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Abstract.  This paper examines instability resulting from cross phase 
modulation interaction between signal and pump waves in normal-
dispersion fibre lasers and amplifiers. From analysis of the disper-
sion relation for the wave vector of small harmonic perturbations, 
we derive dynamic spectral characteristics of the modulation gain 
coefficient. Its dependence on the group velocity difference between 
signal and pump waves is investigated. Analytical results are compared 
to numerical simulation data. We discuss how the general relation-
ships obtained in this study can be used in practical applications.

Keywords: fibre lasers and amplifiers, modulation instability, cross 
phase modulation.

1. Introduction

Modulation instability (MI) – growth of small harmonic per-
turbations of a continuous wave – is characteristic of many 
nonlinear systems that support the propagation of localised 
waves and is related to an interplay between nonlinearity and 
dispersion [1, 2]. In fibre optics, MI was first predicted theo-
retically and demonstrated experimentally for anomalous-
dispersion fibres, in which a continuous modulated wave was 
observed to convert into a pulse train [3, 4]. In such instances, 
the instability responsible for perturbation growth originates 
from interaction between the nonlinear self-phase modula-
tion (SPM) and anomalous dispersion of a modulated wave. 
Subsequently, MI in fibre optics has been the subject of exten-
sive studies. Here, we mention only recent reports, in particular 
those concerned with studies of MI in fibre amplifiers [5] and 
anomalous dispersion decreasing fibres [6] and with the effect 
of higher order nonlinearities (self-steepening parameters and 
delayed nonlinear response of a fibre) on MI [7, 8]. Intense 
research interest in MI is aroused not only by its general fun-
damental importance but also by its possible applications in 
some areas of nonlinear fibre optics: generation of high-fre-
quency trains of short pulses [9] and creation of broadband 
light sources [10, 11].

Of special note is instability arising when two or more 
waves simultaneously propagate through a fibre. Interaction 
between them results in an additional factor: nonlinear cross 
phase modulation (XPM), which is also capable of increasing 
harmonic perturbations, in particular in the normal-dispersion 

region of interacting propagating waves in the case where 
‘conventional’ MI does not develop [12, 13]. From an applied 
point of view, an important issue is to study the MI induced 
by the cross modulation interaction between a pump wave 
and signal wave in Raman fibre lasers and amplifiers [14, 15]. 
To our knowledge, no theoretical studies have examined the 
development dynamics of cross modulation instability in the 
case of signal amplification with allowance for pump depletion. 
This issue is addressed in the present study, with a great deal 
of attention paid to the effect of the group velocity difference 
between signal and pump waves on the development of MI. 
This parameter determines many aspects of the development 
of cross modulation instability. In particular, no such insta-
bility develops at a large group velocity difference, e.g. in the 
case of counterpropagating pump and signal waves. This has 
been demonstrated experimentally [15, 16]. Knowledge of the 
modulation gain as a function of group velocity difference 
offers an additional possibility of controlling the MI process, 
e.g. by varying the pump frequency and, accordingly, the 
pump – signal group velocity difference. Strictly speaking, the 
present results are applicable not only to Raman amplifiers 
but also to all fibre amplifiers in which the signal and pump 
group velocities and, hence, frequencies differ relatively little. 
The general relationships identified here can be used not only 
in applications where MI is necessary (e.g. in designing fibre 
oscillators for new frequency ranges) but also when parasitic 
MI should be suppressed.

2. Basic relations

Consider the propagation of a pump wave (carrier frequency 
wp) and signal wave (carrier frequency ws) in a fibre amplifier 
(along the z axis). Taking into account nonlinear cross modu-
lation interaction, we can describe it by the following system 
of equations for the complex temporal envelopes Ap(z, t) and 
As(z, t) [1]:
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where ug  j = dw/dbj is the group velocity of the wave; gj is the 
nonlinearity parameter; and bj and dj are the propagation 
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constants and group velocity dispersions of the corresponding 
waves. The variable coefficients aj (z) quantify signal ampli
fication and pump depletion. They can be found from a sys-
tem of equations for continuous waves, |Ap(z, t)|2 = Pp(z) 
and|As(z, t)|2 = Ps(z), which describes pump-to-signal power 
conversion and is generally valid not only for stimulated 
Raman amplification but also for any three-level laser 
medium. In the undepleted pump approximation, neglecting 
the intrinsic pump and signal wave absorption, we can write 
this system in the form [1, 17]

dPs /dz = gRPs Pp,

dPp /dz = –(wp /ws)gRPs Pp.	
(2)

Here, gR is pump efficiency. In the case of stimulated Raman 
scattering (SRS), it is the Raman gain coefficient, related 
to  the spontaneous Raman scattering cross section. For an 
arbitrary three-level laser system (e.g. the erbium-doped fibre 
amplifier), it can be expressed as
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where N is the active centre concentration; t21 is the meta
stable-level lifetime, which determines the spontaneous tran-
sition rate; sp is the pump absorption cross section; ss is the 
emission cross section at the signal wavelength; Seff is the effec-
tive mode area; and h0 is the net stimulated transition rate for 
pump absorption and signal emission. In a steady state, if the 
active centre concentration is, on average, constant along 
the fibre length, then so is the transition rate, h0(z) = const, 
which is analogous to the conservation of the number of 
photons in SRS. In the approximation under consideration 
(with no intrinsic absorption) and with spontaneous lumines-
cence neglected, this leads to the conservation of total power 
(with allowance for frequency conversion):

Pp + (wp /ws)Ps = P0 = const.

Using the notations c = wsPp0 /(wpPs0) and q = gR(1 + c)Pp0 wp /ws, 
where Pp0 = |Ap(0, t)|2 and Ps0 = |As(0, t)|2 are the initial pump 
and signal powers, we obtain expressions for the gain and 
depletion coefficients [17]:
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transforms (1) to a form corresponding to a system with no 
gain, but with variable nonlinearity coefficients, which can be 
found by integration:
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Here and in what follows, we use the notation p ¬® 1, s ¬® 2 
and j = 1, 2. System (4) has a steady-state solution. Note that 
the path length in the fibre, z, influences only the phase shift 
jj  of the propagating monochromatic wave:
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where Pj0 is the light power coupled into the fibre.
Our main purpose in this study is to assess the stability of 

the constant steady-state solution to small perturbations. We 
represent the solution to (4) in the form

jj i( , ) ( , ) ( ),expt z P b t zj j0= + jB 6 @ 	 (5)

where | |jb  << jP 0 , and examine perturbation dynamics. 
Following Agrawal [12], consider harmonic wave perturba-
tions, which can be represented in standard form:

bj (z, t) = Uj cos(Kz – Wt) + iVj sin(Kz – Wt),	 (6)

where K is the wavenumber and W is the modulation fre-
quency. We will consider a simple case of single-frequency 
(W) modulation due to a harmonic perturbation of the pump 
or signal wave. A perturbation of the pump wave (or signal) 
at a frequency wu = wj – W leads to modulation of the other 
wave at a perturbation frequency wu' = w3 – j – W. Whether the 
steady-state solution is stable or unstable to small perturba-
tions, bj (z, t), is determined by the modulation wavenumber 
dispersion, K(W). When K(W) has an imaginary part, small 
perturbations grow exponentially and the steady-state solu-
tion is unstable. Substituting (5) into (4) and linearising with 
respect to the small parameter, we obtain the following sys-
tem of equations describing the dynamics of small perturba-
tions in the fibre:
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Following a standard procedure, we substitute perturba-
tion (6) into these equations and obtain a system of equations 
in Uj and Vj. Equating the determinant of this system to zero, 
we find a dispersion relation between parameters of the per-
turbation and those of the fibre and pump wave:
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An important distinction from what was reported by 
Agrawal [12] is that these coefficients vary along the length 
of  the amplifier and determine modulation gain dynamics. 
In  what follows, we analyse the above dispersion relation 
and examine the behaviour of the modulation gain coefficient 
g(W) = 2 Im K(W) in the signal amplification process and in 
relation to the group velocity difference d = |1/ugp – 1/ugs|.

It is worth noting that a simplified description of cross 
modulation interaction is possible, which neglects the group 
velocity difference between interacting waves. This is, of course, 
relevant when the interacting waves are identical or differ very 
little in frequency, but the frequency difference and, accord-
ingly, group velocity difference in amplification systems are 
rather significant. In an inverse approach, we can neglect 
the term describing cross modulation by virtue of the group 
velocity difference between the waves. However, even though 
a group velocity difference restricts cross modulation interac-
tion and eventually suppresses it, the question of modulation 
stability/instability of radiation in optical amplifiers with a 
copropagating pump and signal configuration remains open. 
This is particularly so in the case of Raman lasers, Raman 
amplifiers and other laser systems in which the pump and 
signal frequencies differ relatively little [14 – 16]. An important 
distinction of our approach is that we take into account the 
dependence of the modulation gain on the group velocity dif-
ference parameter d.

3. Analysis of the dispersion relation and  
the behaviour of cross modulation instability 
in gain dynamics

In what follows, we will restrict our consideration to the case 
where both a pump wave and a signal wave propagate in the 
normal-dispersion regime (dp > 0, ds > 0), which will allow 
us  to separately consider the instability caused by the cross 
modulation interaction between the pump and the signal wave 
in an amplifier. Recall that the nonlinear SPM of an individual 
wave propagating through an anomalous-dispersion medium 
(d < 0) also leads to instability, i.e. small harmonic perturba-
tions ±W at the frequency of a continuous wave of power P0 
in a fibre with a nonlinearity parameter g are amplified [1]:

g(W) = |d|W c
2 2W W- ,  Wc

2 = 4 gP0 /|d|.

In what follows, we assume that, in a normal-dispersion 
fibre, such instability does not develop, which is generally not 
so in the spectral range corresponding to low positive group 
velocity dispersion (d) values. MI is then determined as well by 
the influence of fourth-order dispersion (for d4 < 0). The com-
paratively narrow MI range near a frequency Wc = /d d12 4-  
is defined by the inequalities [18]

d + d4W2/12 < 0,  |d + d4W2/12|W2 < 4 gP0.

This may be essential in the case of special microstructured 
waveguides, in which waveguide dispersion is rather high. 
Nevertheless, in most standard situations, i.e. at negligible 
or positive d4 values and far away from the zero dispersion 
wavelength, our consideration is valid.

We now turn to analysing the dispersion relation (8). Its 
real roots describe the propagation of modulation with a spatial 
period z = 2p /K(W) and are of no interest. Useful informa-
tion about modulation amplification is provided by conjugate 

complex roots, which determine the nature of the modulation 
gain coefficient, g(W) = 2 Im K(W). (Clearly, one of the roots 
describes modulation attenuation, which can be neglected 
when there is amplification.) Since modulationally unstable 
solutions should meet phase matching conditions, it can be 
shown that the real part of these roots, Re K(W), should be 
close to dW.

The process of analytically solving (8), an equation of the 
fourth degree, is unwieldy and time-consuming, so further 
results were obtained by numerically finding its roots. Note 
that, for an arbitrary set of parameters converting (8) to an 
equation with numerical coefficients, we compared the exact 
analytical solution and a numerical one, which coincided to 
within 10–8, demonstrating that the numerical method used 
was quite accurate.

As the first step, we investigated cross modulation insta-
bility without allowance for the dynamics of the pump and 
signal powers, at parameters typical of fibres with normal 
dispersion in the IR spectral region and at a signal to pump 
frequency ratio, ws /wp, near the ratio of the pump frequency 
to the Stokes Raman frequency in this range. To this end, at 
the initial length of the amplifier, z = 0, we considered the 
function g(W) at varied signal to pump power ratio, Ps0 /Pp0 
(Fig. 1a). It is seen that the ‘instantaneous’ cross modulation 
gain is only appreciable under high-power pumping at com-
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Figure 1.  Modulation gain coefficient g(W) at z = 0 in an amplifier 
with gR = 0.005 W–1 m–1, g1 = g2 = 0.005 W–1 m–1, ws /wp = 0.95, dp = 
0.02 ps2 m–1, ds = 0.01 ps2 m–1 and Pp0 = 25 W (solid lines): (a) d = 
0.2 ps m–1, Ps0 /Pp0 = ( 1 ) 0.02, ( 2 ) 0.2, ( 3 ) 1; (b) Ps0 /Pp0 = 0.2, d = ( 1 ) 0.05, 
( 2 ) 0.1, ( 3 ) 1 ps m–1. The dashed lines show the real part of the corre-
sponding roots K(W).
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parable pump and signal powers. Therefore, when small signals 
are amplified, especially at a small Raman gain coefficient, 
gR, a long length of the amplifier is needed for the onset of 
MI. It is worth noting that the frequency range of MI is well 
away from the origin, W = 0, i.e. MI develops only in a band 
at relatively high frequencies. The reason for this is that, at low 
W frequencies, MI is suppressed owing to the pump – signal 
group velocity difference.

Figure 1b presents frequency dependences of the modula-
tion gain at an initial length z = 0 and different group velocity 
differences, d. As would be expected, the g(W) curve shifts 
towards the origin with decreasing d and takes a standard 
shape at low d, describing instability in the frequency range 
W  Î [0, Wc]. As mentioned above, this behaviour can be 
accounted for in terms of phase matching between the signal 
and pump modulations. For the corresponding condition to 
be fulfilled at d ¹ 0, the complex roots of the dispersion rela-
tion (8) should have a nonzero real part, describing the spatial 
shift of the growing modulation (at d = 0, the dispersion rela-
tion reduces to a biquadratic equation, and growing modulation 
is described by its purely imaginary roots [12, 13]). The Re K(W) 
curves are shown in Fig. 1b by dashed lines. With increasing 
group velocity difference d, the relation Re K(W) » dW in 
the  instability band is satisfied more and more accurately, 
reducing the width of the band and shifting it to higher modu-
lation frequencies. At a large group velocity difference, the 
instability band essentially ‘collapses’ into a narrow line and 
shifts to frequencies comparable to the carrier frequency wj, 
suggesting complete MI suppression.

Figure 2 shows the modulation gain coefficient g as a 
function of dispersion and nonlinearity parameters at a par-
ticular signal power, pump power and group velocity differ-
ence. Since the parameters dp and ds appear in the coefficients 
of the dispersion relation as the dj W 2 product, the position of 
the maximum in gain, i.e. the frequency Wmax at which the 
imaginary part of K(W ) has a maximum, can be expressed 
with good accuracy as [12]

Wmax = d(dp ds)–1/2,	 (10)

which is supported, e.g., by the data in Fig. 2. Note that, with 
increasing dispersion, the instability band shifts to lower fre-
quencies, i.e., the dispersion of the fibre counterbalances the 
pump – signal group velocity difference. Figure 2b demon-
strates that the modulation gain coefficient is a strong func-
tion of fibre nonlinearity parameters. It is worth noting in this 
context that the nonlinearity parameter has a weak effect on 
the peak gain frequency and typically increases the maximum 
gain and instability bandwidth.

The general relationships above refer to an ‘instantaneous’ 
modulation gain coefficient, i.e. one obtained at a particular 
pump power and signal power. In a real amplification system, 
these parameters vary constantly: the pump power is con-
verted to the signal. As a result, the modulation gain coeffi-
cient also varies constantly. This process is illustrated by Fig. 3, 
which presents results of analysis of the dispersion relation (8) 
in terms of gain dynamics. The evolution of the modulation 
gain coefficient is demonstrated at different d values, typical 
of silica fibres in the IR spectral region ( l > 1200 nm) at a dif-
ference between the pump and signal wavelengths D l » 80 nm, 
which roughly corresponds to the difference between the pump 
and Stokes signal wavelengths in this range in the case of 
stimulated Raman amplification [19]. The highest modulation 
gain and the largest spectral width of the MI range are ensured 

by the amplifier length at which the pump power is equal to 
the signal power (see also Fig. 4a). Further pump depletion is 
accompanied by a decrease in modulation gain, which is 
almost symmetric with respect to the point where the pump 
power is equal to the signal power. Note again that the spec-
tral range of instability is broader at the minimum group 
velocity difference and that, with increasing group velocity 
difference d, the instability bandwidth decreases markedly.

4. Numerical simulation of cross modulation 
instability in an amplifier

Numerical simulation was used to examine the cross modula-
tion process in a normal group velocity dispersion amplifier. 
Using the standard split-step Fourier method, we modelled 
the system of equations [1]
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Figure 2.  Modulation gain coefficient g(W) at z = 0 in an amplifier 
with gR = 0.005 W–1 m–1, ws /wp = 0.95, d = 0.2 ps m–1, Pp0 = 25 W and 
Ps0 /Pp0 = 0.2: (a) g1 = g2 = 0.005 W–1 m–1; dp = ( 1 ) 0.04, ( 2 ) 0.02 and ( 3 ) 
0.01 ps2 m–1; ds = ( 1 ) 0.03, 0.01 and 0.005 ps2 m–1; (b) dp = 0.02 ps2 m–1; 
ds = 0.01 ps2 m–1; g1 = ( 1, 3 ) 0.005 and ( 2, 4 ) 0.01 W–1 m–1; g2 = ( 1, 2 ) 
0.005 and ( 3, 4 ) 0.01 W–1 m–1.
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Unlike system (1), these equations are written in a frame 
of reference moving with a group velocity ugr. The terms that 
represent signal amplification and pump depletion are pre-
sented in explicit form. Figure 4 shows simulation results for 
the amplification of a modulated signal,

|As(0, t)|2 = Ps0 [1 + 0.02 cos (Wt)],	 (12)

at an initial power Ps0 = 0.25 W and Pp0 = 25 W. Physically, 
this can be brought about, e.g., using a laser with a frequency 
close to the pump carrier frequency and corresponds to induced 
MI. We consider a situation with a small group velocity dif-

ference, d = 0.05 ps m–1 (see also Fig. 3a). At a modulation 
frequency W = 2.1 ́  1012 s–1, a modulated signal similar to a 
pulse train is formed over the length of the amplifier, and the 
spectrum of the output signal then has the form of harmonics 
of the modulation frequency that decrease in power. Compari
son of the variations in the signal and pump powers (Fig. 4a, 
dashed lines) to the analytical solution (2), obtained for a con-
tinuous signal and pumping, indicates that the pump-to-signal 
conversion efficiency decreases in the case of strong modula-
tion of the interacting waves, and pumping then changes from 
continuous to pulsed. Subsequently, when the modulated 
signal shifts relative to the pump pulses, slight oscillations of 
the conversion efficiency can be observed.
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Figure 3.  Frequency dependences of the cross modulation gain coefficient for signal propagation in an amplifier with ws /wp = 0.95, gR = 0.0025 W–1 m–1, 
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represent the coefficient g(W).
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(c) numerical simulation results for the output signal of a 150-m-long amplifier (solid line: modulation frequency W = 2.1 ́  1012 s–1; dashed line: 
W = 3.15 ́  1012 s–1).



	 I.O. Zolotovskii, D.A. Korobko, V.A. Lapin350

Simulation results indicate that, at a modulation frequency 
W = 3.15 ́  1012 s–1, which roughly corresponds to the maximum 
in modulation gain (Fig. 3a), no strong modulation of the signal 
takes place. Thus, the integrated modulation gain coefficient 
at this frequency is smaller than that at W = 2.1 ́  1012 s–1. 
In addition, it is worth noting that the results in the previous 
section were obtained for small harmonic perturbations at one 
frequency. At the same time, if there is an amplified modula-
tion component, further excitation of its harmonics occurs 
owing to four-wave mixing. If a harmonic of the modulation 
frequency also falls within the instability range, it is rapidly 
amplified through energy transfer from lower harmonics and 
from the main component at the carrier frequency. This may 
culminate in the generation of a train of short pulses.

At an appreciable group velocity difference (d = 0.5 ps m–1), 
which corresponds to the data in Fig. 3c, simulation results 
(Fig. 5) confirm that the spectral range of MI decreases and 
shifts to higher frequencies. Comparison of results obtained 
for various signal modulation frequencies indicates that the 
modulation gain varies by more than 25 dB across a 1012 s–1 
band. Note that the spectrum of the modulationally unstable 
component is asymmetric: because the phase matching condi-
tion is fulfilled, the spectrum is shifted to higher frequencies 
and the modulation ‘leads’ the signal carrier wave and ‘lags’ 
the pump wave.

The spectral selectivity of cross modulation interaction 
can be employed as the basic principle behind the operation 
of a number of fibre-optic devices, e.g., narrow-band filters. 
Note again that the parameters used in our computations are 
typical of real silica fibres in the IR spectral region and that 
the observed relationships can be used in designing novel fibre-
optic devices. In particular, advanced optical fibre fabrication 
technologies allow one to produce fibres with a tailored group 
velocity difference at predetermined wavelengths, e.g. by using 
fibres with a certain refractive index profile [20]. In setting the 
pump and Raman signal wavelengths in fibre, an amplifier 
with a predetermined narrow spectrum of its output signal 
can be designed as ‘reference’ points. A more detailed descrip-

tion of a fibre with such properties and a related amplifier is 
beyond the scope of this paper and will be presented in subse-
quent reports.

5. Cross modulation instability in a Raman  
fibre laser

Compare the above model for cross modulation instability to 
available experimental data. It can be seen from the above 
results that such instability becomes significant only when the 
signal and pump powers differ little. In optical amplifiers, this 
situation is only encountered in a limited range of output 
powers. Such instability shows up more frequently in lasers 
because, in a transient process resulting in self-consistent, 
steady-state signal and pump field distributions in the laser 
cavity, the signal repeatedly passes through a potential insta-
bility region, where the signal and pump powers differ little.

Ravet et al. [15] described an experiment aimed at assessing 
the effect of cross phase modulation on the output spectrum 
of a cw Raman laser. Figure 6 schematically shows their 
experimental arrangement. The ring cavity of the Raman fibre 
laser was closed by a 20 % reflectivity fibre Bragg grating. 
The light propagation direction was controlled by an optical 
circulator. The laser was pumped in a co- or counterpropa-
gating pump configuration with respect to the signal wave. 
The essence of the experiment was to compare the output 
spectra of the laser in the co- and counterpropagating pump 
configurations, ensured by wavelength-division multiplexers 
(WDM2 and WDM1).

Light propagation through the fibre was modelled using 
system (11). In addition, we analysed reflection from the FBG 
on each cavity pass using a discrete transformation of the 
spectrum of a signal wave (the grating was taken to have a 
Gaussian reflection spectrum):

As
out(w) = As

in(w) R exp(–w2/Dw2),

where R = 0.2 is the reflectivity of the grating and Dw = 1012 s–1 is 
its reflection bandwidth. The Raman gain bandwidth far exceeds 
1012 s–1, which allows us to take the Raman gain coefficient 
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Figure 5.  Numerical simulation results (a) for the spectrum of a signal 
at different modulation frequencies and (b) for the output signal. The 
same parameters of the amplifier as in Fig. 3; amplifier length, 150 m; 
d = 0.5 ps m–1. The short-dashed, solid and long-dashed lines correspond 
to modulation frequencies W = (1.925, 1.965 and 2.015) ́  1013 s–1.
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Figure 6.  Experimental setup (borrowed from Ravet et al. [15]): 	
(WDM1, WDM2) wavelength-division multiplexers for copropagating 
and counterpropagating pump schemes, (OCI) optical circulator, (FBG) 
fibre Bragg grating, (ISO) optical isolator.
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gR to be frequency-independent. The following experimental 
parameters were used in simulation: pump and signal wave-
lengths, 1460 and 1550 nm; normal dispersion in the fibre at these 
wavelengths dp = 0.025 ps2 m–1 and ds = 0.015 ps2 m–1; pump 
power Pp0 = 6 W; Raman gain coefficient gR = 0.0022 W–1 m–1; 
cavity length L = 200 m. No other parameters were specified 
in Ref. [15], so we took typical nonlinearity coefficients of 
such fibre (gp = gs = 0.0035 W–1 m–1). In the case of the 
copropagating pump scheme, the group velocity difference d 
was taken to be 0.03 ps m–1. To simulate a considerable group 
velocity difference in the counterpropagating pump scheme, 
we took d = 30 ps m–1. The initial signal had the form (12), 
with a power Ps0 = 0.00025 W and a modulation frequency 
W = 1.25 ́  1011 s–1, which corresponded to the 50 000th cavity 
mode. This simplified, schematic model makes it possible to 
compare simulation results and a theoretical description of MI 
to experimental data.

After about 50 cavity passes, the simulated spectrum was 
similar to the experimental spectrum of the Raman laser (Fig. 7). 
At small d, the spectrum contained characteristic bands of 
increased intensity, due to cross modulation instability. At 
high d values, corresponding to the counterpropagating pump 
scheme, there were no such regions.

To interpret the simulation results, we rely on reasoning 
similar to that above: four-wave mixing increases modulation 

harmonics. The components of the spectrum for which the 
phase matching condition is best fulfilled experience higher 
modulation amplification. At a considerable signal – pump 
group velocity difference, the modes excited through four-
wave mixing are not fed via energy transfer upon MI, and 
their intensity drops sharply with increasing frequency. Thus, 
even the simplified model for pump – signal phase interaction 
in a Raman laser ensures a conceptually accurate description 
of the laser output spectrum.

Note some possible ways of employing the above general 
relationships in designing advanced laser sources. In some 
instances, the use of a modulated copropagating pump con-
figuration may be attractive. Knowing the signal – pump group 
velocity difference and using (10), one can find the modula-
tion frequency that ensures the maximum gain. This will 
allow one to realise, using a pump source modulated at this 
frequency, a laser source with a narrow-band high-frequency 
modulation capable of generating short pulses at a high repeti-
tion rate under certain conditions. A detailed description of 
such a source will also be presented in subsequent reports.

6. Conclusions

We have studied characteristics of instability resulting from 
cross phase modulation interaction between signal and pump 
waves in fibre amplifiers and lasers. We have analysed the dis-
persion relation for the wave vector of small harmonic per
turbations, obtained the modulation gain coefficient as a 
function of amplifier parameters and examined the dynamics 
of the unstable frequency range. The present results lead us to 
the general conclusion that, in describing amplification in 
optical fibre, one should not ignore phase interaction between 
the signal and pump wave, especially when their group velocities 
differ little.

It has been shown that cross modulation instability in 
amplifiers is most significant when the signal and pump powers 
differ little and that the spectral range of instability strongly 
depends on the group velocity difference d between the signal 
and pump waves. At low d values, the modulation gain spec-
trum has the form of a broad band at low frequencies, which 
offers the possibility of broadening the spectrum upon the 
amplification of multiple harmonics of the modulation signal 
of relatively low frequency and pulse train generation. With 
increasing d, the spectral range of instability decreases and 
shifts to higher frequencies. This behaviour of cross modulation 
instability can probably be used in practical applications: in 
designing narrow-band filters and generators of high modula-
tion frequency signals and high repetition rate pulse trains. 
The present numerical simulations lend support to analytical 
calculation results and are in qualitative agreement with experi-
mental data.
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