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Abstract.   A modified saddle-point method is used to investigate 
the process of propagation of a wave packet through a quantum 
diode. A scattering matrix is constructed for the structure in ques-
tion. The case of tunnelling of a packet with a Gaussian envelope 
through the diode is considered in detail. The time delay and the 
shape of the wave packet transmitted are calculated. The depen-
dence of the delay time on the characteristics of the input packet 
and the internal characteristics of the quantum diode is studied. 
Possible applications of the results obtained are discussed. 

Keywords: quantum diode, tunnelling, delay time of a wave packet. 

1. Introduction 

The problem of the wave packet tunnelling through open 
quantum systems with resonance levels is one of difficult 
problems that has not been solved yet in nanophysics (see, for 
example, [1 – 5]). The main difficulty here is the need to take 
into account the impact of internal characteristics of quantum 
systems and the parameters of the input pulse on the process 
of signal propagation. Therefore, most developed approaches 
were not universal and could be applied only to study the tun-
nelling of a packet with a particular form of the envelope and 
a narrow class of systems with a similar geometry. Thus, 
propagation through a system with a ‘narrow’ and a ‘broad’ 
resonance levels was considered separately, i.e., a common 
approach to the description of the problem was absent. 

The problem of tunnelling of wave packets through reso-
nant quantum systems is not trivial, which is due to the pres-
ence of quantum and boundary effects associated with the 
superposition of incident and reflected wave functions. These 
effects are observed when signals propagate through such 
structures as double-barrier diodes, quantum tunnelling tran-
sistors and open heterostructures. These systems are widely 
used in modern micro- and nanoelectronics. Currently, a 
large number of modern scientific investigations are devoted 
to this issue. In a number of studies [6 – 8] we have developed 
a modified quasi-classical method that makes it possible to 
study analytically in the general form the process of wave 
packet tunnelling through a resonant quantum system. The 
approach is based on two main ideas: description of the sys-
tem parameters in terms of the input packet (thereby elimi-

nating the need to consider separately the cases of ‘narrow’ 
and ‘broad’ resonance levels) and use of a modified steepest-
descent method. A quantum system is described by construct-
ing a corresponding scattering matrix S, which allows one to 
introduce dimensionless variables corresponding to arbitrary 
quantum systems and wave packets. 

The S-matrix formalism is widely used for establishing 
correspondence between the final states of the system, arising 
after the interaction, and the states that preceded them. The 
scattering matrix is given by a set of levels (channels) through 
which the tunnelling occurs. It contains all information about 
the behaviour of the system if we know not only the numerical 
values, but also the analytic properties of its elements; in par-
ticular, its poles determine the bound states of the system (i.e., 
discrete energy levels). To calculate the matrices use is made 
of the methods of the matrix element analysis or perturbation 
theory. 

The poles of the S-matrix play an important role in the 
tunnelling process. They determine the existence of resonant 
levels in scattering structures. Consequently, for a detailed 
study of the scattering process it is needed to construct the 
corresponding scattering matrix and specify the characteris-
tics of the input packet. The calculation of S-matrix elements 
can rely on a method based on the solution of the 
Lippmann – Schwinger equations for a given scattering poten-
tial [9, 10].

The initial scattering potential is represented as a superpo-
sition of unperturbed and perturbed parts. After finding 
Green’s function for the first part the solution can be gener-
alised to the case of a total potential. The next step is to calcu-
late the R-matrix and to find the scattering matrix elements 
using the known formula for the relationship between these 
matrices. This approach is transparent and fully formalises 
the calculation of the scattering matrix to the case of an arbi-
trary potential. 

The existence of potential wells with discrete energy levels 
is a common feature of such objects as quantum dots, two-
barrier diodes and quantum tunnelling transistors. It is 
assumed that such structures have a similar resonant conduc-
tivity. That is why the analytical determination of the delay 
time during the propagation of the wave packets in the sys-
tems of this type is a very important problem [5, 11, 12]. In 
particular, its solution helps to choose the best parameters of 
the systems or packets at which the signal transmission speed 
is maximal. This points towards a further miniaturisation and 
increase in the performance of chips with quantum elements. 

In this paper, we apply the method described above to cal-
culate the scattering matrix of the quantum diode used in 
electronic devices. In addition, we calculate the delay time for 
a Gaussian wave packet at its entry to the input. The delay 
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times for other packets can be calculated similarly based on 
the results obtained (e.g., in the case of a rectangular wave 
packet [7]). 

2. S-matrix for perturbed potentials 

In this section we present all the information necessary to cal-
culate the scattering matrix (all the calculations are given in 
[10]). Here and below the level width is expressed in the widths 
of the packet, the time – in the packet durations, coordinates 
– in the characteristic dimensions of the signal. 

According to the approach applied, we divide the system 
potential V(z) in the perturbed [DV(z)] and unperturbed 
[V0(z)] parts, as shown in Fig. 1: 

( ) ( ) ( )V z V z V z0D= + .	 (1)

The scattering process can be described by a stationary 
Schrödinger equation 
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Such an inhomogeneous equation can be solved using the 
Green function for the unperturbed part, which is the solu-
tion of the equation: 
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Its solution for a wave moving from the left (z' < 0) has the 
form 
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and for a wave moving from the right (z' > 0) has the form 
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For the Schrödinger equation in the absence of perturba-
tion 
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we obtain the following solutions: for a wave propagating 
from the right 
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and for a wave propagating from the left 
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The initial equation can be reduced to an equivalent inte-
gral equation using Green’s function G (z, z', u): 
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where Y0(z, u) is the solution to the Schrödinger equation in 
the absence of perturbation. For z < –bL we obtain 
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where AL(u) = 1; 
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For z > bR we have 
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Figure 1.  (a) Total potential of the system and (b) its representation as 
a sum of the unperturbed (solid curve) and perturbed (dashed curve) 
parts. 
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The corresponding result for Y R will be as follows: for 
z > bR
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and for z < –bL
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We have obtained the wavefunctions Y R and Y L describ-
ing the states, which are to the right and to the left of the 
investigated structure. The input signal and its reflected part 
of the wavefunctions are described by equations (2) and (4) 
and the parts of the propagated signal are described by expres-
sions (3) and (5), respectively. Thus we can determine the 
coefficients of transmission (CL, BR) and reflection (BL, CR) 
of the wavefunctions Y R and Y L. These values may be 
regarded as elements of transmission/reflection (TR) matrix: 

TR B
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Using the eigenstate matrix we can obtain the R-matrix (see, 
for example, [5]) of the system: 

( , ) ( , )R z z1u uY Y= -l .	 (19)

After that, using the relations between R- and S-matrices we 
can calculate the later: 

[ ( ) ] [ ( ) ]S R R1Y Y Y Y= - -+ + - - -l l ,	 (20)

where Y + and Y – are the divergent and convergent parts of 
the corresponding wave packets [10, 12]. 

3. Investigation of a quantum diode 

Let us apply the above-developed approach to the calculation 
of the scattering matrix of the structure, the potential of which 
is shown in Fig. 2 – a real quantum diode finding wide appli-
cation in modern electronics. Figure 3 shows one of the pos-
sible representations of the unperturbed part of this poten-
tial. According to the approach developed, we solve the 
Schrödinger equation for the unperturbed part and obtain the 
wave functions for each interval discussed. Next, using the 
sowing conditions, we find the amplitudes of the wave func-
tions and the corresponding Green functions. We do not find 
it necessary to present the expressions derived in the body of 
this paper, because they are quite bulky and can be easily cal-
culated by using known mathematical packages. Substituting 
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Figure 2.  Potential energy in the diode under study. 

z1

eF

a + eU/2

a + eU

Em – dE

Em

E 

z2 z3 z4 z

Figure 3.  Representation of the potential in the absence of perturba-
tion. 
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these expressions in (2), we find the reflection and transmis-
sion coefficients for the case of the perturbed potential, which, 
in turn, are solutions to the Lippmann – Schwinger equations 
in the next interpretation. The wavefunctions of the initial 
state and the wavefunctions obtained after the scattering pro-
cess differ by the presence of an additional component, the 
existence of which is associated with the perturbation DV1(z) 
in the interval (z1; z2), the perturbation DV2(z) in the interval 
(z2; z3), etc. After the wavefunctions for each interval are 
found, we can construct a matrix Yt  of the eigenvalues of the 
wavefunction and the matrix 

R 1Y Y= -lt t .	 (21)

Now according to (20) we find the corresponding scattering 
matrix. This result can be used to describe the process of 
propagation of a Gaussian wave packet through the diode 
under study. 

We will describe the input wave packet by the equation: 
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where a is the width of the packet. The calculation is per-
formed using the dimensionless variables introduced in [6]. 
From the boundary conditions we find the saddle points of 
the integral expression given in [7], assuming that the packet 
will be observed after a sufficiently long period of time. The 
wave packet transmitted through the system is represented as 
a superposition of packets for all saddle points satisfying the 
boundary conditions. Once this packet is calculated, it is pos-
sible to find the argument of the wavefunction. This argument 
is related to the argument of the wavefunction of the input 
packet and only differs from it by some phase factor which 
depends on the kinetic energy of the input packet, the poten-
tial energy barrier and delay time. Hence, the delay time is 
calculated as a derivative of the argument of the wavefunc-
tion in energy (see, for example, [5]): 
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The argument of the wavefunction of a transmitted packet 
is presented in Fig. 4. The dependence of the delay time on the 
parameters of the system and momentum are presented in 
Figs 5 and 6. One can see that for some values of the input 
wave packet of the momentum, a minimum delay time is 
observed, which corresponds to the maximum speed of the 
packet tunnelling through the diode under consideration. A 
further change in the momentum does not reduce the delay 
time. When a certain value is reached, the increase in the 
momentum does not significantly affect the packet delay 
time. 

4. Conclusions 

We have investigated the delay time of packets in a quantum 
diode. We have studied in detail the propagation of a Gaussian 
wave packet through not a hypothetical but through a real 
resonant quantum structure used in practice. Calculations 
show that at some values of the system and packet parame-
ters, one can observe total internal scattering. This means that 
the packet transmitted is absent, and the time delay is infinite. 
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Figure 4.  Argument of the packet wavefunction at G = 1 and wavenum-
bers k1 = 1, k2 = 1, k3 = 2, k4 = 5 and k5 = 1, corresponding to the inter-
vals on the z axis in Figs 2 and 3. 
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Figure 5.  Packet delay time Dt for the system at G = 1 and wavenumbers 
k1 = 1, k2 = 1, k3 = 2, k4 = 5 and k5 = 1.
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Figure 6.  Packet delay time Dt for the system at G = 1 and wavenumbers 
k1 = 1, k2 = 3, k3 = 4, k4 = 4 and k5 = 1.
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A specific behaviour of the observed dependence of the tun-
nelling time on the parameters of the system and the packet 
can be used in practice. As mentioned in the Introduction, the 
problem of resonant tunnelling through an open quantum 
system has not been solved in general form. Therefore, the 
results obtained can be used in microelectronics for selecting 
the optimal packet parameters for the systems under consid-
eration. The method developed is universal and allows one to 
study the tunnelling of the wave packets with different shapes 
of the envelope through random resonant quantum systems. 
A further application of this method is its generalisation to 
electromagnetic pulses and classical resonance systems. This 
issue will be addressed in our future work. 
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