theory for wave propagation and diffrac-
tion. The two-dimensional (‘tracing’) rays involved in our 
constructed ‘adiabatic waveguide modes’ constitute an aver-
aged (energy) frame of ‘asymptotic decomposition’ satisfying 
electrodynamic equations rather than geometrical optical 
equations (for details see [1, 3, 10]).

In the present work, possibilities of our method of adia-
batic modes are demonstrated by the example of the numeri-
cal study of two most important elements of integrated optics, 
namely, a waveguide of ‘horn’ type and a thin-film gener-
alised waveguide Luneburg lens (TGWLL). Recall that this is 
the lens in which the focal sphere does not coincide with its 
surface and the image plane is separated from lens centre by a 
distance greater than its radius. A TGWLL is a planar ana-
logue [1 – 11, 18, 19] of the spatial generalised Luneburg lens 
[20]. An integrated optical waveguide of ‘horn’ type is the 
waveguide with widening. Such a waveguide can be obtained, 
for example, by gradually thickening the waveguide layer 
along the appropriate axis.

2. General statement of the problem 

Propagation of guided and quasi-guided modes in smoothly 
irregular ‘horn’ type and TGWLL waveguides (Fig. 1) are 
described by Maxwell’s equations, which for a nonabsorbing 
nonuniform and isotropic medium with lacking sources can 
be written in the SI system in the following form [21, 22]:

¶
¶

¶
¶,rot rot

t t
H E E He m= =- .	 (1)

In a multilayer integrated optical waveguide the electro-
magnetic field that is a solution to system (1) should satisfy 
the tangential boundary conditions at the interfaces between 
layers E t|1 = E t|2, H t|1 = H t|2.

Solutions to Maxwell’s equations (1) will be searched for 
in the form [1 – 5]:
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w is the angular frequency of monochromatic radiation; and c 
is the velocity of light. The eikonal (phase)

( , ) ( , ) ( , )dy z k y z s y z
,y z

0j b= l l l ly

in (2) is found by integrating along rays after the dispersion 
relationship has been solved and the rays and wave fronts in 
the horizontal plane have been separately calculated; here  
d d ds y z2 2

= +  is the ray length element.
The dispersion relationships for the TGWLL were 

obtained by Southwell [18] in the approximation where 
‘inclined’ tangential boundary conditions were substituted for 
their projections onto the horizontal plane. The allowance 
made for the conditions |¶h/¶y| ¹ 0, |¶h/¶z| ¹ 0 introduces into 
the Southwell relationships a small correction with respect to 
the parameter d, where d = max|Ñy,z b|(k0 b2)–1.

While solving a system of ordinary differential equations 
for adiabatic waveguide modes with the help of the parameter 
d [1 – 5] which is a two-dimensional analogue of the value |Ñe/e|, 
coupled quasi-waveguide modes arise in a 3D smoothly irreg-
ular waveguide [1 – 11] which are similar to hybrid modes and 
have six field components in contrast to three components of 
the TE- and TM-modes [21, 22]. In the general case, the con-
ditions ¶E/¶y º 0, ¶H/¶y º 0 are not satisfied for these modes, 
i.e., there exist field variations in the y axis direction.

The Cartesian coordinate system is oriented as follows. 
The x axis crosses waveguide layers and is perpendicular to 
the layers in regular domains, whereas the y and z axes are 
parallel to the layers at these domains. Guided and quasi-
guided modes of a waveguide propagate along the z axis. A 
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Figure 1.  Transverse cross sections of investigated waveguide struc-
tures of (a) ‘horn’ and (b) TGWLL types. A three-layer regular inte-
grated optical waveguide is formed by the surrounding medium or cov-
ering layer (air) with the refractive index nc (1), the first waveguide layer 
(a regular part of integrated optical structure) with the refractive index 
nf (2), the substrate with the refractive index ns (3), and the second wave-
guide layer (irregular part of the integrated optical structure) with the 
refractive index nlayer (4). The propagation direction of the TE- or TM-
mode is shown by a bold arrow. A component of the wave vector field 
(solid line a with arrow) and its projection onto the horizontal plane 
(dashed line a¢) are shown in the left side of Fig. 1a. In the right side of 
the figure are shown: the same component of the wave vector field (sol-
id line a with the arrow), its projection onto the horizontal plane 
(dashed line a¢ with the arrow), the real component of the wave vector 
field on the inclined plane (solid line b with the arrow) and its projection 
onto the inclined plane (dot-and-dash line b¢ with the arrow). Here, the 
laboratory (auxiliary) coordinate system x¢, y¢, z¢ is used; h(z) is a thick-
ness of the layer forming the wedge. In Fig. 1b: h(y, z) is the thickness of 
the layer forming the Luneburg lens and R is the radius of lens aperture.
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substitution of (2) into (1) gives after certain transformations 
the following results.

For the longitudinal components Ez(x; y, z), Hz(x; y, z) we 
obtain the second-order equations
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By using the longitudinal components Ez(x; y, z), Hz(x; y, z)  
and their derivatives we obtain the field components 
Ex(x; y, z), Ey(x; y, z), Hx(x; y, z), and Hy(x; y, z):
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In relationships (3) – (6) we used the notations
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in order to represent the derivatives of the field strengths 
Em (here m = x, y, z) as follows:

¶
¶

¶
¶

¶
¶

,
y
E p E

y
E p p

y
p
Em

y m
m

y y
y

m2

2

= = +c m ,

¶
¶

¶
¶

¶
¶

,
z
E p E

z
E p p

z
p
Em

z m
m

z z
z

m2

2

= = +c m .

Derivatives of the field strengths Hm are written in a similar 
way.

In the case of smooth irregularities under consideration 
(that is, at d < 1) in the zero-order approximation with respect 
to the small parameter d the following equations are valid for 
the longitudinal components

( )
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and for the transverse and vertical components the following 
differential expressions can be written:
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In the present work we consider the integrated optical 
waveguide structures shown in Fig. 1. A substrate [resides in 
the range Is = {(x, y, z) : x Î (- ¥, –d ]; y, z Î (- ¥, + ¥)}] made of 
the material with the refractive index ns is covered by the main 
waveguide layer [in the range If = {(x, y, z) : x Î [–d, 0 ]; y, z Î 
(- ¥, + ¥)}] of thickness d made of the material with the 
refractive index nf ³ ns. The main waveguide layer is addition-
ally covered by the layer with the refractive index nlayer ³ ns of 
variable thickness x = h(z) or x = h(y, z) (the domain of non-
zero thickness is limited by the yz plane). The additional 
waveguide layer resides in the domain Ilayer ={(x, y, z) : x Î 
[0, h(z)]; y, z Î (- ¥, + ¥)}. A coating cover made of the mate-
rial with the refractive index nc £ ns, nf, nlayer is above all those 
layers. This cover (air in our case) resides in the range Ic = 
{(x, y, z) : x Î [h(z), + ¥); y, z Î(- ¥, + ¥)}.

At each of the interfaces between two media (boundaries 
between ranges Ij) the following tangential boundary condi-
tions hold true

E t|–d – 0 = E t|–d + 0,   H t|–d – 0 = H t|–d + 0,	
(13)

E t|– 0 = E t|+ 0,    H t|– 0 = H t|+ 0,

E t|h(z) – 0 = E t|h(z) + 0,   H t|h(z) – 0 = H t|h(z)+ 0.	 (14)

In addition, the following boundary conditions hold true 
at infinity

|E t|x ®±¥ | < +¥,    |H t|x ®±¥ | < +¥.

For conditions (13) the tangent planes to the interfaces are 
horizontal; hence, system (13) can be reduced to independent 
subsystems for the TE- and TM-eigenmodes. For conditions 
(14) these planes in the general case are not horizontal and 
¶h/¶y ¹ 0; hence, the tangential field components in the gen-
eral case are linear combinations comprising all three 
Cartesian components of fields with nontrivial coefficients. 
This circumstance prevents the boundary condition system 
(14) from separating to two independent subsystems for the 
TE- and TM-modes, which results in ‘coupled’ polarisations 
of quasi-waveguide modes propagating in an irregular inte-
grated optical waveguide.

3. Explicit tangential boundary conditions  
in the method of adiabatic waveguide modes

Boundary conditions (13) for the horizontal planes of inter-
faces between layers in the component notations take the 
form:

Hz(x)|x = –d – 0 = Hz(x)|x = –d + 0,  Ey(x)|x = –d – 0 = Ey(x)|x = –d + 0,

Ez(x)|x = –d – 0 = Ez(x)|x = –d + 0,  Hy(x)|x = –d – 0 = Hy(x)|x = –d + 0,
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Hz(x)|x =  – 0 = Hz(x)|x = + 0,  Ey(x)|x =  – 0 = Ey(x)|x = + 0,

Ez(x)|x =  – 0 = Ez(x)|x = –d + 0,  Hy(x)|x =  – 0 = Hy(x)|x = + 0.

Among the three components of the tangential field E t(0) 
in boundary conditions (14) only the components Ey t(0) and 
Ez t(0) are linearly independent. Similarly, among the three 
components of the magnetic field only the components Hy 

t(0) 
and Hz 

t(0) are linearly independent. Hence, it suffices to write 
out boundary conditions (14) only for these components.

Consider conditions (14) in more detail. At the point 
(h(y, z), y, z)T of the interface x = h(y, z) the tangent plane is 
given by the expression dx – (¶h/¶y)dy – (¶h/¶z)dz = 0.

The components of electric and magnetic field strengths 
[E t(0)) and (H t(0)], tangential to this plane, in the component 
notation are as follows:
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Thus, each of the tangential components of the electric 
field is contributed by all the three electric field components, 
that is, by both polarisations. Similarly behave the compo-
nents of the magnetic field; thus, strict boundary conditions 
in the method of adiabatic modes, in contrast to the method 
of cross-sections [21, 23, 24], take into account ‘coupling’ of 
two polarisations actually arising in the inclined domains of 
the waveguide. In the smoothly irregular domain of a 
waveguiding structure with inclined incidence of waves (onto 
the interfaces between media comprising the waveguide) the 
polarisations are coupled and a linearly polarised mode 
(modes) is transformed to the mode with coupled state, the 
complicated polarisation structure of which can be found by 
solving a system of equations and relationships combining 
both polarisations. Note that this nonclassical state differs 
from the state of a classical hybrid mode which also has six 
field components because the classical hybrid mode is the 
same in a regular optical waveguide as well. When the TE- or 
TM- eige mode with a linear polarisation falls from a regular 
domain of the integrated optical waveguide to an irregular 
domain, it becomes the mode with a coupled state having an 
alternating imaginary shift in the propagation constant.

In the case of a ‘horn’ waveguide, the nonhorizontal part 
of the interface (wedge) varies with z, but is independent of y. 
Hence,
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y
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where q is the inclination angle of the nonhorizontal plane of 
the horn (wedge-shaped domain) relative to the horizontal 
plane yz.

In this case, Eqns (7), (8) take the form
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and relationships (9) – (12) are as follows:
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In view of expressions (18) – (20) in the waveguide of 
‘horn’ type the boundary conditions at the nonhorizontal 
interface are fulfilled separately for different modes, but each 
mode acquires a rotation of the polarisation plane.

For the TM-modes we have
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Similarly, for the TE-modes
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Similar equations for the case of the TGWLL were derived 
in our papers [1 – 5], and so we will only make a brief com-
ment. In this case the nonhorizontal part of the interface (the 
upper profile of the lens) varies with arguments y and z 
[x = h(y, z)], which substantially complicates all stages of 
investigation of such waveguide structure (for details refer to 
[1 – 3, 5, 7 – 10]).

4. System of equations describing  
transformation of guided modes

Now consider the TM-mode. The general solutions for three 
nonzero components of the electromagnetic field of the 
TM-mode with the allowance made for the boundary condi-
tions at infinity can be written in an explicit form

( )expE A xc
c cz g= - ,	 (21)

( )expE A xs
s sz g= ,	 (22)

( ) ( )exp expi iE A x A xf
f f f fz c c= + -+ - ,	 (23)
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( ) ( )exp expi iE A x A xlayer
layer layer layer layerz c c= + -+ - . 	  (24)

Here ;kj j j j0
2 2 2c e b g c=+ - =- ; j = s, layer, f, c; and Hy 

and Ex are obtained by substituting (21) – (24) into relation-
ships (19), (20).

By substituting these expressions to the boundary condi-
tions for a waveguide of ‘horn’ type we obtain in an explicit 
form the system of algebraic equations with respect to 
unknown coefficients As, Af

+, A–
f , A

+
layer, A–

layer, Ac, which after 
simple transformations can be reduced to the equivalent sys-
tem of linear algebraic equations of lower dimensionality:
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layer layer layer layer

0
2 2c

e
c c= - -+ -6 @,	 (26)

( ) ( )exp expi iA a A af f f f2 2c c+ -+ -

	 ( ) ( )exp expi iA a A alayer layer layer layer2 2c c= + -+ - ,	 (27)

( ) ( )exp expi ik A a A a
f

f
f f f f

0
1 1c

e c c- -+ -6 @

	 ( ) ( )exp exp
i

i i
k

A a A a
s

s s
f f f f2

0
1 1

c
e g

c c=- + -+ -6 @.	 (28)

From these expressions it follows that at a nonzero angle 
of inclination of the additional waveguide layer the energy is 
redistributed over the components of the magnetic field H. 

Similarly, for the TE-mode general solutions can be 
obtained for three nonzero components of the electromag-
netic field in terms of unknown coefficients Bs, Bf

+, Bf
–, B –layer, 

B +layer, Bc. Finally, the boundary conditions for the tangential 
field components of the TE-mode are reduced to the system 
of linear algebraic equations with the dimensionality of four:

( )expi iB alayer c c layer layer
2

3c g c c-+ ^ h

	 ( ) 0expi iB alayer c c layer layer
2

3c g c c+ - - - =- ^ h ,	 (29)

( ) ( )exp expi iB a B af layer f f layer f2 2c c c c- -+ -

	 ( ) ( )exp expi iB a B a 0layer f layer layer f layer2 2c c c c- + - =+ - ,	 (30)

( ) ( )exp expi iB a B af f f f2 2c c+ -+ -

	 ( ) ( ) 0exp expi iB a B alayer layer layer layer2 2c c- - - =+ - ,	 (31)

( )expi iB af s f s f
2

1c c g c++^ h

	 ( ) 0expi iB af s f s f
2

1c c g c+ - + - =-^ h .	 (32)

In the case of the TM-mode, the energy is not redistrib-
uted between the components of the electromagnetic field.

Similar equations for the TGWLL have been derived in 
our previous papers (see, for example, [1 – 3, 5, 10]). Since the 
upper profile of the lens transforms with varying arguments y 
and z, at all investigation stages of this waveguide structure 
one should take into account the dependence h(y, z).

5. Comparison of calculation results  
of employment of the two methods for describing 
waveguiding structures of ‘horn’  
and TGWLL types

In the method of comparative waveguides the explicit inclined 
boundary conditions in a waveguide of ‘horn’ type are substi-
tuted for approximate horizontal conditions [23, 24]. In 
describing such waveguides we will employ the method of 
comparative waveguides in order to find analytical and 
numerical distinctions between the waveguide modes propa-
gating in them. In this method, all equations for the compo-
nents of the electromagnetic field of waveguide TM-modes 
coincide with Eqns (18) – (20) which are valid for the method 
of adiabatic modes. Thus, the general solutions of these equa-
tions satisfying the boundary conditions at infinity coincide 
with solutions (21) – (24). In the method of comparative wave-
guides, irregular parts of the waveguide are substituted for a 
set of regular parts with different heights [23, 24] so that in 
(25) – (28) the summands proportional to ¶h/¶z are equal to 
zero. Hence, the boundary conditions for the electromagnetic 
field of TM-modes will be equivalent [23, 24] to a uniform 
system of linear algebraic equations coinciding with (25) – (28) 
if we formally set tanq = 0.

A distinction between the methods of adiabatic waveguide 
modes and comparative waveguides is that boundary condi-
tions (25) – (28) include the summands proportional to the 
tangent of the inclination angle of the upper plane of ‘horn’. 
These summands are responsible for differences in dispersion 
curves and in transformations of field waveguide modes 
propagating in a smoothly irregular waveguide of ‘horn’ type 
or in a TGWLL. Because in such a waveguide these contribu-
tions determine differences in the dispersion relationships 
only for TM-modes, we will show by numerical examples how 
their dispersion characteristics differ.

The uniform system of linear algebraic equations 
(29) – (32) which is equivalent to the system of boundary con-
ditions in the method of adiabatic modes [M̂ 

TM ( b, q)A( b, q) 
= 0] has a nontrivial solution if the compatibility condition 
detM̂ 

TM ( b, q) = 0 is satisfied. In the method of comparative 
waveguides a similar system of linear algebraic equations has 
the form M̂ 

TM ( b, 0)A( b, 0) = 0 and admits a nontrivial solu-
tion if the compatibility condition detM̂ 

TM ( b, 0) = 0 is satis-
fied, which in the integrated optics is called the dispersion 
relationship.

Figure 2 demonstrates quantitative differences in distribu-
tions of the phase retardation coefficient b(z) for quasi-wave-
guide modes of the waveguide of ‘horn’ type whose upper 
edge is inclined at the angle q = 5° (for clearness) in the meth-
ods of adiabatic modes and comparative waveguides. The 
parameters of waveguide media are given for a laser radiation 
wavelength l = 0.9 mm. Similar differences are observed in the 
TGWLL for all rays which are parallel to the z axis.

For TE-modes, the tangential boundary conditions in the 
method of adiabatic modes do not depend explicitly on the 
angle of inclination q and are equivalent to the uniform 
system of linear algebraic equations (29) – (32) in the form 
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M̂ 
TE ( b)B( b) = 0. They coincide with the tangential boundary 

conditions in the method of comparative waveguides [23, 24]. 
The system of linear algebraic equations common for both 
the methods has a nontrivial solution if the compatibility con-
dition detM̂ 

TE ( b) = 0, which also does not depend explicitly 
on the inclination angle q, is satisfied.

Note that formulae (21) – (24) are not sufficient for calcu-
lating the vertical distribution of the electromagnetic field of 
the quasi-waveguide TM-mode. For calculating a complete 
electromagnetic field for the corresponding mode it is neces-
sary to employ formula (2) which comprises a phase lag j(z). 
The latter is calculated by the method of numerical integra-
tion of the tabulated value  b(z).

Some results of comparison of the comparative waveguide 
method with the method of adiabatic modes with explicit 
inclined boundary conditions for the TGWLL are pre-
sented in our papers (see, for example, [1, 3, 5, 7, 10]). Recall 
that the dispersion relationship for the TGWLL detM̂  ( b) = 0 
has the form of a nonlinear partial differential equation with 
respect to h and an algebraic equation with respect to the vec-
tor field b:

¶
¶

¶
¶, , ; , , ; , , , ;F h

y
h

z
h n n n n d 0disp s f layer cy zb b b =c m .

Here the matrix itself M̂  ( b) and its determinant detM̂  ( b) 
depend on the real-value parameter b Î [ns, nlayer]. The algo-
rithm for calculating the dispersion dependence in the zero-
order approximation of the method of adiabatic modes is 
described in [4 – 9].

From the expressions for the longitudinal field compo-
nents Ez, Hz   of corresponding modes in the zero-order 
approximation with respect to d one can calculate the solu-
tions for Ey, Hx и Ex, Hy in the zero order with respect to d. 
Thus, all components of vertical distribution for the quasi-
waveguide modes E(x; y, z) and H(x; y, z) are calculated in the 
zero-order approximation with respect to d for arbitrary hor-
izontal coordinates (y, z) with the prescribed thickness distri-
bution (profile) h(y, z) and for the arbitrary x coordinate.

The method of adiabatic waves was compared with the 
Southwell method by using the matrix model of comparative 
waveguides [4 – 9, 11]. This model is obtained by substituting 
the tangential conditions for their horizontal approximations 
in which the summands comprising ¶h/¶y, ¶h/¶z turn to zero 

and the dispersion relationship detM̂  ( b) = 0 becomes a tran-
scendental algebraic equation with respect to h and b = bz and 
for all (y, z) coincides with the dispersion relationship for a 
regular comparative waveguide. We especially stress that the 
theoretical model used by Southwell has no ‘hybridisation’ of 
waveguiding modes. It is not surprising because instead of 
strict tangential boundary conditions in the method of com-
parative waveguides, their horizontal projections are used, 
i.e., approximate boundary conditions admitting separate 
description of TE- and TM-modes. An algorithm for calcu-
lating the vertical field distribution in the matrix model of 
comparative waveguides and in the zero-order approximation 
of the model of adiabatic modes is also described in [4 – 10]. 
Note that the uniform system of linear algebraic equations is 
solved by using the Tikhonov method of regularisation:

¶
¶

¶
¶(( , ) ) , , ; , , ( , )F M h

y
h

z
hA B A Bk y z k

T
2

b b b= t c m

( , ) ( , ) ( , )IA B A B A Binck
T

k
T

k
T

1
2 2

2 1
2a a+ - + - -` j  ® min.

In Fig. 3 one can see the electromagnetic field distribution 
in the rear focal plane of the TGWLL (the normalised focal 
length of the lens is s = F/R = 1.5, where F  = 1.5R and R = 
0.5 cm). The calculations have been performed in the approx-
imation of the method of adiabatic modes (the zero-order 
approximation).

The results obtained show that a super-resolution is pos-
sible while using the TGWLL, which undoubtedly will 
improve, for example, the characteristics of the integrated 
optical spectral analyser [7, 10, 19]. For obtaining curves in 
Fig. 3, the dispersion curves have been preliminarily calcu-
lated by both methods and ray tracing in the plane yz has 
been performed. The calculations were performed for the 
TGWLL with the following parameters: normalised focal 
lens length s = 1.5, normalised lens radius r = 1 and thickness 
of regular waveguide layer d = 1.0665 (in units of l ). The 
refractive index of the substrate (SiO2) was ns = 1.470, the 
refractive index of the first (regular) waveguide layer (glass of 
the type Corning 7059) was nf = 1.565, the refractive index of 

0 1 2 3 4 5 6 d + h
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Figure 2.  Dispersion curves for the TM0-mode calculated by the meth-
od of comparative waveguides (solid curve) and by the method of adia-
batic modes (dashed curve) while varying the thickness of the first wave-
guide layer d from 0.61 to 4.0 and thickness h of the second waveguide 
layer from 0 to 3.5 (both parameters are given in units of l ).

–2 0

0

–1 1 2 y ¢

0.2

0.4

0.6

0.8

1.0

|R
eE

| (
ar

b
. u

n
it

s)

0.6l

1.2l

Figure 3.  Field distribution in the rear focal plane for the focal length 
F = 1.5R ( y¢ is given in units of l ). Solid curve corresponds to the case 
of taking into account 99 % of the lens aperture; dot-and-dash curve 
corresponds to taking into account 40 % of the aperture.
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the second waveguide layer (Ta2O5) of the TGWLL with vari-
able thickness h( y, z) was nlayer = 2.100 and the refractive 
index of the covering layer (air) was nc = 1.000. The parame-
ters of waveguide media are given for the laser IR radiation 
wavelength l  = 0.9 mm.

6. Conclusions

In the present work, some important results are demonstrated 
which indicate a difference between theoretical and numerical 
descriptions of guided and quasi-guided modes of smoothly 
irregular waveguide structures of horn types  and the TGWLL 
by two methods: the zero-order approximation of the method 
of adiabatic modes and the method of comparative wave-
guides.

It was established that already the zero-order approxima-
tion of the method of adiabatic modes introduces noticeable 
distinctions, which are revealed in describing both the fields 
of quasi-waveguide modes and the dispersion relationships. 
The zero-order approximation of the method of adiabatic 
modes provides the transformation of linear polarisations of 
guided modes for a smoothly irregular waveguide of horn 
type without ‘hybridisation’; in the case of the TGWLL such 
transformation leads to coupling of quasi-waveguide modes. 
Novelty of the method of adiabatic modes is that the approx-
imate solution of the electrodynamic problem obeys the 
‘inclined’ boundary conditions at the interface between two 
media with the allowance made for the nonhorizontal planes 
tangent to a nonplane interface of a smoothly irregular wave-
guide structure. This results in new equations for coupled vec-
tor quasi-waveguide adiabatic modes, and leads to mixing of 
two linear polarisations of an irregular multilayer waveguide 
and, as a consequence, to appearance of the mode with a new 
mixed state which is specific in rotation of the polarisation 
plane. 
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