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Abstract.  We have studied the peculiarities of propagation of sur-
face polaritons at a planar interface between an isotropic dielectric 
and anisotropic nanocomposite with metal inclusions of ellipsoidal 
shape. For the case when the axes of all nanoellipsoids of revolution 
are perpendicular to the propagation direction and parallel to the 
medium interface, we have obtained frequency dependences of the 
propagation constant and transverse wave vector components, pen-
etration depth and path length, longitudinal and transverse energy 
fluxes for surface polaritons. The shape of nanoellipsoids is shown 
to have an effect on the wave characteristics of surface polaritons. 

Keywords: anisotropic nanocomposites, metal inclusions, surface 
polaritons. 

1. Introduction 

Recent years have seen a growing interest in nanocomposite 
materials (NCMs), which have a number of unique properties 
allowing one to create new materials with desired structural, 
electromagnetic and optical characteristics. The NCM proper-
ties are largely determined by size, shape and ordering of 
nanoinclusions and by the degree of the material (matrix) vol-
ume filling by them [1 – 4]. In particular, by choosing properly 
the matrix material, the concentration and size of nanoinclu-
sions, one can produce NCMs with a negative real part of com-
plex permittivity and (or) permeability in a certain frequency 
range. Promising also is the use of NCMs with metal inclu-
sions, having a strong linear and nonlinear dispersion of optical 
properties in the region of the plasmon resonance [5 – 10]. 

It is known that in the frequency region where one of the 
material parameters is negative, surface waves, i.e., surface 
polaritons (SPs), can propagate along a planar interface 
[11 – 15]. The wave field of surface polaritons is localised in 
the surface region whose thickness on each side of the inter-
face is of the order of the wavelength. In anisotropic media, to 
which NCMs with anisotropic arrangement and shape of 
inclusions belong, the SP properties strongly depend on the 
direction of their propagation relative to the axes of anisot-
ropy [16 – 23]. 

In this paper we study the properties of SP propagation 
along the planar interface between an isotropic dielectric and 
a NCM with an ellipsoidal shape of the metal nanoparticles 

used as fillers. For the same orientation of all the nanoparti-
cles and their uniform distribution in the volume, an NCM is 
a uniaxial optical crystal with the effective permittivity tensor 
components, which depend on both the geometrical parame-
ters of the structure and physical characteristics of nanopar-
ticles. We have derived dispersion relations for nanoparticles 
of different shapes in the NCMs, constructed the frequency 
dependences of the SP penetration depth and the total energy 
fluxes carried by the SPs. 

2. Structure geometry and material parameters 

Let us direct the z and x axes normally to the interface between 
the media and along the wave propagation direction, respec-
tively. We assume that the permittivity ed of the dielectric in 
the frequency range in question is independent of frequency. 
An NCM is a non-conductive matrix with a permittivity em, 
in a volume of which metal nanoparticles with a permittivity 
ep are uniformly distributed. The magnetic permeability of a 
dielectric medium ( md) and NCM ( mn) in this optical range is 
considered frequency independent and equal to unity. 

It is assumed that all the nanoparticles have the shape of 
ellipsoids of revolution, the same orientation and size, which 
is an order smaller than the wavelength. Below we will study 
one of the main orientations of the axes of revolution of all 
the nanoparticles when they coincide with the coordinate axis 
y lying in the plane of the interface (Fig. 1). In this case, the 
NCM has the properties of a uniaxial crystal and its effective 
permittivity is described by the diagonal tensor effet  with non-
zero components exx = ezz = effe=  and eyy = effe| | . To describe the 
optical properties of the NCM, we use one of the most com-
mon models of an effective medium with nanoparticles of the 
same type  –  the Maxwell Garnett model, in which the effec-
tive permittivity of the medium is described by the expression 
[2, 3, 4, 16 – 18] 
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Figure 1.  Geometry of the problem and shape of nanoinclusions. 
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where h is the volume fraction of nanoinclusions; and g , | |=  are 
the depolarising factors (or form factors), taking into account 
the effect of the shape of the nanoparticle on the value of the 
dipole moment induced on it. By neglecting absorption and 
frequency dispersion of the dielectric used as a composite 
matrix, we can consider the parameter em to be a constant and 
real value. For the permittivity of metal nanoparticles we 
have the expression 
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where w is the frequency of light; wp is the plasma frequency; 
e0 is the contribution of the lattice; and g is the relaxation 
parameter. 

In the case of an ellipsoid of revolution, the depolarising 
factor g | |  essentially depends on the inverse ratio of the 
lengths of the polar (a) and equatorial (b) semiaxes of 
nanoparticles, x = b/a. The case x < 1 corresponds to an 
oblate ellipsoid, for which the parameter g | |  is given by the 
expression 
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and the case  x > 1 – to a prolate ellipsoid of revolution for 
which 
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The general relation g | |  + 2g^ = 1 implies that g^ = (1 – g | |)/2. 
In the case of spherical particles, x = 1, the shape anisotropy 
is absent and g | |  = g^ = 1/3. 

Accounting for relaxation in expression (2) leads to inte-
grated components of the effective permittivity, i.e., eeff = e' eff 
+ ie'' eff, where the real and imaginary parts are determined by 
the expressions: 
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Here we have introduced the notations 
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In relations (5), indices ^ and || are omitted in quantities e' eff, 
e'' eff and g. 

Analysis of the expressions obtained indicates a resonance 
character of the functions , | |

effe= (w). The resonance frequency 
corresponds to maxima of the imaginary part of these func-
tions and are determined by the expression 
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These frequencies are related to the plasmon resonance of 
nanoparticles and essentially depend on their shape and size. 

3. Dispersion relation 

Below we consider the case of propagation of TM-type sur-
face polaritons in the structure (due to the absence of the 
magnetic response of both media TE-type polaritons cannot 
propagate in this structure). Taking into account the har-
monic dependence of the fields on time and coordinate along 
the wave propagation direction, (Ex, Hy, Ez) ? exp[i(wt – 
bx)], we write the expressions for the components of the wave 
field in the NCM: 
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where k0 = w/c; c is the velocity of light in vacuum; b is the 
propagation constant; and 
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is the transverse component of the wave vector. Equations (7) 
and (8) for the dielectric are obtained by making a substitu-
tion effe=  ® ed, mn ® md и qn ® qd. 

The solution to the equations for the magnetic field com-
ponent Hy with allowance for its continuity at the interface 
can be given in the form 
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The second boundary condition for a TM polariton consists 
in the continuity of the tangential component of the electric 
field at the interface, which is equivalent to the equation: 
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Equation (10) with (9) taken into account leads to a disper-
sion relation that relates the SP propagation constant to the 
material parameters of media and to the frequency: 

0,
( )

q q
k

d

d

eff

n

d eff

n d d eff
d eff0 2 2e e

b
e e

m e m e
e e+ = =

-

-
= =

=
=  .	 (11)

Below we will analyse the situation, when we can assume that  
mn = md = 1 and 
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In the case under study, ed > 0; therefore, in the absence of 
absorption the SP existence is possible only if effe=  < 0 and | effe= | > 
ed. We draw attention to the fact that at the chosen geometry 
of the problem, we need only the effe=  value, which enters the 
wave equation (7) and the dispersion relation (11). Therefore, 
in all the expressions below we omit the superscript ^ by 
assuming eeff º effe= .

In the presence of absorption in the structure the SP prop-
agation constant and the transverse wave vector components 
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become complex, i.e.,  b = b' – ib'' and qj = q'j – iq'' j  ( j = d, n). 
In this case, the SP field is determined by the expression 

j )z j z( , ) ( ) ( ( )' '' 'exp expiH x z H x x q qy 0 " "b= -6 @ ,	 (13)

where H0(x) = H0exp(– b''x); the sign ‘minus’ refers to the 
region z > 0, and the sign ‘plus’ – to the region z < 0. Real and 
imaginary parts of the propagation constant, which deter-
mine the phase velocity and attenuation, are given by the rela-
tions 
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Real and imaginary parts of the transverse wave vector com-
ponent of the SPs, qj, in each medium can be represented as 
follows: 
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where we introduce the notations 
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It follows from the representation of the wave field (13) that 
the planes of the SP field amplitude constant,  b''x ± q' d, nz = 
const, cross the interface between the media at the angles 
" arctan( b''/q' d, n) in each of the media. The planes of the phase 
constant, b'x " q'' d, nz = const, cross the interface at the angles 
± arctan( b'/q'' d, n).

For the SP existence, the conditions q' d > 0, q'n > 0 must be 
met, which means that the amplitude of the SP wave field 
should decrease exponentially with distance from the inter-
face. Obvious physical considerations also require the fulfil-
ment of two inequalities: b' > 0, b'' > 0, the first of which 
indicating the absence of the backward wave, the second   –  
the absence of amplification in the structure. 

4. Numerical analysis 

In the numerical analysis we used the following NCM param-
eters: e0 = 5; wp = 1.36 ́  1016  s–1; g = 3.04 ́  1013  s–1 (silver 
nanoinclusions) [24]; em = 2.25 (glass matrix); volume fraction 
of nanoinclusions, h = 1.3 ́  10–2; and permittivity of the 
dielectric, ed = 1. Figure 2 shows the frequency dependences 
of the real and imaginary parts of the effective permittivity  
effe=  obtained for an NCM with nanoinclusions in the form of 
oblate ellipsoids, spheres and prolate ellipsoids, i.e. at x = 0.5, 
1, 5. With increasing distance from the resonance frequency, 
e' eff asymptotically tends to (1 – h)em + he0, whereas e'' eff  – to 
zero. One can see that e' eff takes negative values in a narrow 
frequency range and the width of this range decreases with 

increasing parameter x. In addition, with increasing x the 
region of the plasmon resonance shifts towards higher fre-
quencies, and the real part of the effective permittivity and the 
resonance value of its imaginary part decrease. 

Figure 3 shows the frequency dependences of the real and 
imaginary parts of the propagation constant obtained for the 
structure with the above NCM parameters and the dielectric 
material permittivity ed = 1. It is seen that the resonances of 
the propagation constant correspond to the resonances of the 
effective permittivity. The presence of losses in the structure 
leads to a finite value of the propagation constant in the fre-
quency range corresponding to e' eff < 0, unlike a structure 
without absorption, for which b ® ¥ as the frequency tends 
to the upper boundary of the SP existence. In this case, disper-
sion of surface and volume polariton waves is described by 
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Figure 2.  Frequency dependences of the real (solid curves) and imagi-
nary (dashed curves) parts of the NCM effective permittivity e^eff at x = 
( 1 ) 0.5, ( 2 ) 1 and ( 3 ) 5. 
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different parts of a single continuous curve represented by the 
b'(w) dependence. In the resonance region, the SP signifi-
cantly slows down and the length of its path sharply decreases 
l = ( b'' )–1, which is caused by a sharp increase in the imagi-
nary part of the effective permittivity near the resonance fre-
quency. In the region of a maximum growth of the b'(w) value 
(i.e. a maximum derivative db'/dw), the slowing down of the 
SP is most significant, and the group velocity is an order of 
magnitude smaller than the speed of light in vacuum. In the 
region where db'/dw < 0, the group velocity also becomes 
negative. However, this frequency region corresponds to 
anomalous dispersion and strong absorption at which the 
concept of the group velocity of the wave is not always cor-
rect. 

Figure 4 shows the dependences of the real and imaginary 
parts of the SP propagation constants on the shape of nanoin-
clusions, obtained for different values of the frequency w. One 
can see that at a fixed frequency the dependence on the 
parameter x also has a resonant character. A substantial 
change in the real and imaginary parts is observed only in the 
resonance region, the width of which increases with increas-
ing frequency. Away from the resonance the b' and b'' values 
are no longer dependent on the parameter x. With increasing 
frequency the nonresonant values of b' increase, and the b'' 
values tend to zero. 

One of the important SP characteristics is the penetration 
depth of the wave field in each of the adjacent media, which is 
given by the expression ln, d = 1/q' n, d. Figure 5 shows the 
dependence of the SP penetration depth into a nanocompos-
ite and a dielectric on the frequency and shape of nanoinclu-
sions (i.e. parameter x). The dependences ln, d(w) are obtained 
for different x, and dependences ln, d(x) – for different w. 
Localisation of the radiation field near the interface of the 
media is maximal in those places, where the penetration depth 
of the surface waves is minimal: ln » 3 ́  10–2 mm and ld » 
10–1 mm. Detuning from the resonance to lower frequencies 
causes a rapid increase in the penetration depth of the field in 

both a nanocomposite and a dielectric, which in the limit 
leads to transformation of a surface wave into a volume one. 
Departure from the resonance frequency to higher frequen-
cies causes a deeper penetration of SPs into the dielectric and 
a relatively slow growth of ln in the nanocomposite. Thus, the 
greatest degree of the field localisation can be achieved by 
tuning the operating frequency. The shape of nanoinclusions 
also significantly affects the values of ld and ln. The wave field 
at selected frequencies has the highest localisation when x G 
0.5, i.e., the NCM with the inclusions having the shape of 
oblate ellipsoids. In general, at a fixed x, the value of ld is 
larger than ln. 

5. Energy fluxes 

An energy characteristic of the wave process in view of its 
harmonic function of time is the Poynting vector GSH = (c/8p)
Re(E ́  H*), which defines in our case the period-averaged 
energy flux density of SPs. The presence of both a transverse 
and a longitudinal wave component of an electric field leads 
to the fact that the vector GSH has both a longitudinal (GSxH) 
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Figure 4.  Dependence of the real (solid curves) and imaginary (dashed 
curves) parts of the SP propagation constant on the shape parameter x 
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and a transverse (GSyH) component. Using the relations 
derived for the wave fields, we can write expressions for their 
corresponding components of the Poynting vector: 
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Figure 6 shows the dependences of the longitudinal and 
transverse components of the SP energy fluxes on the z coor-
dinate. The dependences are obtained for the case of spherical 
nanoinclusions (x = 1) at different frequencies w. Note that at 
w = 4.44 ́  1015 s–1 [curve ( 2 )] in a narrow surface region of the 
nanocomposite the energy flux GSxH is negative (see the inset 
in Fig. 6). The magnitude of the longitudinal energy flux in 
the dielectric is much larger than in the nanocomposite. This 
means that the total longitudinal energy flux in the structure 
is always positive. The transverse energy flux component GSzH 
in both media is negative, i.e., the excess energy from the 
dielectric is transferred to the energy deficient NCM. Then, 
energy is partially converted into heat in the NCM. This situ-
ation is analogous to the behaviour of the surface TM wave 
energy flux in a semi-finite metal – dielectric system [25] and in 

a waveguide containing a metal substrate with a negative 
effective permittivity [26]. 

Figure 7 shows the dependences of the longitudinal and 
transverse components of the SP energy flux in the NCM and 
dielectric on the shape of nanoinclusions (i.e. parameter x), 
obtained at different frequencies w. One can see that the lon-
gitudinal component GSxH in the dielectric is always positive, 
whereas in the NCM it can be both positive and negative. In 
this case, the region, where GSxH is negative, shifts to larger 
values of x with increasing frequency. The component GSzH is 
negative in both media. For each frequency there is a region 
of the parameter x, where the behaviour of the flux compo-
nent has a resonant character. With increasing frequency, the 
region shifts to larger values of x. Because of strong absorp-
tion in the NCM in the region of the negative values of the 
longitudinal component the transverse component of the 
energy flux reaches a minimum. It is essential that in the reso-
nance region, both components of the energy flux in each of 
the media are sensitive to relatively small changes in the 
parameter x. 

6. Conclusions 

The analysis of the peculiarities of propagation of SPs in an 
anisotropic structure ‘dielectric – nanocomposite’ with metal 
inclusions refers to the case where the permittivity of one of 
the media is complex and the structure is characterised by 
absorption. Allowance for absorption leads to a modification 
of the well-known conditions for the SP existence and the cor-
responding dispersion dependences. Unlike the structure with 
real material parameters for which the frequency spectrum 
has a frequency gap between the regions of existence of sur-
face and volume waves, in the case under study the specified 
gap is absent, the division into surface and volume waves is 
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conditional and can be carried out only with respect to the 
depth of penetration. We have studied the case when the axes 
of all the ellipsoids are parallel to the interface between the 
media and perpendicular to the direction of SP propagation. 
In this case, the dispersion relation and expression for the 
wave fields include only the value of effe= , which makes the 
structure single resonant and greatly simplifies the analysis. 
Meanwhile, of interest are also two other major orientations 
of the axes of the ellipsoids – perpendicular to the interface 
and along the direction of propagation. In these cases, the SP 
behaviour will be determined by two components of the NCM 
effective permittivity tensor – effe=  and | |

effe ; therefore, the 
structure will exhibit two resonances, which should lead to a 
greater variety of the SP properties. 

Note also that in an anisotropic structure SPs can be of 
two types. The SPs discussed in this paper are of dispersion 
type. This type of surface waves arises at the interface between 
media with different signs of permeabilities, having, as a rule, 
the frequency dispersion [11, 12]. The second type includes 
surface waves arising from the optical anisotropy of one of 
the boundary media at positive values of their permeabilities 
and relatively low frequency dispersion [17, 18]. This type of 
surface waves in anisotropic nanocomposites has not yet been 
investigated, although the nanocomposites are well-con-
trolled media for the observation of such waves. The impor-
tance of the study of SPs in such structures consists in the 
applicability of the latter in the development of highly effi-
cient devices for controlling optical and IR radiation (e.g., 
modulators and filters). 
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