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Abstract.  Using the linearization method, we obtain approximate 
solutions to a one-dimensional nonintegrable problem of propaga-
tion of elliptically polarised light waves in an isotropic gyrotropic 
medium with local and nonlocal components of the Kerr nonlinear-
ity and group-velocity dispersion. The consistent evolution of two 
orthogonal circularly polarised components of the field is described 
analytically in the case when their phases vary linearly during prop-
agation. The conditions are determined for the excitation of waves 
with a regular and ‘chaotic’ change in the polarisation state. The 
character of the corresponding nonlinear solutions, i.e., periodic 
analogues of multisoliton complexes, is analysed. 

Keywords: cubic nonlinearity, spatial and frequency dispersion, lin-
ear and nonlinear gyrotropy, nonlinear Schrödinger equation, ellip-
tical polarisation, polarisation chaos, periodic analogue of a multi-
soliton complex. 

1. Introduction 

Propagation of a plane elliptically polarised wave through an 
isotropic gyrotropic medium with Kerr nonlinearity and 
group-velocity dispersion is described by the nonlinear 
Schrödinger equation (NSE) [1 – 5]: 
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Here A±(z, t) are the slowly varying amplitudes of two orthog-
onal circularly polarised components of the field; w is the fre-
quency; t is the time in the intrinsic (running) coordinate sys-
tem; ¶ ¶/k k2

2 2w=  is a constant characterising the second-
order group velocity dispersion; and k is the wave number. The 
parameters 4 /( )kc( )

xyxy1
2 3 2ps w c=  and 2 /( )kc( )

xxyy2
2 3 2ps w c=  are 

given by two independent components of the tensor of the local 
cubic nonlinearity c(3)(w; – w, w, w), and r0,1 = 2pw2g0,1/c2 – by 
pseudoscalar constants g0,1 of linear and nonlinear gyration. 

The latter take into account the spatial nonlocality of the lin-
ear and nonlinear responses of the medium in the case of rela-
tively slow changes in the amplitudes of the field components 
on the scale of the order of the wavelength in the propagation 
direction of the z axis [2, 4]. 

At an arbitrary value of s2 and with account for the nonlo-
cal component in the nonlinear polarisation, system (1) is 
nonintegrable [6 – 9] and a number of numerical [1 – 3] and 
analytical particular [4, 5, 10 – 12] solutions are known. Thus, 
Makarov and Petrov [4], on the assumption of a linear rela-
tionship between A+ and A–, found particular solutions (1) in 
the form of soliton pairs. Under the condition of the forma-
tion of waveguides of the same profile for circularly polarised 
components of the field, the authors of papers [5, 10] obtained 
the solutions, in which |A±| are proportional to the Jacobi 
elliptic functions [13], and arg{A±} are linearly dependent on 
z. In [11, 12] under the same assumptions, the authors found 
exact and approximate solutions, where arg{A±} depend non-
linearly on t and linearly on z. In this case, both elliptically 
polarised cnoidal waves and waves with an aperiodic change 
in the polarisation state, which resemble the polarisation 
chaos, can propagate in a medium. Note that the integrable 
NSE systems in the conditions of the formation of waveguides 
of the same profile have similar solutions describing the prop-
agation of waves whose phases are not dependent [14] or 
dependent [15] on time. However, for integrable NSE sys-
tems, there are also other solutions, i.e. multisoliton com-
plexes [16 – 19]. Their analogues for the nonintegrable prob-
lem (1) are unknown. The aim of this work is the search for 
periodic analogues of multisoliton complexes, which may also 
be relevant for a number of other problems described by the 
NSE system of type (1). 

In this paper, using the approach [12] we have analysed 
one of the families of approximate solutions to the noninte-
grable problem (1), in which the phases of circularly polarised 
components of the field of an elliptically polarised wave vary 
linearly during propagation. We have found the conditions 
for the excitation of waves with a regular and ‘chaotic’ change 
in the polarisation state. We have analysed the character of 
the corresponding currently unknown nonlinear solutions, 
i.e., periodic analogues of multisoliton complexes [16 – 19]. 

2. Approximate solution 

As in [5], we use the procedure of separation of variables, by 
setting 

( , ) ( ) ( )exp iA z t r t zk=! ! ! ,	 (2)
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where k± are the propagation constants, and r±(t) are the real 
functions. By substituting (2) into (1), we obtain the system of 
ordinary differential equations: 
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where 0"k k rD =! ! . System (3) can also be regarded as a sys-
tem of equations describing the change in the Cartesian coor-
dinates of a material point of unit mass with a potential 
energy 
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Coordinates ,r r- +u u  of the position of the equilibrium point are 
found from the system of algebraic equations 

[2( ) ( 2 ) ( 2 ) ] 0k r r r0 1 1
2

1 2
2" "r s r s s+ + + =! ! " !u u u .	 (5) 

The search for approximate solutions to (1) is reduced to 
obtaining the system of linear equations for small deviations  
x± = r r-! +u  from nonzero coordinates of the equilibrium 
position, 
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and to finding its solutions, which, even after linearization of 
the problem, retain, as in [12], the dependence of the obtained 
solution on the nonlinear parameters of the medium. 
Minimum (6) exists if ( ) /k2 21 1"s r  < 0, 1

2
1 2 2

2r s s s+ +  < 0 
and ru2± > 0.

In the vicinity of this minimum, the degenerate particular 
solution to (1) exists if Dk+ = Dk– = Dk(d) [5]: 
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Here, dn(nt, m) is the elliptic Jacobi function [13] with the 
modulus 0 G m G 1 and {2 /[ (2 )]}k( ) /d

2
2 1 2n k mD= - . Violation 

of the condition Dk+ = Dk– will result in the fact that solutions 
(2) of the problem will leave the family of solutions (7) and 
moreover the class of degenerate solutions. Figure 1 shows, in 
grayscale, a map of the distribution of +( , )U r r-l l , where 

/r r 2 0s r=! !l , in the vicinity of the equilibrium point (6) at 
/ /0 0k r k rD D=+ -   =   / 3.767( )d

0k rD =  (Fig. 1a) and / 0k rD + = 
5.4, / 3.50k rD =-  (Fig. 1b). The bold lines show the depen-
dences ( )r r+ -l l , corresponding to a particular solution (7) at 
the same value of /( )d

0k rD  and m = 0.95. 
Following the standard procedure of linearization x± = r± 

– r!u  << r!u  we obtain a system of equations 
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The origin of the coordinates of the systems x'–, x'+ and z'–, z'+ 
is shifted to the point defined by the radius vector {r-u’, r+u’} (r!u’ 
= /r 2 0s r!u , x!’ = /2 0x s r! , z!’ = x!’cosa "  x"’sina). 

By changing the variables z± = x±cosa "  x"sina, where 
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we obtain two equations describing small harmonic oscilla-
tions of a material point near the equilibrium position: 
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Finally, we obtain the expressions for the amplitudes  
r±(t):

( ) ( ) ( )cos cos sin cosr t r t t( ) ( )0 0!z a f z a fW W= + + +! ! ! ! ! " " "u .	 (12)

As was expected, dispersion, gyrotropy and nonlinearity 
still play a role in the solution of (12) because k2, r0,1 and s1,2 
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Figure 1.  Maps of distributions U(r-u’, r+u’) in grayscale for (a) Dk+/r0 = Dk–/r0 = Dk(d)/r0 = 3.767, (b) Dk+/r0 = 5.4, Dk–/r0 = 3.5 and D = (Dk+ – Dk–)/r0 
and (c) variation in {r-u’, r+u’} during the change in the position of the equilibrium point specified by the radius vector s1/s2 = –3, r1/s2 = 0.2. The bold 
lines show the dependences r’+(r’–), corresponding to a particular solution (7) for the same value of Dk(d)/r0. 
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specify the values of ru±, a and W±. The dependences of the 
modulus of the amplitudes A± on the running time have the 
character of beats of two harmonic components at frequen-
cies W± near the points ru±. 

Particular solutions (7) do not have a linear analogue 
( m ® 0), since in this limit dn(nt, m) ® 1 – ( m2/2)cosW–t and the 
oscillation amplitude A± near the points ru± tends to zero. 
However, the frequency of these oscillations coincides with 
the frequency of in-phase oscillations W–  and therefore solu-
tion (7) can still be regarded as a nonlinear asymptotic of the 
in-phase approximate solution (12), which is degenerate in its 
eigenvalues. At the same time among particular solutions 
found in [5], there are no analogues of both the anti-phase 
solution (12), in which r±(t) oscillate at a frequency W+, and of 
the solutions of a general character in the form of beats r±(t) 
at frequencies W±. Figure 2 shows the dependence of the nor-
malised frequencies W±'{r-u', r+u'} = /k2 0r W±{r-u', r+u'} and the 
angle a{r-u', r+u'} on the position of the equilibrium point 
{r-u', r+u'}. It is easy to see that the frequencies of normal oscilla-
tions can be significantly different, and the angle virtually 
varies from 0 to p/2. Because the components of the field r± 
never vanish, their spectra have a constant component. 
Therefore, the frequencies of normal oscillations W± and con-
tributions of oscillations at these frequencies into the compo-
nents r±, given by the angle a (12), determine the widths of the 
spectra of the resulting beats. These widths may also be sig-
nificantly different for the components r±. 

In the general case, the approximate solutions (12) are lin-
ear asymptotics of new periodic (at commensurable normal 
frequencies) solutions, undergoing a transition, by increasing 
their period, to the analogues of multisoliton complexes 
[16 – 19], what drastically differs them from the particular 
solutions found in [5]. 

Similar approximate solutions can be constructed also in 
those cases when the minima U(r–, r+) (4) lie on the axes r±, 
e.g., 

0, [ 2 /( 2 )]r r /
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Solutions of this type will remain dependent only on the part 
of the nonlinear parameters. In the vicinity of point (13), the 
quadratic form (4) becomes diagonal, and the coordinates x± 
become normal modes. Due to this, the components r± always 
oscillate at different frequencies, which are readily obtained 

through second derivatives of the potential energy U(r–, r+) at 
the equilibrium point (13): 
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Note that the conditions for the existence of minimum (13) 
are reduced to the requirements w±

2 > 0, r-u2 > 0, and they are 
different from the conditions for the existence of minima (6), 
for which we obtained the approximate equation (10) and 
normal frequencies (11); therefore, from (10) and (11) one 
cannot obtain the oscillation equation in the vicinity of 
(13) and frequencies (14), and moreover, the latter cannot 
be expressed through the coordinates of minimum (13) as 
in (11). 

Without going into detail about the approximate solution 
(3) in the vicinity of the equilibrium point (13), we note only 
that for the corresponding particular solutions obtained in 
[5], the amplitudes of the components A± are proportional to 
the elliptic Jacobi functions cn( gt, m) and dn( gt, m) [13]. In the 
linear limit ( m ® 0) their scale factor g and eigenvalues are 
given by [5] 
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and the deviation amplitudes r r-! !u  tend to zero. Frequencies 
of their oscillations in the vicinity of point (13) are equal to g 
and 2g, respectively. By directly substituting (15) into (14) we 
can easily see that at  m ® 0 the factor g coincides with w+,  
whereas 2g ¹ w–. This means that in the vicinity of minimum 
(13), approximate solutions are linear asymptotics of the cur-
rently unknown periodic analogues of multisoliton complexes 
that differ them from particular solutions found in [5]. 
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Figure 2.  Changes in the frequencies of (a) antiphase, W+’(r-u’, r+u’), and (b) in-phase, W–’(r-u’, r+u’), normal oscillations and (c) the angle a(r-u’, r+u’) at a fixed 
position of the equilibrium point defined by the radius vector {r-u’, r+u’}. The parameters of the medium are the same as in Fig. 1. 
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3. Evolution of the polarisation state 
of a propagating wave 

The dependence of the moduli of the amplitudes A± on the 
running time becomes periodic in the case of commensurable 
normal frequencies W± or in the case of excitation of only one 
normal oscillation. Evolution of the polarisation state of the 
waves corresponding approximate solutions found can be 
described by the Stokes parameters [20] related to the com-
plex amplitudes A± by the expressions 
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In this case, the normalised Stokes parameters   sx,y,z(z, t) = 
S1,2,3/S0 determine the Cartesian coordinates of the end of the 
unit vector s, which moves along the Poincare sphere when 
the coordinate and/or time change [20]. Because the longitude 
F = arctan(sy /sx) = (k+ – k–)z of the end of the vector s is pro-
portional to z, it would be natural to analyse the change in the 
polarisation for situations when the running time t varies only 
due to z. As in the cases considered in [12], the change in the 
polarisation is periodic only for a periodic variation in sz and 
a consistent variation in F. The first requirement coincides 
with the periodicity condition for |A±|, and the second one 
reduces to the condition of commensurability of the frequency 
of sz variation with (k+ – k–). 

The character of the change in the polarisation state of the 
approximate solution (12) is illustrated in Fig. 3, which shows 
the trajectory of the motion of the end of the Stokes vector on 
the Poincare sphere, when the first and second conditions of 
periodicity (in-phase and antiphase solutions) and only the 
second condition (the case of the beats) are fulfilled. In the 
last of the three considered situations, despite the well-marked 
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Figure 3.  Trajectories of motion of the end of the Stokes vector along the surface of the Poincare sphere at Dk+/r0 = 5.4, Dk–/r0 = 3.5, t = 2.751032z k0 2t  
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beats in dependences  r'±(t') in Fig. 3d, the motion of the end 
of the vector s on the surface of the Poincare sphere remains 
almost periodic. This is easily explained by the character of 
the dependence sz on the amplitudes z±

(0), which in view of 
their smallness has the form 
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+ -

+ -
- -u u

u u
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E.	(20)

It follows from (20) that the character of variations in the 
polarisation state in cases of in-phase and antiphase oscilla-
tions is determined by the quantities r-u cosa – r+u sina and 
r+u cosa + r-u sina, respectively. When the values of the param-
eters corresponding to r-u cosa – r+u sina , 0 are used in the 
calculations, the component sz for the in-phase solutions 
should be virtually constant (Fig. 2a). For the same reason, 
z–
(0) determines the character of changes in sz in the general 
case (Fig. 2c). 

However, in the latter situation, in the case of sufficiently 
long evolution the end of the vector s, as in [12], will com-
pletely fill the part of the surface of the Poincare sphere, lim-
ited by the inequalities sz min G sz G sz max (sz min and sz max  are 
the minimum and maximum values of sz), and there arises the 
regime that resembles polarised ‘chaos’. 

4. Conclusions 

We have obtained approximate (linearization method in the 
vicinity of equilibrium points) solutions of the nonintegrable 
problem of propagation of plane elliptically polarised light 
waves in an isotropic gyrotropic medium with local and 
nonlocal components of the Kerr nonlinearity and group-
velocity dispersion. We have described analytically consistent 
evolution of two orthogonal circularly polarised components 
of the field in cases where their phases vary linearly with dis-
tance. It is shown that approximate solutions are asymptotics 
of currently unknown periodic analogues of multisoliton 
complexes [16 – 19], which are radically different from partic-
ular solutions found earlier in [5]. We have determined the 
conditions of excitation (restrictions on the initial conditions 
and parameters of the medium) of light waves with a regular 
and ‘chaotic’ change in the polarisation state. 

Acknowledgements.  This work was supported by the Russian 
Foundation for Basic Research (Grant No. 11-02-00653-a). 

References 
  1.	 Golubkov A.A., Makarov V.A., Perezhogin I.A. Vestn. Mosk. 

Univ. Ser. Fiz., Astronom., (1), 52 (2009). 
  2.	 Golubkov A.A., Makarov V.A., Rakhmatullina I.G. Kvantovaya 

Elektron., 19, 1195 (1992) [ Quantum Electron., 22, 1117 (1992)]. 
  3.	 Makarov V.A., Perezhogin I.A., Potravkin N.N. Laser Phys., 19, 

322 (2009).
  4.	 Makarov V.A., Petrov K.P. Kvantovaya Elektron., 20, 1011 (1993) 

[ Quantum Electron., 23, 880 (1993)].
  5.	 Makarov V.A., Perezhogin I.A., Petnikova V.M., Shuvalov V.V. 

Kvantovaya Elektron., 42, 117 (2012) [ Quantum Electron., 42, 117 
(2012)]. 

  6.	 Christiansen P.L., Eilbeck J.C., Enolskii V.Z., Kostov N.A. Proc. 
Royal Soc. London A, 456, 2263 (2000).

  7.	 Chow K.W., Nakkeeran K., Malomed B.A. Opt. Commun., 219, 
251 (2003).

  8.	 Tsang S.C., Nakkeeran K., Malomed B.A., Chow K.W. Opt. 
Commun., 249, 117 (2005).

  9.	 Chiu H.S., Chow K.W. Intern. J. Computer Mathematics, 87, 1083 
(2010).

10.	 Makarov V.A., Petnikova V.M., Potravkin N.N., Shuvalov V.V. 
Phys. Wave Phenomena, 21, 264 (2013).

11.	 Makarov V.A., Petnikova V.M., Potravkin N.N., Shuvalov V.V. 
Kvantovaya Elektron., 42, 1118 (2012) [ Quantum Electron., 42, 
1118 (2012)]. 

12.	 Makarov V.A., Petnikova V.M., Potravkin N.N., Shuvalov V.V. 
Laser Phys. Lett., 10, 075404 (2013).

13.	 Gradshteyn I.S., Ryzhik I.M. Tables of Integrals, Series and 
Products (San Diego, CA: Academic Press, 2000; Moscow: 
Nauka, 1971). 

14.	 Vysloukh V.A., Kutuzov V., Petnikova V.M., Shuvalov V.V. 
Kvantovaya Elektron., 24, 867 (1997) [ Quantum Electron., 27, 843 
(1997)]. 

15.	 Petnikova V.M., Shuvalov V.V. Phys. Rev. E, 76, 046611 (2007).
16.	 Akhmediev N.N., Ankiewicz A., Soto-Crespo J.M. Phys. Rev. 

Lett., 79, 4047 (1997).
17.	 Sukhorukov A., Akhmediev N. Phys. Rev. Lett., 83, 4736 (1999).
18.	 Akhmediev N., Ankiewicz A. Chaos, 10, 600 (2000).
19.	 Sukhorukov A.A., Ankiewicz A., Akhmediev N.N. Opt. 

Commun., 195, 293 (2001).
20.	 Born M., Wolf E. Principles of Optics (London: Pergamon, 1970; 

Moscow: Nauka, 1973). 


