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Abstract.  We study in detail the dynamics of field entropy squeez-
ing (FES) for a qubit – field system whose dynamics is described by 
the phase-damped model. The results of calculations show that the 
initial state and decoherence play a crucial role in the evolution of 
FES. During the temporal evolution of the system under decoher-
ence effect, an interesting monotonic relation between FES, Wehrl 
entropy (WE) and negativity is observed.
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1. Introduction

In recent years, the properties of the dissipative variants of 
the Jaynes – Cummings model (JCM) have received renewed 
interest due to their use in implementation of quantum com­
putation across the description of the atom – field interaction 
under decoherence effect. Unlike theoretical schemes relaying 
on dynamic effects, the JCM has found its real application 
through experimental progress in cavity quantum electro­
dynamics. For the JCM to be used in quantum informa­
tion  processing, it is important to understand the effect of 
decoherence on the field – matter interaction arising due to 
unavoidable influence of the environment. In this context, 
several papers have investigated the JCM with analytical 
approximations [1, 2] and numerical calculations [3 – 6], taking 
into account dissipation and phase damping. Remarkably, it 
has been shown that decoherence under dissipation (system 
loses energy by creating a bath quantum) has a significant 
impact on implementation of the experimental scheme in real 
physical situations. On the other hand, the phase damping 
effect describes the variation of coherence in the system 
state  during the temporal evolution, where the interaction 
Hamiltonian between the external environment and the sys­

tem does not commute with the system Hamiltonian during 
this process.

Entanglement is a type of nonlocal correlation that has 
been playing an important role in the field of quantum infor­
mation and processing. Precisely engineered entangled states of 
interest can indeed be both fragile and difficult to realise [7]. 
It is often viewed as a fragile and exotic feature of quantum 
mechanics, and its investigation is of practical and theoretical 
significance. From the point of scientific philosophy, this fea­
ture has been the focus of fundamental discussions and prop­
ositions of quantum mechanics since the works of Schrödinger 
and the celebrated Einstein – Podolsky – Rosen (EPR) paper [8]. 
Interestingly, entanglement is a property of nonlocal correla­
tions between two or more quantum systems, which cannot 
be increased under local operations and classical communica­
tions [7]. Due to its properties, quantum entanglement is used 
as a essential resource for information processing tasks such 
as quantum computation, quantum teleportation [9], superdense 
coding [10], quantum cryptography [11, 12] and more recently, 
one-way quantum computation [13] and quantum metrology 
[14, 15]. Thus, different quantum problems cannot be solved 
by using classical approaches, which leads to an intensive 
search for new mathematical tools that would enable a proper 
measure of this phenomenon [16]. In particular, it is relevant 
to test whether a given quantum state is separable or may 
exhibit a certain quantum character. For this quantification, 
various entanglement characteristics (measures) have been 
demonstrated and provided such as concurrence [17 – 19], 
entanglement of formation [20 – 22], negativity [23 – 26], etc. 

Investigating the entanglement phenomenon of the quan­
tum system in the presence of decoherence has become 
recently an active field of endeavour, although many related 
aspects still need further efforts. There are a number of recent 
papers which examine the effect of decoherence on quantum 
entanglement and classical correlation. In this regard, the 
effect of phase damping on the classical correlation measured 
by Wehrl entropy (WE) and Wehrl phase distribution has 
been investigated [6]. It has been found that phase damping 
leads to long lived correlation of the system. Another work in 
this direction studies the effect of intrinsic decoherence on the 
entropy squeezing of coupled field-superconducting charge 
qubit [27]. It is reported there that the appearance and disap­
pearance of entropy squeezing depend on the intrinsic deco­
herence. 

The aim of our paper is to investigate and discuss in detail 
the time evolution of the FES, WE and entanglement measure 
in the presence of phase damping effect. Furthermore, we 
present the relationship between them in terms of the param­
eters involved in the system under consideration. This leads to 
the following question: can the FES be used as a parameter of 
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entanglement and dynamical properties of the system in the 
presence of decoherence?

2. Master equation and its dynamics

The model to be treated is an intensity-dependent JCM of a 
qubit interacting resonantly with a single mode of the radia­
tion field in a cavity where the coupling is intensity dependent 
and preserves the energy of the system. We assume that the 
environment is at zero temperature and dissipation is affected 
through a phase-damping reservoir. Under the rotating-wave 
approximation, the interaction Hamiltonian of the system 
reservoir is given by 

HI =t  l(Â|−ñ á̄ | + Â†|̄ ñ á−|).	 (1)

Here, l is the coupling constant; Â = a nt t ; Â† = n a @t t ; 
n a a=

@t t t ; and the factor nt  is the interaction term, which is 
no longer linear in the field variables and represents an inten­
sity dependent coupling. 

In this case, the master equation for the density matrix 
operator rt  under phase damping of the cavity field and at a 
zero temperature bath can be written as 
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where g is the phase-damping constant. The dressed-state 
representation can be used to obtain an exact solution to 
Eqn (2) in the case of a high-Q cavity [2]. To derive the master 
equation in the high-Q limit, Eqn (2) can be written as 
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where ( ) ( ) ( ) ( )exp expi it H t t H tI IrL = -t t t t  and the initial state of 
the whole system can be expressed through the density matrix. 
Then, adding these inputs and applying secular approxima­
tion [2], in which we neglect the oscillatory terms, to the master 
equation (3), we obtain the density matrix 
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states of the total Hamiltonian (1) for a lossless cavity;  mn m = 
mn – mm ; ±mn = ±l(n + 1) are the eigenvalues of the operator. 
The expression for the eigenvectors in the rotating wave 
approximation (RWA) can be written as
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From the above formulas, we can find an analytical solu­
tion to the system density matrix in the general initial state 
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and dnm is the Kronecker delta. Let us assume that the initial 
state of the system is the product of the states: (0)AFr =t  
(0) (0)A F7r rt t , with the atom initially in the excited state, i.e.,  
( )0Art  = |−ñ á−|, while the initial state of the field is given by 

(0)
| | | |

.
r

r
1

Fr
a a a a

=
+

+ - -t 	 (8)

At r = 0, the optical field arises from the coherent state, while 
at r = 1, the field exhibits the statistical mixture of coherent 
states |añ and |– añ, where |añ is a state containing |a|2 
photons on average. For simplicity, the amplitude a is 
assumed real throughout the paper without loss of generality. 

3. Different classical and quantum quantifiers

We begin our discussion by presenting the overall state of dif­
ferent kinds of classical and quantum quantifiers such as the 
FES, quantum entanglement and WE. 

3.1. Field entropy squeezing

Important tools have been developed in recent years for the 
systematic investigation of the squeezing of quantum systems. 
In this regard, the relationship between squeezing and entangled 
state transformations has been discussed [28]. The entropy 
uncertainty relation, which introduces the concept of entropy 
squeezing, has described some highly sensitive effects of the 
field squeezing [29, 30]. This work has been extended to discuss 
the FES for another system [31]. The inequality DX DY ³ '/2 
has been presented in [32] for the operators that satisfy the 
condition [X, Y] = i', where DA is the standard deviation of 
the observable A. This equation was derived by Heisenberg as 
the true mathematical expression of the uncertainty principle 
for the coordinate – momentum pair. An alternative mathe­
matical formulation of the uncertainty principle is provided 
by the inequality [33, 34]

dX dY ³ pe',	 (9)

where dA is the exponential of the differential entropy corre­
sponding to the observable A. 

The coordinate and momentum entropy of the field are 
defined as [32] 

( ) | ( ) | | ( ) | ,ln dS t t tF Fx r x x r x x=-x t ty 	 (10)
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where x = х, р is the coordinate or momentum. The Fock state 
|nñ of the field can be written in terms of the coordinate and 
the momentum representations as 
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where Hn(x) are the Hermite polynomials. The entropy uncer­
tainty relation of coordinate and momentum is given by [32]

exp[Sx(t)] exp[Sp(t)] ³ pe.	 (12)

In this considered case, the FES in terms of the variable x(p)  
is given by the expression [35] 

dx(p) = exp[Sx(p)(t)] – p e,	 (13)

where for dx(р) < 0, the coordinate (momentum) of the field 
is squeezed in entropy. Here, we compare the FES dynamics 
with the negativity. In other words, we use the concept of the 
negativity [25] to quantify the amount of entanglement of 
the final qubit – field state (6), which is defined by 
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where TArt  denotes the partial transpose of rt  with respect 
to  subsystem A. The trace-normalised Hermitian operator  
|| || ( )TrT T TA A A/r r r@t t t  has the matrix elements
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The negativity varies from ( )N rt  = 0 for an unentangled state 
to ( )N rt  = 1 for a maximally entangled state as for the well 
known case of EPR states. 

3.2. Wehrl entropy

Wehrl entropy is used in treating the dynamics of quantum 
systems [36 – 38]. This measure has been successfully applied 
in description of different properties of the quantum optical 
fields such as phase-space uncertainty [39] and decoherence [40]. 
In addition, the problem of measuring quantum correlations 
(entanglement) in phase space with application of the WE has 
been discussed in [41]. It has been found that the degree of the 
intermode correlation strongly depends on the photon number 
difference in two-mode Fock states. On the other hand, the 
effect of phase damping of the classical correlation measured 
by WE and Wehrl phase distribution has been investigated in 
[6, 42].

Any quantum state, described by a density matrix rt , can 
be represented by the Husimi quasi-distribution function, 
Qr(n) = (1/p) á n | rt | nñ, where | nñ is the coherent state. This 
function in the b space is defined by the expression 

( ) | ( ) | ,Q t t1 F

p b r b=b t 	 (16)

and the WE of a quantum state rt  is defined by the relation [36] 

( ) ( ) .ln dS Q Qn n n=-r r r
W
y 	 (17)

According to Eqn (17), the field Wehrl space entropy is given 
by [43, 44]:
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To the best of our knowledge, there have been no previous 
studies on the dynamics of the FES for a qubit – field system 
whose dynamics is described by the phase-damped model. 

4. Numerical results and discussion

In this section, we introduce the dynamics of the FES under 
phase-damping effect when the field arises from a mixed state 
and the atom – from the upper state. In this case we present the 
correlation of the FES to the degree of entanglement and WE. 

Based on Eqns (13), (14) and (18), we present the main 
results for the evolution of the field entropy squeezing com­
ponents dx, p, negativity ( )N rt , Wehrl entropy SW and Wehrl 
phase distribution. All the curves in Figs 1 and 2 are plotted 
for the mean photon number n– = 10. The time t is normalised 
to the inverse coupling constant l.

Figure 1 presents the results of investigation of the influ­
ence of the initial field state at r = 0 and 1 on the dynamics of 
the different quantities in the absence of the phase-damping 
effect. One can see that dx, dp and SW exhibit a periodic time 
dependence. Of interest is the fact that both dx and SW are 
very sensitive to the change in the initial state of the coherent 
state. To this end, the field does not have any impact on the 
dynamics of dp, which means that the FES presents a rich 
structure, which can be explored in various physical branches. 
Moreover, one can see that there is large squeezing in dx for 
r = 0 and sharp squeezing for r = 1 at lt = (2m + 1) p/2, where 
m = 0, 1, 2, ... . At the same time, there is no squeezing at all for 
dp. On the other hand, the WE is greater at r = 1, indicating 
that the optical field becomes more quantum mechanical as it 
tends to the statistical mixture of the states.

Also, we can see that, in each periodicity, the entangle­
ment is initially increased to a maximum and decreased to a 
zero at lt = (2m + 1) p/2. Such a system suffers a sudden death 
(i.e., the complete loss of the entanglement after a finite 
time). Furthermore, the system exhibits a sudden birth of 
entanglement thereafter: it can be increased to a maximum 
and decreased to minimum during the time lt = mp. In the 
case of the coordinate entropy squeezing of the optical field 
(Fig. 1a), the lower curve shows that dx increases to a maxi­
mum, exhibiting local minima and maxima for short time, 
and then decreases to a minimum at lt = (2m + 1) p/2. The 
entropy SW increases to a maximum followed by local minima 
and maxima; after that, it tends to a local minimum at lt = mp. 

Then, by investigating the dynamics of dx and dp of the 
qubit – field interaction, we have found an interesting correla­
tion between both quantities during the evolution. We can 
observe a direct monotonic relationship between dp and ( )N rt  
in the range (2m + 1) p/2 – e £ lt £ (2m + 1) p/2 + e, where e 
is a small value. In this case, we deal with the same behaviour 
in this time interval with minimal values at lt = (2m + 1) p/2, 
which means that both quantities are symmetric with respect 
to points lt = (2m + 1) p/2. On the other hand, we can see that 
the dp and ( )N rt  quantities provide an indirect (or direct) 
relation during the evolution, which manifests itself as an 
inverse monotonic change in dp from the maximum, accom­
panied by an increase in ( )N rt  from its minimal values. How­
ever, this is not a general result since dp and entanglement are 
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Figure 1.  Time evolution of the FES for (a) the coordinate dx, (b) momentum dp, (c) negativity N(rt ) and (d) Wehrl entropy SW at a = 10 , g/l = 0, 
r = 0 (solid curves) and 1 (dashed curves). 
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Figure 2.  Time evolution of the FES for (a) the coordinate dx, (b) momentum dp, (c) negativity N(rt ) and (d) Wehrl entropy SW at a = 10 , r = 1, 
g/l = 0.3 (solid curves) and 0.05 (dashed curves).
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two different and independent physical quantities with no 
simple relative ordering between them.

To visualise the effect of the phase damping on the dynam­
ics of the above quantities, we have plotted in Fig. 2 the evolu­
tion of the different quantities in terms of various parameters 
g/l at r = 1. In this considered case, the behaviour of the 
system has completely changed under decoherence effect. It 
follows from Fig. 2 that the negativity decreases with increas­
ing phase damping parameter and almost disappears as the 
time becomes significantly large, which transfers the system 
into a separable state when its nonlocal correlation is com­
pletely lost. On the other hand, the effect of decoherence on 
dx, dp and SW is found to be similar where there is a mono­
tonic relation between them exhibiting the same behaviour 
during the time evolution. Interestingly, dx and dp increase 
with increasing g/l and squeezing is not observed at all during 
the evolution. In addition, we have found that the WE tends 
to stabilise for different values of g/l, which indicates that the 
field is not dependent on the environment and becomes more 
quantum mechanical in this limit. The results obtained show 
that decoherence effect may destroy the entanglement and 
restrain the squeezing phenomenon during the evolution. 

5. Conclusions 

We have studied in detail the field entropy squeezing dynam­
ics for a qubit – field system in the presence of phase damping 
effect including the squeezing of coordinate and momentum 
components in terms of the initial state setting and decoher­
ence parameter. We have shown that the field entropy exhib­
its a rich structure by providing different physical phenomena 
via a proper choice of the involved system parameters under 
consideration. Interestingly, the field entropy has a different 
order depending on the optical field form and phase damping 
parameter exhibiting a monotonic relationship with the degree 
of entanglement and the statistical proprieties of the field for 
different ranges of dimensionless time. Particularly, we have 
found that the amount of different quantities is very sensitive 
to the degree of mixture of the optical field. In addition, deco­
herence effect may destroy the amount of entanglement and 
restrain the squeezing phenomenon during the evolution. Our 
observations may have important implications in exploiting 
this quantity in quantum information theory. In the future, 
we plan to investigate the evolution of the field entropy 
squeezing of multiqubit systems including the effects of finite-
temperature environments and the interqubit distance. It will 
be important to study the non-Markovian dynamics of the 
field entropy squeezing which is useful for better understand­
ing of the relationship between the field entropy squeezing, 
and classical-quantum quantifiers in the decoherence process.
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