
Quantum Electronics  44 (3)  239 – 246  (2014)	 © 2014  Kvantovaya Elektronika and Turpion Ltd

Abstract.  We have assessed the limit of spatial resolution of time-
domain diffuse optical tomography (DOT) based on a perturbation 
reconstruction model. From the viewpoint of the structure recon-
struction accuracy, three different approaches to solving the inverse 
DOT problem are compared. The first approach involves recon-
struction of diffuse tomograms from straight lines, the second – 
from average curvilinear trajectories of photons and the third – 
from total banana-shaped distributions of photon trajectories. In 
order to obtain estimates of resolution, we have derived analytical 
expressions for the point spread function and modulation transfer 
function, as well as have performed a numerical experiment on 
reconstruction of rectangular scattering objects with circular 
absorbing inhomogeneities. It is shown that in passing from recon-
struction from straight lines to reconstruction using distributions of 
photon trajectories we can improve resolution by almost an order of 
magnitude and exceed the accuracy of reconstruction of multi-step 
algorithms used in DOT. 

Keywords: spatial resolution, diffuse optical tomography, perturba-
tion reconstruction model, point inhomogeneity, point spread func-
tion, modulation transfer function. 

1. Introduction 

Modern nonlinear methods of diffuse optical tomography 
(DOT) [1 –5], based on multi-step linearization of the problem 
of reconstruction and alignment at each step of the weight 
matrix, make it possible to produce images that are accept-
able from the standpoint of the requirements to diagnosis of 
cancer. According to [6], the spatial resolution of diffuse 
tomograms is 4 – 6 mm inside an object 8 – 12 cm in size and 
1 – 3 mm in the vicinity of its boundaries. Although these 
quantities are significantly inferior to resolution of X-ray 
computed tomography and magnetic resonance imaging, 
oncologists are quite happy with them because the contrast of 
diffusion tomograms visualising cancer is satisfactory for the 
correct diagnosis [7]. However, despite the rapid progress in 
computer technology, there are still no fast algorithms that 
implement nonlinear DOT methods, which would allow one 
to obtain images in real time. The time needed for diffusion 
tomograms to be reconstructed remains unacceptably long 

and amounts to tens of minutes and hours in 2D and 3D 
cases, respectively (see, for example, [2, 3, 8]). To this end, the 
researchers continue searching for a tradeoff between accu-
racy and speed of reconstruction, by developing more and 
more approximate methods that allow conventional formula-
tion and (or) solving of the inverse problem of DOT. Among 
the approximate methods the most widely used are the so-
called perturbation reconstruction methods [9 – 13], which 
neglect nonlinearity of the inverse DOT problem and reduce 
it to a linear Fredholm integral equation of the first kind. As 
a result, this approach makes it possible to restrict the consid-
eration to single inversion of the system of linear algebraic 
equations describing the discrete model of reconstruction and 
to reduce the time of image reconstruction. 

In this paper we study Lyubimov’s perturbation recon-
struction model [14, 15], which we adapted and developed in 
our previous studies [16 – 18] for the case of the time-domain 
technique of optical signal detection. According to this model, 
we should solve the following integral equation [17, 18]: 
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Here, (rs, ts) and (rd, td) are space-time points, which deter-
mine the position of the source and detector on the boundary 
of a scattering object of volume V; g(rs, ts, rd, td) is the measure-
ment result used directly for reconstruction; Wma(rs, ts, rd, td, r) 
and WD (rs, ts, rd, td, r) are the weighting functions, which take 
into account the contribution from each object point to the 
value of g(rs, ts, rd, td); c, ma and D are, respectively, the speed, 
absorption and diffusion coefficients of light in the object; 
d ma(r) and dD(r) are the local spatial perturbations of optical 
parameters ma and D; G(r – r’ , t – t’ ) is Green’s function of the 
unsteady diffusion equation; and P(r, t | (rs, ts) ® (rd, td)) is a 
function that has the meaning of the conditional probability 
density that a photon migrating from point (rs, ts) to point 
(rd, td) at some intermediate instant of time t will reach the 
point r Î V. According to [16], the relation 
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is valid for P(r, t | (rs, ts) ® (rd, td)). The measurement result 
g(rs, ts, rd, td), we call time-resolved optical projection [17, 18], is 
given by 
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where G (rs, ts, rd, t) is the temporal point spread function 
(PSF) detected by a receiver at point r = rd from the source 
located at point r = rs in the case of the time-domain tech-
nique of data acquisition and the subscript ‘0’ corresponds to 
a homogeneous scattering object not perturbed by the pres-
ence of optical inhomogeneities. The most important feature 
of model (1) – (3) is the fact that time-resolved optical projec-
tion (5) is found for only one time-gating delay td  –  ts. This 
means that, in principle, for the image reconstruction it is nec-
essary to know only one of the counts rather than the entire 
temporal PSF. This approach provides the best spatial resolu-
tion of the method by selecting the time-gating delay. In this 
paper, we focus on the accuracy of the reconstruction of dif-
fusion tomograms rather that the speed of reconstruction. We 
demonstrate the possibility in principle to obtain with the 
help of model (1) – (3) the resolution, which is not inferior, but 
even higher than the resolution of exact multistep DOT algo-
rithms. Regarding the speed of reconstruction, the computa-
tion time at this stage of research is not optimised, and the 
possibility of its reduction is discussed in Section 4. 

Assessing the resolution limit, we compare the accuracy of 
three implementations of model (1) – (3): reconstruction from 
straight lines using the Radon inversion [19], reconstruction 
from the most likely trajectories of photons by using the 
method of average trajectories [16, 18, 20 – 24] and recon-
struction based on the use of total banana-shaped distribu-
tions of photon trajectories [17]. The method of reconstruc-
tion from straight lines is based on the assumption of linearity 
and regularity of trajectories of signal propagation, which 
completely ignores the diffuse nature of photon migration in 
a scattering object and is therefore a very crude method of 
solving of the inverse DOT problem. The average trajectory 
method makes use of not straight lines but of photon average 
trajectories that bend near the boundaries of the scattering 
medium due to avalanche photon migration to outside the 
medium. Average trajectories quite correctly define the arrays 
of object points, the signals from which make the maximum 
contribution to the detected signal. The contributions from 
other points of the object are neglected. Only the reconstruc-
tion method using banana-shaped distributions of trajectories 
takes into account the contribution into the signal from each 
point of the object. For this reason, from the three listed 
methods, the third approach is the most appropriate method 
of reconstruction in terms of its compliance with an accurate 
model that is used to solve the forward DOT problem (radia-
tive transfer equation, its diffusion approximation or the 
Monte Carlo method). 

To estimate the resolution in the case of reconstruction 
from straight lines, we use analytical expressions for the PSF 
and the modulation transfer function (MTF), the derivation 
of which is given in Section 2. The assessment of resolution in 
the other two cases we obtain by analysing the results of the 
numerical experiment, within the framework of which we 
reconstruct rectangular scattering objects with circular 

absorbing inhomogeneities. In Section 3 we describe the 
numerical experiment, demonstrate and analyse the results 
obtained. In Section 4 we discuss and analyse the estimates of 
the resolution. 

2. Theoretical approach to the assessment  
of resolution 

To obtain the estimates of the limiting resolution, we use the 
approach developed for the case of X-ray tomography [25] 
and based on the approximation of a diffuse optical tomo-
graph by a linear filter, which is invariant to the spatial shift. 
This approach involves the use of such characteristics as the 
PSF and MTF for the image quality assessment. Of course, in 
the general case any imaging system using diffuse scattered 
radiation is nonlinear and space-variant [26]. However, as 
shown by previous studies (see, for example, [6]), the model of 
a linear, space-invariant filter is convenient and useful for 
rough estimates of the characteristics of the image quality in 
localised areas of diffusion tomograms, where nonlinearity 
and spatial variance can be neglected in the first approxima-
tion. For example, to find the limiting resolution one should 
assess the image quality characteristics in the central region of 
the tomogram where blurring of reproducible spatial struc-
tures is maximal. 

2.1. PSF on the optical projection 

Consider the geometry of a flat layer for the 2D case (Fig. 1). 
Let ts = 0, the source be at point rs(0, a), and the detector be at 
point rd(l, – a). We pose the problem to calculate the time-
resolved optical projection for a point absorbing inhomoge-
neity dma(r) = d(x, y), located at the origin of the coordinates, 
as a function of distance l. According to (1) and (2) we have 

( ) ( , | ( , )g l c P tr r 0s
t
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d
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where S is the area of a scattering 2D object. In our previous 
works (see, for example, [16, 24, 27, 28]) we have shown that 
the standard root-mean-square deviation of photons from 
their average trajectory, which characterises the thickness of 
the light ‘beam’ in the scattering object and the actual image 
blurring, is weakly dependent on the geometry of the object. 
Under this assumption, we will use below simple analytical 
relations for infinite space. In the 2D case, we obtain an 
expression for infinite space 

dma(r) = d(x, y)
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a
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Figure 1.  Data recording geometry. 
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Substituting (8) into (6) and integrating over the 2D space 
yield the one-fold integral: 
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which due to replacement a = t/(td – t) reduces to 
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Using tables [29], we obtain 
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where K0(x) is the zero-order Macdonald function. Expression 
(11) is essentially a PSF on the optical projection PSFprj(l ), 
the final expression for which we obtain after normalisation 
by the condition 

3
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Thus, for the function PSFprj(l ) we obtain 
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It is easy to see that at a Dct3 dH  use can be made of the 
asymptotic approximation of the Mcdonald function 
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Expression (14) is weakly dependent on the parameter a and 
is well approximated by a Gaussian function with a kernel  

Dct2 ds = : 
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This result is in good agreement with Lyubimov’s assessment 
[31] obtained for the instrumental function describing the 
image transfer through a flat layer of a scattering medium. 

2.2. Assessment of resolution in the case of reconstruction 
from straight lines 

The X-ray tomography experience suggests that in fact there 
are no stable algorithms that in the reconstruction process 
from straight lines make it possible to compensate for blur-
ring of the structures obtained during projection. Local suc-
cess, of course, can be achieved by applying, for example, a 
special projection filtering in the frequency domain [32, 33]. 
However, improving the spatial resolution, we risk obtaining 
a tomogram having artifacts that complicate the recognition 
of low-frequency structures [20, 21, 34]. Let us show by means 
of simple analytical calculations that in the case of DOT as 
well as in the case of X-ray tomography, we have very few 
chances to compensate for the projection blurring, if standard 
algorithms of reconstruction from straight lines are used. 

Since the point inhomogeneity dma(r) = d(x, y)  is axially 
symmetric, for the inverse projection of function (13), instead 
of the Radon inversion formulas, we can use one of the forms 
of the Abel inversion [19]: 
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Performing consistently integration [30] and differentiation in 
(16), we obtain the expression for the PSF of the reconstructed 
image: 
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At a Dct3 dH  both PSF (17) and PSF (14) weakly depend 
on the parameter a and are well approximated by a Gaussian 
function with the kernel   Dct2 ds = : 

( ) expPSF r r
2
1

2
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2

ps s
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Obviously, functions (18) and (15) coincide with the accuracy 
to the normalisation factor. Thus, after reconstruction from 
straight lines we have exactly the same blurring of the point 
inhomogeneity as it was on the projection. 

To obtain an estimate of the MTF, it is necessary to apply 
the 2D Fourier transform to PSFbp(r), which, as is known 
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[25, 35], in the case of axial symmetry is transformed into the 
Hankel transform. Thus, in the case of reconstruction from 
straight lines, the MTF has the form [30] 
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where n is the radial spatial frequency; J0(x) is the zero-
order Bessel function; and In(x) is the nth-order modified 
Bessel function. Dependence (19) for the parameters c = 
0.0214 cm ps–1, D = 0.034 cm and td = 1000 ps is given in 
Fig. 2. The selected values of the optical parameters D and c 
are typical, for example, of breast tissue [18]. With regard to 
the time-gating delay of the detector, it is discussed in Section 
4. Figure 2 shows that a 20 % contrast (the Rayleigh condi-
tional criterion of imaging resolution [35]) corresponds to a 
spatial frequency of 0.24 cycles cm–1 or a structure size of 
2.1 cm. This result is significantly inferior to resolution esti-
mates obtained in [6] and, of course, leaves much to be desired. 

3. Numerical experiment 

3.1. Experimental setup 

To evaluate the quality of diffusion tomograms by the method 
of photon average trajectories and banana-shaped distribu-
tions of trajectories, we carried out a numerical experiment, in 
which we used rectangular scattering objects 10 ´ 8 cm in size 
with circular absorbing inhomogeneities, simulated time-
resolved optical projections, calculated average trajectories 
and banana-shaped distribution for different source – detec-
tor pairs and performed the appropriate reconstruction pro-
cedures. In total, we employed 32 sources and 32 detectors. 
Sources and detectors were located alternately and equidis-
tantly on opposite sides of objects [faces x = a and x = –a 
(Fig. 1)]. Because we studied the ‘transmission’ regime, the 

couplings between sources and detectors located on one side 
of the object were ignored. Thus, the number of useful cou-
plings used for reconstruction was equal to 32 ́  16 (32 sources 
and 16 detectors). Calculations were performed for seven 
objects. Optical parameters of objects were as follows: c = 
0.0214 cm ps–1, D = 0.034 cm and ma = 0.05 cm–1. To assess 
the PSF we considered an object containing a centrally 
located absorbing inhomogeneity 0.06 cm in diameter with an 
absorption coefficient ma = 0.5 cm–1. To assess the MTF we 
used six objects, each of which comprised two circular absorb-
ing inhomogeneities of the same diameter with the absorption 
coefficient ma = 0.075 cm–1. Inhomogeneities were located 
near the centres of the objects and were separated from each 
other by a distance equal to their diameter. The diameters of 
the inhomogeneities of various objects varied from 1.2 to 
0.2 cm with a step of 0.2 cm. To simulate time-resolved opti-
cal projections, we used the finite element method to solve the 
unsteady diffusion equation with an instantaneous point 
source. The temporal PSFs G (rs, ts = 0, rd, t) for each 
source – detector pair were calculated as photon fluxes at the 
boundaries of objects in accordance with Fick’s law [36]. 
Time-resolved optical projections were calculated by formula 
(5) for the delay time td = 1000 ps. 

For the reconstruction of absorbing inhomogeneities, we 
used a discrete model in which the problem is reduced to solv-
ing a system of linear algebraic equations 

g = Ŵ f,	 (20) 

where  g = {gi} is the vector of time-resolved optical projec-
tions; f = { fi} is the vector of discrete values of the recon-
structed function; and Ŵ = {Wij} is the matrix of weighting 
coefficients. When use is made of the method of average tra-
jectories, the matrix of weighting coefficients is determined 
with the help of the approach described in detail in [18, 
22 – 24]. For the reconstruction procedure to be regularised, 
instead of infinitely narrow average trajectories we used 
banana-shaped bands of finite width with vertices at points of 
location of sources and detectors. The formula for calculating 
the weighting coefficients has the form 

/( )W cS dij ij iju= ,	 (21) 

where Sij is the area of the region of intersection of the ith 
banana-shaped band with the jth sampling cell in the recon-
struction region; d is the linear cell size; and uij is the discrete 
value of the average rate of photon migration, for which the 
expression 

( ) | ( ) / |d dt t tRu = 	 (22) 

is valid, where the radius vector 

( ) ( , | ( , )t P tR r r r 0s
V

= y  ® ( , ))dt rrd d
3 	 (23) 

describes the trajectory of the centre of mass of the distribu-
tion P(r, t|(rs, 0) ® (rd, td)), which in fact is the photon average 
trajectory. When banana-shaped distributions of trajectories 
are used for reconstruction, the matrix of weighting coef-
ficients Ŵ   is obtained by sampling the weight function 
Wma(rs, ts = 0, rd, td, r), calculated for each source – detector 
pair in accordance with the approach outlined in [17]. This 
approach is based on the derivation of an exact analytical 
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Figure 2.  MTF for the case of reconstruction from straight lines. 
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expression for the function P(r, t|(rs, 0) ® (rd, td)) in the half 
space, its numerical integration over time t and application of 
the method of centrally symmetric mapping in order to find 
the weighting function in the case of flat layer geometry. 

In both cases, for the inversion of system (20), we used an 
iterative multiplicative algebraic reconstruction technique, 
modified by us to improve the convergence of the iterative 
process. The essence of the modification is that we take into 
account nonuniform distribution of sums of weighting coef-
ficients in cells of the reconstruction region. The formula for 
the introduction of corrections to the solution on each (s + 1)th 
iteration has the form [17, 18, 22 – 24] 

/
f f

W f

g( ) ( )
( )

s s
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s

j
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NW
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j j

j

W

f p/
/
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where l Î (0, 1) is a parameter that controls the rate of con-
vergence of the iterative process and N is the total number of 
source – detector couplings used for reconstruction. To ensure 
the maximal accuracy of reproduction of the structures, we 
reconstructed all seven objects on a very fine mesh (625 ´ 500) 
at a small control parameter (l = 0.05). In this case, the regu-
larised solution is reached after a few tens of iterations when 
use is made of the method of average trajectories and only 
after 5000 – 10000 iterations when use is made of distributions 
of trajectories. 

3.2. Results of reconstruction and their analysis 

Figures 3a and 3b show the results of reconstruction of the 
object for the PSF evaluation, obtained respectively using the 
method of average trajectories and banana-shaped distribu-
tions. Hereinafter, reconstruction results are presented as 
three-dimensional graphs d ma(x, y), and only the central part 
of the tomogram 5 ´ 4 cm in size being visualised. Figure 3c 
compares the amplitude-normalised profiles of the PSF 
obtained with the theoretical PSFbp(r) [see equation (17)], 
which is also normalised in amplitude by the interval (0, 1]. 
One can clearly see that all PSFs have different full widths at 
half maximum. This indicates that unlike a crude model of 
reconstruction from straight lines, the models taking into 
account light propagation in an object allow one to minimise 
structure blurring obtained by projecting a point inhomoge-
neity. The smallest blurring and, hence, the maximum accu-
racy of structure reproduction are ensured by the method 
using banana-shaped distribution of photon trajectories. 

Figure 4 shows the results of reconstruction of objects 
with two absorbing inhomogeneities. Left plots show tomo-
grams reconstructed by the method of average trajectories, 
and right plots present the results of reconstruction using 
banana-shaped distributions. The diameter of the inhomoge-
neities is given in the upper right corner of each plot. It can be 
seen that the limiting resolution is close to 0.8 cm in the case 
of reconstruction by the method of average trajectories and is 
0.2 – 0.4 cm in the case of reconstruction from the total distri-
butions of photon trajectories. More accurate limiting resolu-
tion can be obtained if we construct the MTF. To do this, 
using the profile of each plot in Fig. 4 we estimate the modu-
lation transfer coefficient as the relative depth of the dip 
between the two peaks. Discrete values of the spatial fre-
quency are assigned to the diameter of the inhomogeneities. 
As the MTF, we consider the dependence of the modulation 
transfer coefficient on the spatial frequency (Fig. 5). One can 

see from Fig. 5 that structures with frequencies of no more 
than 0.7 and 2.2 cycles cm–1 (i.e., the size of at least 0.72 and 
0.23 cm) will be reconstructed with the contrast of at least 
20 % by using the method of average trajectories and the total 
banana-shaped distributions, respectively. The latter figure is 
undoubtedly noteworthy because it characterises the resolu-
tion exceeding that of exact multistep DOT algorithms. 
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Figure 3.  Results of reconstruction of the object for the PSF assessment 
by (a) the method of average trajectories and (b) banana-shaped distribu-
tions, as well as (c) normalised PSF profiles for the methods of average 
trajectories ( 1 ), straight lines ( 2 ) and banana-shaped distributions ( 3 ). 
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Figure 4.  Results of reconstruction of objects with two absorbing inhomogeneities. 
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4. Discussion of the results 

In papers [14, 31, 37] Lyubimov hypothesised that the spatial 
resolution of time-domain DOT can be estimated as the root-
mean-square deviation of photons from their average trajec-
tory, which characterises the width of the banana-shaped dis-
tribution of photon trajectories. In the case of the perturba-
tion model (1) – (3), for the root-mean-square deviation we 
have the expression [14, 16, 18, 20 – 24, 27, 28, 37] 

( )tr R-( ) | | ( , | ( , )t P t tr rs s
V

2D = = y  ® ( , ))dr t r
/

d d
3

1 2

G .	 (25) 

Statistical characteristics of the distributions of photons, 
including the second moment D(t), we investigated for differ-
ent geometries of the scattering object in a number of studies 
[16, 18, 24, 27, 28, 37]. We proved that D(t) is weakly depen-
dent on the geometry of the object. This especially holds true 
in the central region, which is the remotest from the object 
boundaries, where the root-mean-square deviation takes 
maximum values. Using (8), (23) and (25) it is easy to show 
that in the case of an infinite 2D space, the relation 

( )
4 ( )

t t
Dct t t /

d

d
1 2

D =
-; E 	 (26)

is valid. The maximum of function (26) is reached at t = td /2: 

( / )t Dct2max d dD D= = .	 (27) 

By substituting the values of the optical parameters and td 
selected in Section 2 into (27), we obtain .0 85max -D  cm. 
Comparing this value with the resolution estimates obtained 
in Sections 2 and 3, we see that the root-mean-square devia-
tion of photons from their average trajectories can indeed 
serve a measure of spatial resolution in DOT using a pertur-
bation model. For the limiting resolution D rlim we can write 
the expression: 

D rlim = gDmax.	 (28) 

In this case, the coefficient of proportionality g is close to 
0.9 in the case of reconstruction from average trajectories, 

is equal to ~2.5 in the case of reconstruction from straight 
lines and is close to 0.3 in the case of reconstruction of 
tomograms from banana-shaped distribution of photon 
trajectories. 

It should be noted that the excellent results obtained in the 
latter case are largely due to the unique ability to use for 
reconstruction the time-resolved optical projections [model 
(1) – (3)], which are found for a single time-gating delay of the 
detector. Multistep algorithms of time-domain DOT do not 
have this capability, because they use for reconstruction the 
integrated data, such as integrated intensity, average time of 
flight of photons, results of the Mellin – Laplace transform of 
the temporal PSF, etc. (see, for example, [1]). The selection of 
time delay (1000 ps) is caused by the desire to minimise the 
blurring of inhomogeneities and, hence, the spatial resolu-
tion. It is clear that, in accordance with formulas (27) and (28) 
we are interested in selecting the smallest value of time delay. 
On the other hand, this value should provide a signal-to-noise 
ratio acceptable for qualitative reconstruction of tomograms. 
According to studies [18], the minimum time delay satisfying 
this requirement for a given geometry is close to 1000 ps. 
However, despite the fact that we reasonably selected the time 
delay based on practical grounds, noise in this paper was not 
modelled and we used ‘ideal’ (noiseless) data for reconstruc-
tion. Therefore, the quantitative assessment obtained should 
be considered as the estimate of the theoretical resolution 
limit. This means that in a real physical experiment somewhat 
less optimistic results can be obtained. 

It was noted above that the computation rate was not 
optimised at this stage of the research. In the case of banana-
shaped distributions, the time needed to reconstruct a single 
image on an Intel PC (1.7-GHz Pentium 4, 512-MB RAM) in 
MATLAB is a few hours. According to our estimates, by 
selecting the optimal size of the mesh and the control param-
eter l, as well as by optimising the code and using a software 
environment faster than MATLAB, the computation rate can 
be increased by several times. Of particular interest is the 
application of an object-oriented programming to the imple-
mentation of our iterative algorithm on graphics processing 
units. In this case, as the experience of our colleagues [38] 
shows, the gain in the computation rate can achieve two or 
more orders of magnitude. 

5. Conclusions 

In this paper we have estimated the theoretical limit of spatial 
resolution of time-domain DOT based on a perturbation 
model. It is shown that this model using for reconstruction 
the time-resolved optical projections allows one, in principle, 
to obtain the spatial resolution, which is not inferior to reso-
lution of exact multistep DOT algorithms and even exceeds it. 
In order to adequately compensate for the structure blurring 
obtained by registering a diffusely scattered signal, the recon-
struction process must be based on total banana-shaped dis-
tributions of photon trajectories, which make it possible to 
take into account the contribution from each object point 
into the recorded signal. Banana-shaped distributions are cal-
culated semi-analytically using diffusion approximations of 
the radiative transfer equation. 

We can expect that by optimising the computation time, 
the DOT method considered in this paper can prove competi-
tive and called for in practice, for example, in optical mam-
mography for reconstruction of functional parameters of 
mammary gland.
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Figure 5.  MTF for cases of reconstruction from ( 1 ) average trajectories 
and ( 2 ) banana-shaped distributions.
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