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Abstract.  The spectral features of the light-induced drift (LID) 
velocity of caesium atoms in inert buffer gases are studied theoreti-
cally. A strong temperature dependence of the spectral LID line shape 
of Cs atoms in Ar or Kr atmosphere in the vicinity of T ~ 1000 K is 
predicted. It is shown that the anomalous LID of Cs atoms in 
binary buffer mixtures of two different inert gases can be observed 
at virtually any (including ambient) temperature, depending on the 
content of the components in these mixtures. The results obtained 
make it possible to precisely test the interatomic interaction poten-
tials in the experiments on the anomalous LID. 

Keywords: light-induced drift, optical excitation, collisions, Doppler 
effect, buffer gas, kinetic equation. 

1. Introduction 

The light-induced drift (LID), predicted theoretically [1] and 
first experimentally observed [2] in 1979, refers to a number of 
the most powerful effects of radiation on the translational 
motion of particles. The essence of the effect consists in the 
appearance of a directional macroscopic flow of particles that 
absorb radiation and are in a mixture with buffer particles. 
Recall the nature of the phenomenon. Due to the Doppler 
effect, radiation affects selectively the absorbing particle 
velocities, i.e., produces effective copropagating ‘bundles’ of 
particles in the excited and ground states. In a buffer gas 
atmosphere these bundles experience resistance due to the 
difference between the transport collision frequencies of 
excited and unexcited particles. As a result, the gas of the 
absorbing particles as a whole acquires a directional move-
ment, and the particles can drift both in the direction of the 
luminous flux and in the opposite direction. 

Theoretical and experimental studies have shown that the 
LID phenomenon is universal in the sense that it is imple-
mented under typical experimental conditions and inherent in 
a wide class of objects: atoms, molecules, ions and conduction 
electrons in solids. To date, the LID effect has been experi-
mentally observed for nearly two dozens of different objects 
– atoms (Li, Na, K, Rb, Ne, Ba) in various buffer gases, mole

cules (CH3F, CH3Br, C2H4, NH3, SF6, CH3OH, H2O, HF) in 
different buffer gases and electrons in the InSb semiconductor 
(see, for example, [3 – 9] and references therein). 

Theoretically, under laser excitation the drift velocity 
caused by the LID effect can reach thermal velocity [10]. It has 
been experimentally shown that the atoms under the influence 
of the LID can drift at a velocity of 50 m s–1 [11]. 

One of the most important LID characteristics is the 
dependence of the drift velocity on the radiation frequency 
(LID line shape). The line shape of the LID observed in experi-
ments has been historically used to distinguish between the 
‘normal’ LID effect and the ‘anomalous’ one. 

The normal LID effect is well described by the LID theory, 
which does not take into account the dependence of the reso-
nant particles of transport collision frequencies on the velocity 
u. The drift velocity in the case of the normal LID is propor-
tional to the relative difference (netr – ngtr)/ngtr between the aver-
age transport frequencies of collisions of resonant particles in 
the excited (e) and ground (g) states with the buffer particles. 
The average transport frequency nktr is related by a simple for-
mula with the diffusion coefficient Dk of the particles in the 
state k = e, g [3]: nktr = uT

2 /(2Dk), where uT is the most probable 
velocity of the absorbing particles. Under the normal LID the 
dependence of the drift velocity on the radiation frequency 
has a simpler form. In particular, when excited by the particles 
on an isolated transition (two-level particles), this theory gives 
a characteristic dispersion-like (tilde-like) frequency depen-
dence of the drift velocity with a zero at the zero detuning of 
the radiation frequency. Since the discovery of the LID effect 
(1979) and until 1992, all the experimental results of its inves-
tigation were in good agreement with this theory [3 – 7]. 

In the case of the anomalous LID effect, which was experi
mentally discovered in 1992 [12], there is a sharp deviation of the 
frequency dependence of the drift velocity from that predicted 
by the theory of the normal LID. By now, the anomalous 
LID has been studied in a significant number of experimental 
(the anomalous LID was observed for C2H4, HF and CH3F 
molecules in various buffer gases [8, 9, 12 – 17], for potassium 
atoms in a buffer mixture of neon with other inert gases [18]) 
and theoretical [8, 15, 17, 19 – 26] papers. It was found that the 
anomalous LID is caused by the dependence of the transport 
collision frequencies on the velocity u of the resonant particles, 
wherein the anomality can arise only when the difference of 
the transport collision frequency Dn(u) º ne(u) – ng(u) of the 
particles at the combining (affected by radiation) levels e and g 
changes its sign as a function of u.

Because the transport collision frequencies ng(u) and ne(u) 
are entirely determined by the interaction potentials of the 
resonant and buffer particles, the line shape of the anomalous 
LID is very sensitive to the differences in the interaction 
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potentials of the resonant atoms in the ground and excited 
states with the buffer particles. This allows for high-precision 
experimental testing of the LID of interatomic interaction 
potentials used to calculate the spectral shape of the anoma-
lous LID signal, and, therefore, the possibility of a relatively 
simple experimental testing of the accuracy of various theo-
retical methods for calculating the interaction potentials. 

In this paper, by using the known (calculated ab initio) 
interatomic Pascale and Vandeplanque interaction poten-
tials  [27], we have theoretically predicted and calculated the 
anomalous LID of caesium atoms in a single-component inert 
buffer gas or in different binary buffer mixtures of inert gases. 
We have determined the medium parameters (temperature, 
fractions of the components in the binary buffer mixture) at 
which one would expect the occurrence of the anomalous LID 
of Cs atoms. It has been found that the anomalous LID of Cs 
atoms in the binary buffer mixture of inert gases can be 
observed at virtually any (including at ambient) temperature, 
depending on the content of the buffer gas in the mixture. The 
calculations of the anomalous LID of Cs atoms provide 
experimenters with a selection of objects for tests in LID 
experiments on interatomic interaction potentials used to cal-
culate the spectral line shape of the anomalous LID. 

2. Initial equations and their solution 

To calculate the LID velocity of alkali metal atoms, one 
should take into account the hyperfine structure (HFS) of the 
levels affected by radiation. One also should keep in mind 
the following fact. It is known that if the total orbital angular 
momentum of the electrons in the ground state is zero 
(S-state), the hyperfine sublevels can be extremely long-lived: 
collisions with nonmagnetic buffer gas particles virtually do 
not lead to mixing of the populations of these sublevels. For 
example, for the alkali metal atoms residing in the atmosphere 
of inert buffer gases, the cross sections of collisional transitions 
between the hyperfine structure components of the ground 
state are very small, i.e., by 6 to 10 orders of magnitude 
smaller than the gas-kinetic cross sections [28]. Due to this, 
the alkali metal atoms exhibit a highly pronounced effect of 
the so-called optical pumping (see, for example, [29]). The 
essence of the effect is that even weak optical radiation that is 
resonant with the transition to the nearest excited electronic 
state of the atoms can create a strong and long-lived nonequi-
librium distribution of the population over the HFS sublevels 
of the ground state. In particular, this radiation can pump 
almost all the atoms (which effectively participate in the inter-
action) to one of the HFS components. In fact, the greater the 
hyperfine splitting in comparison with the Doppler linewidth, 
the more pronounced the pumping from one hyperfine compo-
nent of the ground state to the other. Of alkali atoms we 
should particularly single out the Cs atoms, where the hyper-
fine splitting is equal to 40 Doppler widths. 

Optical pumping, so essential in the case of large hyper-
fine splitting of the electronic ground state of the caesium 
atoms, significantly decreases the LID velocity. The strong 
influence of optical pumping can be drastically reduced by 
exciting caesium atoms at two different frequencies chosen 
such that each radiation affects different hyperfine sublevels 
of the ground state. We assume that one radiation is mono-
chromatic, and the other is broadband with a spectral width 
larger than the Doppler linewidth. Monochromatic radiation 
affects selectively the absorbing particle velocity and there-
fore provides the occurrence of the LID effect. Broadband 

radiation that interacts nonselectively with the velocity of the 
atoms does not lead to the emergence of the LID effect, but 
causes its manifold increase due to the fact that it radically 
reduces the optical pumping. At the same time one can expect 
that the drift velocity will be of the same order of magnitude 
as that for the two-level particles. In view of this fact, we 
will assume below in the calculation of the LID velocity of 
alkali metal atoms that the atoms are excited by two-fre-
quency radiation. 

Consider a gas of the absorbing particles with a HFS 
of the ground and excited states; the gas being mixed with a 
buffer gas. Let the subscript i = 1, 2, 3, 4 denote the number 
of the HFS sublevels of the excited state e, and the subscript 
j = n, m – the HFS sublevels of the lower (ground) state g. The 
degeneracy of the levels i, j in the directions of the magnetic 
moment will be taken into account by the introduction of the 
statistical weights gi , gj . We will neglect the collisions between 
the absorbing particles by assuming the concentration of the 
buffer gas Nb to be much greater than that of the absorbing 
gas N. 

The interaction of the absorbing particles of the gas with 
resonance radiation in stationary and spatially homogeneous 
conditions is described by the equations for the velocity distri-
butions of the populations ri (u) and rj (u) of the HFS sub
levels i and j: 

Si (u) + N ( )Pji
j

u/  – Ge  ri (u) = 0,

Sj (u) – N ( )Pji
i

u/  + ( )ij i
i

r uG/  = 0,	

(1)

where 

N = Ne + Ng;   Ne = Ni
i
/ ;   Ng = jN

j
/ ;

Ni = ( )dir u uy ;   Nj = ( )du ujry ;	 (2)

Ni and Nj are the partial (over the HFS sublevels) concentra-
tions of the absorbing particles; Ne and Ng are the concen
trations of the absorbing particles in the excited and ground 
states, respectively; Gij is the rate of spontaneous decay of the 
excited state i via i ® j; Ge is the total rate of spontaneous 
decay of the excited level e; Si (u) and Sj (u) are the collision 
integrals; and Pji (u) is the probability of absorption per unit 
time on the j ® i transition per one absorbing atom with a pre-
determined velocity u. 

The rate Gij of the radiative transition between the HFS sub
levels of the excited, |i ñ = |Je, I, Fi ñ, and ground, |j ñ = |Jg, I, Fj ñ, 
states is given by the expression [30]: 

Gij = Ge (2Je + 1)(2Fj + 1)
J
F
F
J
I
1

e

gj

i) 3,	 (3)

where 

a
d
b
e
c
f

) 3 

is the 6j-symbol [30, 31]; I is the nuclear spin of the atom; 
Je and Jg are the total moments of the electron shell of the 
atom in the excited and ground states, respectively; and Fi , 
Fj are the total moments of the atom (with the nucleus) for 
the corresponding hyperfine components. By using the well-
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known formulas for 6j-symbols [30, 31] it is easy to see that 
the spontaneous decay rates Gij obey the relations 

, ,w we eij
j

i ij j
i

G G G G= =/ / 	 (4)

where wi = gi /Si'   gi' and wj = gj /Sj'  gj'  are the relative statistical 
weights of the sublevels i and j (gi = 2Fi + 1, gj = 2Fj + 1). The 
first relation in (4) demonstrates the well-known fact [30] that 
the total rate Ge of spontaneous decay of the excited hyperfine 
sublevel i is the same for all hyperfine sublevels i of the excited 
state e. The essence of the second relation in (4) is that in 
the case of the equilibrium distribution of the particles in the 
hyperfine components of the excited state, the spontaneous 
decay also leads to the equilibrium population of the HFS 
sublevels of the lower state. 

Let us find the radiation absorption probability Pji (u) in 
equations (1). For simplicity, we restrict our consideration to 
the condition of weak intensities of monochromatic and 
broadband radiations and assume that the fraction of the par-
ticles in the excited state e is small (Ne << N), and the velocity 
distribution of the populations of the hyperfine components 
j = n, m in the ground state g is close to Maxwellian: 

rj (u) = NjW(u),	 (5)

where W(u) is the Maxwellian distribution. Under these con-
ditions, the radiation absorption probability Pji (u) in (1) is 
defined by the well-known expression: 

ji ( )ji uji ji( ) ( ) [ ( ) ],P B N W I Y I Ym b
bju u u= +

N
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b
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(6)
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where w, l, k and Im are the frequency, wavelength, wave 
vector and intensity of monochromatic radiation; kb and Ib 
are the wave vector and intensity of broadband radiation; 
F(w) is the line shape of broadband radiation; wij is the reso-
nant frequency of the j ® i transition; Bji is the second Einstein 
coefficient [30] (we assume that this coefficient is the same 
for monochromatic and broadband radiations because of the 
smallness of the hyperfine splitting frequency compared to 
the optical frequency); and G (u) is the homogeneous half-
width of the absorption line, which generally depends on the 
velocity and is the sum of the spontaneous, Ge /2, and collision, 
g(u), half-widths: 

G (u) = Ge /2 + g(u).	 (7)

Formula (6) for the absorption probability Pji (u) includes 
Nj , i.e., the populations of the jth HFS sublevel of the ground 
state. The populations Nj can be found from equations (1) 
integrated over the velocities. For the velocity-averaged colli-
sion integrals we use the model expressions: 

( ) ( ),dS w N Ne ei i inu = -u ry

j( ) [ ( ) ].dS w N N Ng m nj jnu = + -u ry 	

(8)

The frequencies enr  and gnr  denote the frequencies of colli-
sional mixing of the HFS components of the excited and 
ground states, respectively. It is assumed that each effective 
collision frequency, characterised by the frequency enr  ( gnr ), leads 
to an equilibrium distribution of the populations of the HFS 
components of the e (g). Taking into account (8) and (6), the 
balance equations for the populations Ni, j have the form 

( ) ,w N N Q N Q N N 0e e m m n n ei i i i in G- + + - =r

j[ ( ) ] ,w N N N Q N N 0g m n j ji j ij i
ii

n G+ - - + =r // 	

(9)

where 

( )u[ ( ) ] ( ) .dQ B I Y I Y Wm b
b

ji ji ji jiu u= + uy 	 (10)

Using the approximate normalisation condition Nm + Nn –~ N 
(here we have taken into account the approximation Ne << N) 
and relations (4), from equation (9) we obtain the expressions 
for the relative populations of the HFS sublevels of the ground 
state: 

( ) ( ) ( )

( ) ( )
,N

N
Q w Q w

w Q w
m

g e e n m m e m n n e
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i i
i
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+ + + + +

+ + +
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/ /
/

,N
N

N
N1n m= - 	

(11)

where the summation is performed over all allowed transitions 
n, m ® i. The population of the excited state is neglected. 

Let us derive an expression for the drift velocity from the 
kinetic equations (1). Note that the hyperfine states are the 
result of interaction between the electrons of an atom with 
the  angular momentum (spin) of the nucleus. The nuclear 
spin has little effect on the atomic electron shell, which deter-
mines the interaction potential in collisions and therefore 
the collision characteristics of the atoms. Consequently, the 
absorbing atoms at different sublevels ‘inside’ its HFS have 
almost identical interaction potentials in collisions with the 
buffer gas atoms. Thus, the collision characteristics of the 
atoms can differ only for thin components (e.g., P1/2 and P3/2) 
and for the ground state (S1/2). This approximation allows us, 
by summing the equation in (1) with respect to i and j, to 
derive the equations: 

Se(u) + NP(u) – Ge re(u) = 0,

Sg(u) – NP(u) + Ge re(u) = 0,	
(12)

where re(u) = S i ri (u) [ rg(u) = S j rj (u)] is the total popula-
tion of the excited (ground) state; 

( ) ( )P P
,

ji
i j

u u=/

	 j ( )ji u( ) [ ( ) ]W N
N

B I Y I Ym b
b

j
ji ji

i

u u= +/ / 	 (13)
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is the sum of the absorption probabilities (6) over all allowed 
transitions; Se(u) = S i Si (u); and Sg(u) = S j Sj (u). For the col-
lision integrals in (12) we use the model of particle ‘arrival’ 
that is isotropic in velocities [25, 32]: 

Sk(u) = –nk(u) rk(u) + Sk
(2)(u),   k = e, g,	 (14)

where the ‘arrival’ term Sk
(2)(u) is the function of the velocity 

modulus u = |u|; and nk(u) is the transport collision frequency 
[23, 32]. The collision model (14) takes into account the velocity 
dependence of the collision frequency and at the same time 
allows one to obtain an analytical solution to the problem 
in question at any ratios of the masses of active and buffer 
particles. 

The transport collision frequency nk(u) in (14) is related 
with the characteristics of the elementary scattering event by 
the expression [3] 

u
3

( ) ) ( ) ,exp d
q

u u F u u
b

k k3
2

2

2 2

0
n u

u u
u u s= - + (

r
e oy 	 (15)

where 

) ;cosh sinhF u u2
b b b
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= -( u u2 2u u
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e eo o
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MM

M
k T2b b

b

b
b

b

B

p
m u m u= =

+
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M
r

r 	

(16)

Nb and Mb are the concentration and the mass of the buffer 
particles; M is the mass of the particles absorbing radiation; 
kB is the Boltzmann constant; T is the temperature; u is the 
relative velocity of the resonant and buffer particles before 
the collision; sk(u) is the transport scattering cross section of 
the absorbing particle in the k state by the buffer particle. The 
cross sections sk(u) are calculated using the interaction poten-
tials of the absorbing and buffer particles. 

The LID velocity of the absorbing particles is given by 

[ ( ) ( )] .dNu 1
L e gr ru u u= + uy 	 (17)

From the structure of equations (12) and expression (13), 
taking into account the specific form of the collision integral 
(14), it follows that the velocity distributions of the popula-
tions re(u) and rg(u) represent the sum of the anisotropic 
parts dre(u) and drg(u) directly induced by radiation [the 
function P(u)] and the isotropic parts generated by the term 
of the ‘arrival’ of the collision integral (14). It is obvious that 
only the anisotropic parts of the velocity distribution of the 
populations contribute to the drift velocity (17). For these 
anisotropic parts from equations (12) with (14) taken into 
account, we obtain the expressions: 

dre(u) = ( )
( )

,N
P

e en u
u

G +

drg(u) = ( ) [ ( )]
( ) ( )

.N
P

g e e

e

n u n u
n u u

G-
+

	

(18)

When substituting formulas (18) into (17) for the drift velocity, 
we obtain the expression 

( ) [ ( )]
( ) ( )

( ) .dPuL
g e e

g e

n u n u
n u n u

u u
G=

+

-
uy 	 (19)

As noted in the Introduction, the anomalous LID can 
arise when the transport frequencies [ne(u) and ng(u)] of colli-
sions of the resonant particles in the excited and ground states 
with the buffer particles are close to each other. The cause for 
the anomalous LID emergence is the difference in depen-
dences ne(u) and ng(u) and, as a consequence, the possibility of 
changing the sign of the difference in the transport collision 
frequencies, D n(u) º ne(u) – ng(u). In this case, the absorbing 
particles with both a positive and a negative value of D n(u) 
contribute to the drift velocity uL. This can lead to a strong 
deviation of the LID line shape from that predicted by the 
theory of the normal LID effect, which does not take into 
account the velocity dependence of the transport collision fre-
quencies. 

If the frequencies ne(u) and ng(u) strongly differ from each 
other, the drift velocity uL as a function of the radiation fre-
quency corresponds to the normal LID and is well described 
by the LID theory with velocity-independent transport colli-
sion frequencies, i.e., by replacing in expression (19) the fre-
quency nk(u) (k = e, g) by the average transport frequency 

( ) ( ) ( )dWn2tr
k

T
k2

2n
u

n uu u u= y

	 u
3

( ) ,exp d
u
N u

u
u u

3
8 b

T T
k5

5
2

2

0p
m

s= -
M

e oy 	 (20)

where uT = (2kBT/M)1/2 is the most probable velocity of the 
absorbing particles; uT = (2kBT/m)1/2 is the most probable 
velocity of the relative motion of the absorbing and buffer 
particles; and n is the unit vector in the arbitrary direction. 
The average transport frequency nk

tr is related by a simple for-
mula with the diffusion coefficient Dk of the particles in the k 
state [3, 33]: 

.
D2

tr
k

k

T
2

n u
= 	 (21)

Expression (19) for the drift velocity, which is a three-
dimensional integral, can be greatly simplified by integrating 
the velocity u over the directions. As a result, we obtain the 
final expression for the drift velocity uL, which is given in 
the form 

uL º u0 u(W),	 (22)

where we have introduced the velocity parameter u0 

8
,u
c

I
/
m

0 7 2

4

'p
l

= 	 (23)

and the dimensionless velocity u(W), which depends on the 
frequency detuning W of monochromatic radiation 

W jt ji

3
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0
t x= -

N/ /y
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b

0
w w# +ij ij; Ey 	 (24)

Here we use the function of the dimensionless velocity t = u/uT : 
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In expression (24), the relative populations of the HFS sub-
levels of the ground state Nj /N are found from formula (11) 
using the Qji quantities (10), which take the form 

Qji = 
ji

3

( )exp
k

B
t t

2
/

T
3 2

2

0p u
-y

	 Ftt
3

( ) ( ) ( ) .d dI I tm bij ij
0

# y y w w+; Ey 	 (26)

As the frequency detuning W of monochromatic radiation it is 
convenient to introduce in (24) the quantity 

W = w – w0 ,	 (27)

where w0 is the frequency between the ‘middles’ of the HFS of 
the excited and ground states.

Thus, the calculation of the drift velocity by the collision 
model (14) of the velocity-isotropic ‘arrival’ and by taking 
into account the dependence of the collision broadening on 
the velocity u of the resonant particles is reduced to the calcu-
lation of integrals (24) and (26). 

When calculating the LID velocity of the atoms in the 
mixture of two different buffer gases, in formula (25) we must 
assume for t(t) that 

nk(t) = n1k(t) + n2k(t),	 (28)

where the subscripts 1 and 2 denote the sort of the buffer par-
ticles. Similarly, the total collision half-width of the absorp-
tion line g(t) is equal to the sum of half-widths g1(t) and g2(t), 
caused by the collision interaction of buffer particles of sorts 
1 and 2. 

It is appropriate to make a remark. In the initial equations 
describing the LID effect of alkali metal atoms, we neglected 
the effect of light pressure. This was due to the fact that under 
conditions typical for the occurrence of the LID, the effect of 
light pressure is several orders of magnitude weaker because 
the photon momentum is small as compared with the charac-
teristic thermal momentum of the particle [3]. 

In order to compare the effects of the LID and light pres-
sure, we present a formula for the velocity uR of the drift 
caused by light pressure. For simplicity, we consider the case 
when the transport collision frequency nk (u) and the homoge-
neous half-width of the absorption line G(u) are independent 
of the velocity u [nk (u) = ntrk = const, G(u) = G = const]. Under 
these conditions, the drift velocity uR is given by the expres-
sion (see, e.g., [3]): 

,M
P

M
Pu k k

R
g
tr
m b

g
tr
b' '

n n
= + 	 (29)

where 'k/M and 'kb /M are the recoil velocities during 
absorption of the photons of monochromatic and broad-
band radiations, respectively; 
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are the velocity-integrated absorption probabilities of mono-
chromatic (Pm) and broadband (Pb) radiations per unit of 
time; and Qm

ji  and Q
b
ji are, respectively, the first term (propor-

tional to the intensity Im of monochromatic radiation) and the 
second term (proportional to the intensity Ib of broadband 
radiation) in formula (26) for Qji. The sum Pm + Pb gives a 
complete, velocity-integrated probability P of radiation 
absorption by a particle per unit of time: 

Pm + Pb = P º 
j( ) .dP N
N

Qji
ij

u u = //y 	 (31)

3. Anomalous LID of caesium atoms 

The transport properties of Cs atoms in the excited states 
62P1/2 and 62P3/2 are different in view of the fact that due to the 
large value of the Massey parameter, the collisional mixing of 
the fine structure components of caesium atoms is absent (see, 
for example, [34]). In this case, the 62P1/2 and 62P3/2 states are 
excited differently by the collisions. Therefore, the anomalous 
LID arises in a different manner for the cases of excitation of 
D1 and D2 transitions of caesium atoms. 

Using formulas (15) and (22) – (26), we have numerically 
investigated the LID of caesium atoms in inert buffer gases. 
Figure 1 shows the energy level diagram of caesium atoms 133Cs 
for the transitions 62S1/2 – 62P1/2 (D1 line) and 62S1/2 – 62P3/2 
(D2 line). For caesium atoms, according to the NIST data-
base [35], the spontaneous decay rates Ge of the excited levels 
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Figure 1.  Energy level diagram of caesium atoms 133Cs (nuclear spin, 
I  = 7/2) involved in the 62S1/2 – 62P1/2 (D1 line, l = 894.3 nm) and 
62S1/2 – 62P3/2 (D2 line, l = 852.1 nm) transitions: 	
F is the total angular momentum of the atom; n, m, 1, 2, 3, 4 are desig-
nations of the HFS sublevels used in text.
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62P1/2 and 62P3/2 are 2.86 ́  107 and 3.28 ́  107 s–1, respectively; 
the wavelength of the D1 line is l = 894.3 nm; and the wave-
length D2 line is l = 852.1 nm. The rates Gij of the radiative 
transition between the magnetic HFS sublevels are calculated 
using formula (3).

It is usually assumed in the LID theory that the collision 
half-width of the absorption line g(u) is independent of the 
velocity u of the resonant particles [ g(u) = g = const]. In the 
case of the normal LID [when the difference in the transport 
collision frequencies Dn(u) does not change its sign as a func-
tion of u], the effect of the dependence g(u) on the LID line 
shape is negligible and can be ignored. This effect is also neg-
ligible in the case of the anomalous LID if the Doppler width 
of the absorption line markedly exceeds its collision half-
width (at g << kuT, kuT is the Doppler width) [25, 36]. That is 
why in calculating the LID velocity in terms of Doppler 
broadening, we have neglected the dependence of the homo-
geneous half-width of the absorption line G(u) of the velocity 
u and set G(t) = G = const in formulas (25). The specific values 
of G = Ge /2 + g for different Cs – X systems (X is the inert gas 
atom) were determined according to [37] for the coefficients 
b  of the collision broadening of the absorption line (in the 
case of D1 and D2 lines we, respectively, have bHe = 9.62 and 
13.35 MHz Torr–1 for Cs – He; bNe = 5.01 and 5.20 MHz Torr–1 
for Cs – Ne; bAr = 9.82 and 11.39 MHz Torr–1 for Cs – Ar; 
bKr = 9.92 and 5.40 MHz Torr–1 for Cs – Kr; and bXe = 10.70 
and 28.77 MHz Torr–1 for Cs – Xe). 

For alkali metal atoms in the atmosphere of inert buffer 
gases, the collision cross sections of the n ® m and m ® n tran-
sitions between the HFS components of the ground state are 
very small, i.e., by 6 to 10 orders of magnitude less than the 
gas-kinetic cross sections [28]. Therefore, we assume that the 
frequency of collisional mixing of the HFS components of 
the ground state is gnr  = 0. At the same time, the populations 
of the HFS components of the excited state are easily mixed 
in collisions [28]. In view of this fact, for the frequency enr  of 
collisional mixing of the HFS components of the excited state, 
we will use the same values as for the collision half-widths  
( enr  = g). 

The transport collision frequencies nk(t) º nk(tuT) º nk(u) 
for the Cs – X systems were calculated numerically by formula 
(15) using the transport cross sections sk(u) from [22, 23] on 
the basis of the Pascale and Vandeplanque potential interac-
tion [27]. 

A good criterion for determining the possibility of the 
anomalous LID occurrence in a single-component buffer gas 
is the sign-alternating temperature dependence of the differ-
ence between the averaged transport frequencies of collisions 
with the buffer particles (20) netr – ngtr or, which is the same, 
the difference between the diffusion coefficients in the buffer 
gas De – Dg of the resonant atoms in the excited and ground 
states. In the case of the binary buffer mixture the criterion 
for the occurrence of the anomalous LID are different signs 
of the difference netr – ngtr for the resonant atoms in each of the 
two buffer gases. The anomalous LID should be expected to 
arise in a single-component buffer gas at such temperatures 
and such relative fractions of gases in the binary buffer mix-
ture, for which the difference netr – ngtr (or De – Dg) vanishes 
(under these conditions, the velocity dependence of the colli-
sion frequencies will become pronounced). The above criteria 
were used in [18, 22, 23, 25, 26] to find the objects that ‘claim’ 
to exhibit the anomalous LID. 

Figures 2 and 3 shows the temperature dependence of the 
relative difference 
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of the average transport frequencies of collisions of caesium 
atoms in the excited and ground states with the inert gas 
atoms during the excitation of the 62S1/2 – 62P1/2 (D1 line) and 
62S1/2 – 62P3/2 (D2 line) transitions of Cs atoms. For the factor 
Dn/n, to which the drift velocity of the normal LID is propor-
tional, we have found a strong temperature dependence, up to 
a change of sign for some pairs of colliding particles. 

In exciting the D1 transition of Cs atoms in the Ar buffer 
gas, the factor Dn/n vanishes at T » 960 K [curve ( 1 ) in Fig.  2]. 
Therefore, the anomalous LID should arise in the vicinity of 
T » 960 K. Analysis of Fig. 2 shows that the anomalous LID 
should also be expected to occur upon excitation of the D1 
transition of Cs atoms in mixtures of inert gases Ne – Ar, 
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Figure 2.  Temperature dependences of the relative difference Dn/n º 
(netr – ngtr)/ngtr between the average transport frequencies of collisions 
of caesium atoms in the excited (e) and ground (g) states with the inert 
gas atoms upon excitation of the 62S1/2 – 62P1/2 (D1 line) transition of 
Cs atoms in the mixtures of ( 1 ) Cs – Ar, ( 2 ) Cs – Xe, ( 3 ) Cs – He, ( 4 )
Cs – Kr and ( 5 ) Cs – Ne.
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Figure 3.  Same as in Fig. 2, but upon excitation of the 62S1/2 – 62P3/2 
(D2 line) transition of Cs atoms in mixtures of ( 1 ) Cs – Xe, ( 2 ) Cs – Kr, 
( 3 ) Cs – Ne, ( 4 ) Cs – Ar and ( 5 ) Cs – He. 
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Ne – Xe, He – Ar, He – Xe, Kr – Ar and Kr – Xe almost at any 
temperatures (depending on the choice of the buffer gas frac-
tion in the binary buffer mixture). 

In exciting the D2 transition of Cs atoms in any of the 
buffer gases – Kr, Ar or He, the factor Dn/n vanishes at tem-
peratures T » 1106, ~1025 or ~325 K, respectively [curves 
( 2, 4, 5 ) in Fig. 3]. Therefore, the anomalous LID of Cs atoms 
should arise in the specified buffer gases in the vicinity of 
these temperatures. It also follows from the analysis of Fig. 3 
that upon excitation of the D2 transition of Cs atoms, the 
anomalous LID should be expected to arise in the mixtures of 
inert gases He – Ne, He – Ar, He – Kr and He – Xe at T > 325 K 
(the temperature depends on the choice of the buffer gas frac-
tion in the binary buffer mixture). 

Figure 4 shows the dependences [calculated by formula 
(15)] of the relative difference 
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between the transport collision frequencies of Cs atoms in 
the Ar buffer gas on the dimensionless velocity t = u/uT upon 
excitation of the D1 transition of Cs atoms. Formula (24) 
shows that due to the factor t exp(–t2) the main contribution 
to the drift-velocity integral u(W) is made by the particles with 
velocities t » 1. In the t » 1 region at T = 300 and 1500 K, 
the  factor Dn(t)/n(t) does not change its sign for the Cs – Ar 
system [curves ( 1 ) and ( 3 ) in Fig. 4]; therefore, one should 
observe at these temperatures the normal LID of Cs atoms, 
well described by the LID theory with velocity-independent 
transport collision frequencies. At T = 970 K the sign of the 
factor Dn(t)/n(t) changes in the t » 1 region [curve ( 2 ) in Fig. 4] 
and thus in the vicinity of T » 970 K there must arise the 
anomalous LID of Cs atoms in the Ar buffer gas. 

In the numerical calculations, we assume that the spectrum 
of broadband radiation has a Gaussian shape: 

( ) ,expF 1 b 2

T Tpw w w
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where wb is the centre frequency of broadband radiation, and 
Dw is the half-width (at 1/e level) of its spectrum. The value 
of Dw is taken several greater than the Doppler width of the 
absorption line; in the calculations we used Dw/2p = 3000 MHz 
[Dw/(2pc) = 0.1 cm–1]. With this value of Dw the linewidth of 
broadband radiation is several times smaller than the fre-
quency spacing between the HFS levels of the ground state 
and several times greater than the frequency spacing between 
the HFS levels of the excited state. The centre frequency wb is 
chosen such that broadband and monochromatic radiations 
affect different HFS levels of the ground state. Formally, this 
is reflected in the fact that in the case of the negative (positive) 
frequency detuning W of monochromatic radiation, the centre 
frequency wb of broadband radiation is equal to the frequency 
between the ‘middle’ of the HFS of the excited state and the 
HFS sublevel n (m) of the ground state: 
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where wmn is the frequency spacing between the HFS levels of 
the ground state. As noted above, broadband radiation itself 
causes no LID effect, but provides its multiple enhancement 
due to the fact that it considerably reduces pumping of the 
atoms with one hyperfine component of the ground state to 
the other. With regard to the mutual direction of propagation 
of monochromatic and broadband radiations we assume that 
the waves can be copropagating (we will also use the notation 
kb−−k) or counterpropagating (kb−̄ k). 

Figure 5 shows the results of the numerical calculations 
[based on formulas (22) – (26)] of the LID velocity projection 
to the direction of monochromatic radiation uL º kuL/k as 
a function of the frequency detuning W (27) for Cs atoms in 
the Ar buffer gas in the case of excitation of the D1 transition 
of Cs atoms. The calculations were performed using velocity-
dependent collision frequencies nk(u) (15) (solid curves) and 
velocity-independent collision frequencies [dashed curves; in 
the formulas for the drift velocity we used nk

tr (20) instead of 
nk(u) (15)]. All the calculations were performed at a buffer gas 
pressure of pbuf = 10 Torr. The LID velocity is virtually inde-
pendent of the direction of propagation of broadband radia-
tion: the dependences uL(W) for the cases of copropagating 
and counterpropagating waves do not differ in the scales of 
the figure. 

One can see from Fig. 5 that the velocity dependence of 
the collision frequencies can greatly change the shape of the 
LID line (compared with the results of calculations with con-
stant collision frequencies), up to the appearance of addi-
tional zeros in the uL(W) dependence. For Cs atoms the drift 
velocity as a function of the radiation frequency can have 
eleven zeros (Fig. 5b) instead of seven, as would be in the case 
of the normal LID (dashed curves in Fig. 5). The numerical 
calculations show that the anomalous LID of Cs atoms in the 
Ar buffer gas arises upon excitation of the D1 line of caesium 
atoms in the temperature range 850 K < T < 1150 K. Thus, 
in this temperature range it is necessary to take into account 
the velocity dependence of the collision frequencies, nk(u), 
in the calculation of the drift velocity (24). At lower, or vice 
versa, higher temperatures the velocity dependence of the col-
lision frequencies in equation (24) has little effect on the shape 
of the LID line. In these temperature ranges, the drift velocity 
(24) can be calculated with good accuracy by using velocity-
independent collision frequencies nk

tr (20) (Fig. 5a). Comparison 
of Figs 5a and 5b clearly shows that in the case of the anoma-
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Figure 4.  Dependences of the relative difference between the transport 
collision frequencies Dn(t)/n(t) of the dimensionless velocity t = u/uT for 
the Cs – Ar system in the case of excitation of the D1 transition of Cs 
atoms at T = ( 1 ) 300, ( 2 ) 970 and ( 3 ) 1500 K.
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lous LID of Cs atoms in the Ar buffer gas, the drift velocity 
decreases, as compared with the case of the normal LID, by 
approximately 20 times. 

It is well known that the frequency dependence of the LID 
velocity is closely related with the absorption spectrum of 
monochromatic radiation. For example, in the simplest case 
of two-level particles and at constant collision frequencies, 
the frequency dependence of the drift velocity uL(W) has the 
form of the first derivative of the absorption line. Figure 6 
shows the results of the numerical calculations [by formulas 
(30) and (31)] of the probabilities of monochromatic radia-
tion absorption. When using only a single travelling mono-
chromatic wave, the effect of the optical pumping leads to the 
formation of a smooth single absorption line located between 
the resonant frequencies of the transitions from the HFS com
ponents [curve ( 1 ) in Fig. 6]. In a situation when the optical 
pumping is negligible (in the presence of broadband radia-
tion), the absorption line of monochromatic radiation experi-

ences significant changes: it is determined by a combination 
of individual lines corresponding to intra-atomic transitions 
[curve ( 2 ) in Fig. 6]. Such a transformation of the absorption 
spectrum of monochromatic radiation means that broadband 
radiation still has a significant effect on the shape of the LID 
line, though it does not result in the occurrence of the LID 
due to the velocity-nonselective interaction with the atoms. 
One can see from Fig. 6 that broadband radiation increases 
the probability of monochromatic radiation absorption by 
three orders of magnitude. Thus, when use is made of broad-
band radiation, the LID velocity increases by three orders of 
magnitude. 

Figure 7 shows the results of the numerical calculations 
[by formulas (29) and (30)] of the light-pressure-induced drift 
velocity projection to the direction of monochromatic radia-
tion uR º kuR/k (calculations were performed with the same 
parameters as for Fig. 5a). As can be seen from Fig. 7, the 
drift velocity uR strongly depends on the direction of propaga-
tion of monochromatic and broadband radiations: for coun-
terpropagating waves it is eight times less than that for 
copropagating waves. Comparison of Figs 5 and 7 shows that 
in the case of counterpropagating waves, under the action of 
light pressure the maximum LID velocity exceeds the maxi-
mum drift velocity by 6000 and 330 times, respectively, for the 
cases of the normal (Fig. 5a) and anomalous (Fig. 5b) LIDs. 
On the basis of this fact, we have neglected the effect of light 
pressure in the calculations of the anomalous LID of caesium 
atoms. 

Consider the LID of Cs atoms in the binary buffer mix-
tures of inert gases upon excitation of the D1 transition of Cs 
atoms. In this case, as noted above, the anomalous LID of 
Cs  atoms is possible at almost any temperature set by the 
experimenter if the fraction of the buffer gas in the binary 
buffer mixture is chosen appropriately. For definiteness, we 
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will use T = 300 and 500 K. Figure 8 illustrates the occurrence 
of the anomalous LID of caesium atoms upon excitation of 
the D1 transition of Cs atoms in the buffer gas mixture of Ne, 
He or Kr with any other gases, Ar or Xe, at various fractions 
of helium xHe, neon xNe and krypton xKr in these mixtures: 

xNe, He, Kr = N
N , ,

b

Ne He Kr ,   Nb = NNe, He, Kr + NX,	 (36)

where NNe, He, Kr is the concentration of neon (NNe), helium 
(NHe) or krypton (NKr); NX is the concentration of other inert 
buffer gas (Ar or Xe); and Nb is the total concentration of the 
buffer gas. Note that the calculations of the drift velocity by 
the formulas for the normal LID [without the velocity depen-
dence of the transport collision frequencies, i.e., with the 
replacement nk (t) ® ntrk ] at different (indicated in Fig. 8) frac-
tions of helium, neon and krypton in the binary buffer mix-
ture yield uL(W) = 0. Numerical analysis shows that at T = 
300 K, the anomalous LID of Cs atoms can be observed in 
the following ranges of the neon and helium fractions in the 
buffer mixture: 0.36 ~< xNe ~< 0.50 for the Ne – Ar mixture; 
0.920 ~< xHe ~< 0.945 for the He – Ar mixture; 0.40 ~< xNe ~< 0.55 
for the Ne – Xe mixture; and 0.90 ~< xHe ~< 0.96 for He – Xe the 
mixture. At T = 500 K the anomalous LID of Cs atoms can be 
observed in the range of krypton fractions, 0.37 ~< xKr ~< 0.67, 
in the Kr – Ar mixture and, 0.67 ~< xKr ~< 0.85, in the Kr – Xe 
mixture. The line shape of the anomalous LID is very sensi-
tive to changes in the concentration of the components of the 
buffer mixture of the two gases. 

Consider now the LID of Cs atoms in the case of excita-
tion of the D2 transition. Figure 9 shows the results of calcula-
tions of the LID velocity of Cs atoms in the Kr buffer gas. 
The calculations show that the anomalous LID of Cs atoms 
in the Kr buffer gas upon excitation of the D2 line of caesium 
atoms occurs in the temperature range 800 K < T < 1350 K 
(Fig. 9b). Outside this range, the LID line shape corresponds 
to the normal LID and the drift velocity can be calculated by 

1
1

2

2

uR/cm s–1

0.075

0.050

0.025

0

–6 –4 –2 0 2 4
W
2p /GHz

Figure 7.  Dependences of the light-pressure-induced drift velocity pro-
jection to the direction of monochromatic radiation uR º kuR/k on the 
frequency detuning W of radiation for Cs atoms in the Ar buffer gas in 
the case of excitation of the D1 transition of Cs atoms at pbuf = 10 Torr, 
T = 300 K, Im = 0.1 W cm–2, Ib = 1 W cm–2, Dw/(2pc) = 0.1 cm–1 for ( 1 ) 
kb−−k and ( 2 ) kb−̄ k. The vertical lines indicate the frequencies that are 
resonant with the frequencies of the transitions m – 1, 2 and n – 1, 2.

uL/cm s–1

5

2

1

3

4

0

–2

–1

–3

–4

–5

uL/cm s–1

6

2

4

0

–2

–4

–6

uL/cm s–1

6

2

4

0

–2

–4

–6

a

b

c

–6 –4 –2 0 2 4 W
2p/GHz

–6 –4 –2 0 2 4 W
2p/GHz

–6 –4 –2 0 2 4 W
2p/GHz

Figure 8.  Dependences of the LID velocity projection to the direction 
of monochromatic radiation uL º kuL /k on the frequency detuning W of 
monochromatic radiation for Cs atoms in the binary buffer mixtures in 
the case of excitation of the D1 transition of Cs atoms at pbuf = 10 Torr, 
Im = 0.1 W cm–2, Ib = 1 W cm–2, Dw/(2pc) = 0.1 cm–1, T = (a, b) 300 and 
(c) 500 K. The mixtures used are (a) Cs – (He – Xe) with xHe = 0.945 (solid 
line) and Cs – (He – Ar) with xHe = 0.935 (dashed line), (b) Cs – (Ne – Xe) 
with xNe = 0.486 (solid line) and Cs – (Ne – Ar) with xNe = 0.442 (dashed 
line) and (c) Cs – (Kr – Ar) with xKr = 0.482 (solid line) and Cs – (Kr – Xe) 
with xKr = 0.750 (dashed curve). The vertical lines indicate the frequencies 
that are resonant with the frequencies of the transitions m – 1, 2 and 
n – 1, 2. Calculations of the drift velocity, without the allowance for the 
velocity dependences of the transport collision frequencies (with the re-
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937Spectral anomalies of the effect of light-induced drift of caesium atoms

using the velocity-independent collision frequencies (Fig. 9a). 
Comparison of Figs 9a and 9b shows that in the case of the 
anomalous LID of Cs atoms in the Kr buffer gas, the drift 
velocity decreases by about eight times as compared with the 
case of the normal LID. The drift velocity dependences uL(W) 
have a simpler form (fewer oscillations) compared with the 
case of the excitation on the D1 line. This is due to the fact 
that the hyperfine splitting of the 62P3/2 level is comparable 
to the Doppler width or less than it (at room temperature the 
Doppler linewidth for caesium is kuT/2p = 230 MHz), and 
therefore the absorption line of monochromatic radiation is 
no longer a combination of separate lines corresponding to 
intra-atomic transitions, as in the case of excitation on the 
D1 line. 

The calculations show that when the D2 line of caesium 
atoms is excited in the Ar buffer gas, the anomalous LIDs 

arises in the temperature range 800 K < T < 1250 K. At T » 
1030 K the line shape of the anomalous LID is the same as in 
Fig. 9b. At the same time, the drift velocities are about two 
times less than those shown in Fig. 9b.

When the D2 line of Cs atoms is excited in the He buffer 
gas, the anomalous LID arises in the vicinity of T » 325 K. 
However, the maximum value of the drift velocity in this case 
is too small – about 100 times less than that shown in Fig. 9b. 

Figure 10 illustrates the occurrence of the anomalous LID 
of Cs atoms upon excitation of the D2 transition of Cs atoms 
in the binary buffer mixture He – Kr with the helium fraction 
of xHe = 0.974 at T = 600 K. At the given temperature, the 
anomalous LID can be observed only in a narrow range of 
helium fractions in the buffer mixture: 0.960 <~ xHe <~ 0.985. 

The numerical analysis shows that at T = 600 K the ano
malous LID of Cs atoms can be observed upon excitation of 
the D2 transition of Cs atoms in the following buffer mixtures: 
in the He – Ar mixture at xHe » 0.935, in the He – Xe mixture 
at xHe » 0.991 and in the He – Ne mixture at xHe » 0.963. At 
the given temperature the anomalous LID can be observed 
only in a narrow range of DxHe » 0.02 in the buffer mixtures. 

4. Conclusions 

Using the known interatomic interaction potentials we have 
investigated the anomalous LID of caesium atoms upon exci-
tation of the D1 and D2 line of Cs atoms in an inert buffer gas 
or binary buffer mixture of two different inert gases. We have 
predicted the anomalous frequency dependence of the drift 
velocity of caesium atoms in the Ar buffer gas in the tempera-
ture range 850 K < T < 1150 K upon excitation of the D1 line 
of Cs atoms and in Ar and Kr buffer gases in the temperature 
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Figure 9.  Dependences of the LID velocity projection to the direction 
of monochromatic radiation uL º kuL/k on the frequency detuning W 
of monochromatic radiation for Cs atoms in the Kr buffer gas in the 
case of excitation of the D2 transition of Cs atoms at pbuf = 10 Torr, 
Im = 0.1 W cm–2, Ib = 1 W cm–2, Dw/(2pc) = 0.1 cm–1, T = (a) 300 and (b) 
1120 K. The dashed curves show the calculations without the allowance 
for the velocity dependence of the transport collision frequencies (with the 
replacement nk(t) ® nk

tr]. The vertical lines indicate the frequencies that 
are resonant with the frequencies of the transitions m – 1, 2 and n – 1, 2. 
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mixture in the case of excitation of the D2 transition of Cs atoms at 
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Dw/(2pc) = 0.1 cm–1. The dashed curves show the calculations without 
the allowance for the velocity dependence of the transport collision fre-
quencies [with the replacement nk(t) ® nk

tr]. The vertical lines indicate the 
frequencies that are resonant with the frequencies of the transitions 
m – 1, 2 and n – 1, 2.
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ranges 800 K < T < 1250 K and 800 K < T < 1350 K, respec-
tively, upon excitation of the D2 line of Cs atoms. We have 
found that in the binary buffer mixtures of the inert gases the 
anomalous LID of caesium atoms can be observed at almost any 
(including ambient) temperature, depending on the content of 
the buffer gases in the mixtures. 

The results obtained show that even a small difference in 
the interatomic interaction potentials of resonant and buffer 
particles strongly manifests itself in the frequency dependence 
of the drift velocity in the region of the anomalous LID. 
Experimental study of the anomalous LID of caesium atoms 
will allow one to test the subtle details of the interatomic 
interaction potentials. 
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