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Abstract.  A theory of a closed excitation contour (D system) of a 
three-level atom in an optically dense medium is constructed with 
allowance for temperature. The spatial quasi-periodic oscillations 
of the refractive index in the system under study are shown to damp 
with increasing temperature. The range of temperatures at which 
these oscillations are most pronounced is found. 

Keywords: three-level atom, D contour of excitation, temperature 
dependence, spatial oscillations of refractive index. 

1. Introduction 

It is known that interaction of a three-level system with a two-
frequency laser field in the L configuration leads, due to the 
presence of quantum interference, to the emergence of a new 
superposition state, which no longer interacts with the laser 
radiation. This phenomenon was called coherent population 
trapping (CPT) [1, 2]. When a three-level atom is excited by a 
probe and a strong fields, a CPT-related effect, i.e. electro-
magnetically induced transparency (EIT), comes to the fore 
[3 – 5]. The essence of EIT is that quantum interference under 
certain conditions makes a medium virtually transparent with 
respect to the probe field. The CPT and EIT properties have 
made these effects widely applicable in the field of quantum 
frequency standards [6], optical magnetometers [7 – 9], decel-
eration and storage of light [10 – 13], lasers without inversion 
[14 – 17] and for production of materials with a controllable 
photonic bandgap [18, 19] and a negative refractive index [20]. 

One of new directions in the investigation of three-level sys-
tems is the study of a closed interaction contour (so-called D 
system) between the exciting fields. In such systems, the nonab-
sorbing superposition state can be controlled by changing the 
algebraic sum of the initial phases of the fields (hereinafter, 
phases) acting on an atomic system; in this case, the CPT effect 
can be either completely eliminated or reconstructed. The abil-
ity to control the superposition state properties has been stud-
ied in atomic [21 – 25] and solid-state systems [26]. At the same 
time, there arises a possibility of changing the optical proper-
ties of the medium, in particular the coefficients of refraction 
and absorption, which may lead to the appearance of a refrac-
tive index extremum at a given phase and to the emergence of 
a negative absorption region (gain region) [27]. 

Another interesting feature of the D system, which is 
formed by three-level atoms representing an optically dense 
medium and excited simultaneously by three-frequency laser 
radiation, are spatial quasi-periodic oscillations of the refrac-
tive index. This feature was first demonstrated in [28]. Interest 
in such a nontrivial phenomenon is due to the fact that in the 
future it can be used to produce controllable photonic band-
gap materials, the bandgap being controlled by manipulating 
laser fields that are incident on an atomic ensemble. However, 
the authors of paper [28] considered a relatively narrow tem-
perature range (30 – 100 mK) because temperatures below 
100  mK and above 30 mK allow one to neglect, respectively, the 
influence of the atom motion on the absorption spectrum width 
and the recoil of the atom duting the emission of a photon. 

In this paper we investigate the influence of the motion of 
atoms on the behaviour of the refractive index, found in [28]. 
We construct a theory of interaction of three-frequency laser 
radiation, forming a closed excitation contour, with a three-
level atom in an optically dense medium taking into account 
the motion of the atoms. The highest possible temperatures 
are found at which spatial quasi-periodic oscillations of the 
refractive index manifest themselves. 

2. Theory 

2.1. General form of the quantum kinetic equation and the 
radiative transfer equation 

Consider the interaction of laser radiation with 87Rb atomic 
vapours confined in a gas cell at some temperature (Fig. 1a). 
The laser field is quasi-resonant to the D1 line of the 87Rb 
atom. The energy level diagram of the D1 line can be described 
by a three-level model in which the two lower sublevels |1ñ and 
|2ñ correspond to the hyperfine splitting of the 2S1/2 state, 
while the upper level |3ñ – to the 2P1/2 state. 

Coherent laser fields with Rabi frequencies W1(x) and 
W2(x), propagating along the x axis, are applied to the optical 
transitions |1ñ « |3ñ and |2ñ « |3ñ. We consider the case of an 
optically dense medium; therefore, the damping of the fields 
along the x coordinate should be taken into account. The 
concentration of the atoms is assumed such that no more than 
one atom can fit to the optical radiation wavelength (so that 
the collective effects [29] are neglected in the scattering of 
radiation). The transition |1ñ « |2ñ is subjected to the action of 
the microwave field with a Rabi frequency U, which is phase 
matched with the laser fields (Fig. 1a). Its attenuation in a 
medium can be neglected, because the |1ñ « |2ñ transition is a 
magnetic dipole and scatters radiation by four orders of mag-
nitude weaker than the optical transitions. Thus, the so-called 
D system of excitation of atoms is realised [27], in which one 
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can observe the CPT effect. We consider the laser intensity to 
be constant in time and assume that the spectral width of the 
optical and microwave fields is less than the natural widths of 
atomic levels. This fact allows us to treat the fields as mono-
chromatic. 

To describe the interaction of laser radiation with atoms, 
use is made of the density matrix ( , )rmnr uu . Quantum kinetic 
equations for the density matrix in the Wigner representation 
have the form [30] 

¶
¶ [ ]i
t

H H R Smn mj jn mj jn mn mn
j

3

d
'

r r ru+ =- - + +u u uc m / .	 (1) 

Here, H is the Hamiltonian; R is the relaxation matrix; S is 
the collision integral; u, r are the velocity and coordinate of 
the atoms; and m, n = 1, 2, 3. The Hamiltonian can be repre-
sented as H = H0 + Hint, where 
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=
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is the Hamiltonian in the absence of the laser field; ei is the 
energy of the atomic levels; and Hint describes the interaction 
of the quantum system with the laser field. In the resonance 
approximation and in the plane wavefront approximation 

Hint  = 'W1exp[–i(w1t – k1x + j1)]|3ñ á1|

	 + 'W2exp[–i(w2t – k2x + j2)]|3ñ á2|

+ 'Uexp[–i(w3t – k3x + j3)]|2ñ á1| + h.c.,	 (3) 

where ki  are the wavenumbers; and ji are the initial phases of 
the fields, with i = 1, 2, 3. 

We will express the rapidly oscillating factor mnr =u  
( )exp i tmn jr w  through the off-diagonal elements of the den-

sity matrix (atomic coherences) (1) with nn nnr r=u  and will use 
the rotating wave approximation. As a result, we obtain a sys-
tem of differential equations for slowly varying amplitudes of 
atomic coherences rmn (u, r) and populations rnn (u, r) of the 
levels. Below, we are interested in the steady-state solution, 
and that is why the time derivatives of the amplitudes of the 
density matrix elements on the left side of the system are 
equated to zero. 

To increase the time of coherent interaction of 87Rb atoms 
with the laser fields, a buffer gas (usually inert gases, nitrogen 
or methane) is added to the gas cell. Active atoms are scat-
tered by buffer ones. This leads to a reduction in their mean 
free path and to a sharp decrease in atomic polarisation relax-
ation during collisions with the wall, which in turn causes 
resonance narrowing [31]. The addition of a buffer gas allows 
for a substantial narrowing of CPT resonances, up to a few 
tens of Hz [32]. 

We will use the plane wavefront approximation and 
assume the relaxation of the wall to be small. Then, we can 
neglect edge effects and reduce the problem to a one-dimen-
sional one, in which the optical fields and the density matrix 
vary only along the x axis. 

The damping of optical fields in a medium is described by 
truncated wave equations, which in the steady-state case can 
be integrated over the x coordinate. For the Rabi frequencies 
the radiative transfer equations have the form [28]: 
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m13,23 are the matrix elements of the optical transitions;   ,
at
13 23w  

are the frequencies of the optical transitions; nRb is the con-
centration of 87Rb atoms; c is the velocity of light in vacuum; 
and ux is the projection of the atom velocity on the x axis. In 
the numerical integration, in (4) and (5) the density matrix is 
assumed constant over the partitioning interval [x, x + dx], 
which allows us to neglect the term ux ¶rmn /¶x in (1) and 
reduce the system of differential equations for the density 
matrix to the system of algebraic equations. Thus, we believe 
that the evolution of the density matrix in space is only 
affected by the damping of the laser fields. 

2.2. Collision integral and spontaneous relaxation 

Consider the collision integral S, which describes the escape 
of 87Rb atoms from a specific velocity group and their arrival 
to this group from other velocity groups (Fig. 2). This occurs 
due to collisions of metal atoms with buffer gas atoms and cell 
walls, as well as due to collisions of active atoms with each 
other. In elastic collisions (with frequencies nee, ngg) the atom 
changes the velocity component ux « u'x, while keeping the 
internal energy constant. In the case of inelastic collisions 
(with frequencies n31, n32, ggn l), not only the velocity compo-
nent changes, but also the energy states undergo a quantum 
transition. The spontaneous relaxation matrix R describes the 
decay of atomic states without changing the velocity due to 
the interaction with the field of vacuum (Fig. 2, the decay 
rates g31, g32). 

In inelastic collisions the internal energy of the atom can-
not increase due to this collision by a value greater than kT. 

|3ñ

|2ñ

|1ñ
D1

D2

w1, W1 w2, W2

g g

G

w3, U 0 L x

T

U(x)

W1(x)

W2(x)

a b

Figure 1.  (a) Energy-level diagram of atoms in a closed excitation con-
tour (D system) and (b) propagation of three-frequency radiation in a 
gas cell filled with 87Rb vapour and buffer gas; w1 and w2 are the optical 
frequencies, w3 is the microwave frequency, W1 and W2 are the Rabi 
frequencies of the optical fields, U is the Rabi frequency of the micro-
wave field, 2g is the decay rate of the population of the excited level, G 
is the decay rate of the coherence between the ground states, D1 and D2 
are one-photon detunings, L is the length of the gas cell, and T is the 
temperature. 
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Therefore, at room temperature, the collisional excitation of 
the atom from the |1ñ and |2ñ levels to the |3ñ level is impossi-
ble, because the energy of such a transition is 'w1,2 » 1 eV, 
and the thermal energy at room temperature is kT » 
0.026 eV. In collisions only the decay of the population from 
the |3 level is possible. Quite opposite is the case of the mic
rowave transition |1ñ « |2ñ, the energy of which is equal to 
'w3 = 28 meV. The thermal energy is sufficient to excite such 
a transition, and therefore the collision is accompanied by 
mixing of the populations between |1ñ and |2ñ levels with fre-
quency ngg'. As can be seen from Fig. 2a, the total collision 
frequency n of active atoms is defined as n = nee + n32 + n31. 
Similarly, from Fig. 2b we may write n = ngg + ngg'. It is also 
easy to verify that the relations 

32

31

32

31

23

13

n
n

g
g

m
m

= = 	 (6) 

hold true. 
Let us consider separately collisional and relaxation terms 

for the populations of each level; for brevity, ux º u: 

( , )R x11 31 33g r u= ,	 (7) 

( , ) ( , ) ( , )dS x A xgg
11 11 11nr u u u r u u=- + l l ly

( , ) ( , ) ( , ) ( , )d dA x A x3gg
22

1
33u u r u u u u r u u+ +l l l l l lly y ;	 (8)

( , )R x22 32 33g r u= ,	 (9)

( , ) ( , ) ( , )dS x A xgg
22 22 22nr u u u r u u=- + l l ly

( , ) ( , ) ( , ) ( , )d dA x A xgg
11

32
33u u r u u u u r u u+ +l l l l l lly y ;	 (10)

( ) ( , )R x33 31 32 33g g r u=- + ,	 (11)

( , ) ( , ) ( , )dS x A xee
33 33 33nr u u u r u u=- + l l ly .	 (12) 

Here the integration is performed over all the velocity groups 
from which the atoms can arrive to this velocity group. The 
kernels ( , )Aij u ul  of the integrals determine the frequency of 
the transitions |i ñ ® | j ñ with a change in velocity ul ® u during 
collisions. When the masses of the buffer gas atoms and 87Rb 
atoms are approximately equal, we can apply the model of 

strong collisions, in which the velocity distribution of atoms 
after collisions does not depend on the velocity ul before the 
collision, and the change in velocity is comparable with its 
value [33 – 36]. In this case, the kernel can be represented as  
( , ) ( )A Mij iju u n u=l , where ( ) ( ) ( / )expM t t

1 2 2u p u u u= --  is 
the Maxwellian distribution over the velocity projection; ut = 

/kT m2 Rb  is the most probable velocity; and mRb is the 
atomic mass of Rb. 

Now let us consider the relaxation and collisional terms 
for the amplitudes of the atomic coherences. The decay rate 
of the low-frequency coherence, r12(u, x) is defined by the fol-
lowing physical processes: 

1) the collision frequency 12nuul , at which the coherence is 
not destroyed, but the atom changes its velocity (mainly this 
occurs due to collisions with the buffer gas atoms); 

2) the collision frequency q
12n , at which the coherence is 

destroyed (mainly this occurs due to the collisions of the 
active atoms with the cell walls and with each other); and 

3) the decay caused by the interaction with the field of 
vacuum, G12. 

The sum of these collision frequencies yields the total col-
lision frequency qn n n= +

uu
12 12

l . 
Because the concentration of the buffer gas is much 

greater than the concentration of working atoms and nuu
12

l >> 
qn12 , we assume below that n » n

uu
12

l . Then we have 

R12 12 12rG=- ,	 (13)

( ) ( , ) ( ) ( , )dS x M xq
12 12 12n n r u n u r u u=- + +

uu uu
12 12 12 l ll l y .	 (14) 

Here, similar to the kernels for the populations, the kernel of 
the collision integral is ( )Mn uuu

12
l . 

For coherent transitions in the optical range 

R , , ,13 23 13 23 13 23rG=- ,	 (15)

( , ) ( ) ( , )dS x M x, , ,13 23 13 23 13 23nr u n u r u u=- +
uu
,13 23 l ll y .	 (16) 

Here, nuu
,13 23
l  are the collision frequencies, at which the coher-

ence is not destroyed, but the atom changes its velocity. In 
contrast to the low-frequency coherences, optical coherences 
are characterised by the inverse relationship ,13 23nuul  << ,

q
13 23n , 

because the probability of their decay in each collision is close 
to unity. 

2.3. Explicit form of the equations for the density matrix 

By substituting in equation (1) the explicit forms of the 
Hamiltonians (2) and (3), )t(exp imn mn jr r w=u , nn nnr r=u  [we 
are interested here in the steady-state solution (¶rmn /¶t = 0)], 
assuming the matrix density in the partitioning interval 
(¶rmn /¶x = 0) to be spatially homogeneous, and substituting 
the relaxation and collision terms (7) – (16), we obtain the 
explicit form of the steady-state equations for the density 
matrix in the layer of the medium [x, x + dx] (for brevity, we 
omit hereafter the dependence on the coordinate x in the 
arguments of the Rabi frequencies and density matrix ele-
ments): 

0 ( ) ( ) ( ) ( )i i i iU U12 21 1 13 1 31r u r u r u r uW W= - + -**

	 ( ) ( ) ( ) ( )dM gg
13 33 11 11g r u nr u u n r u u+ - + +l l' y

|3ñ

|2ñ

|1ñ

|3ñ

|2ñ

|1ñ

g32 g31

g31

ux uxux' ux'

nee

ngg

ngg'

n32

n31

n31
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Figure 2.  Channels for increasing and decreasing populations of (a) |3ñ 
and (b) |1ñ levels of atoms with a velocity projection ux during collisions 
(solid arrows) and spontaneous relaxation (dashed arrows). 
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	 ( ) ( )d dgg
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0 ( ) ( ) ( ) ( )i i i iU U12 21 2 23 2 32r u r u r u r uW W=- + + -**

	 ( ) ( ) ( ) ( )dM gg
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	 ( ) ( )d dgg
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32
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0 ( ) ( ) ( ) ( )i i i i1 13 1 31 2 23 2 32r u r u r u r uW W W W=- + - +* *

( ) ( ) ( ) ( ) ( )dMee13 23 33 33 33g g r u nr u n u r u u- + - + l ly ,	 (19)

	 0 [ ( ) ] ( ) ( ) ( )i iU2 1 12 11 22r u r r uD D G= - - + -12l

	 ( ) ( ) ( ) ( )exp expi i i i2 0 13 1 0 32r u r uW F W F+ -*

	 ( ) ( )dM 12n u r u u+
uu
12 l ll y ,	 (20)

0 [ ( ) ] ( ) ( ) ( )i ik1 1 3 13 1 11 33u r u r r uD G W= - - + -1l

	 ( ) ( ) ( ) ( )exp expi i i iU2 0 12 0 23r u r uW F F+ - - -

	 ( ) ( )dM13 13n u r u u+
uu l ll y ,	 (21)

0 [ ( ) ] ( ) ( ) ( )i ik2 2 23 23 2 22 33u r u r r uD G W= - - + -l

	 ( ) ( ) ( ) ( )exp expi i i iU1 0 21 0 13r u r uW F F+ - *

	 ( ) ( )dM23 23n u r u u+
uu l ll y .	 (22)

Here, G  '  mn = Gmn + n is the rate of the coherence decay, modi-
fied due to collisions; F 0 = j1 – j2 – j3 is the total phase of the 
closed excitation contour at the medium input; and D j  = wj  
– w at3j ( j = 1, 2) are the single-photon detunings of the laser 
fields from the |1ñ ® |3ñ and |2ñ ® |3ñ transitions. Due to the 
Doppler effect, the detuning of the laser radiation frequency 
from the frequency of the corresponding transition is shifted 
by – kj u, which is reflected in the equations for optical coher-
ences (21) and (22). This leads to an inhomogeneous broaden-
ing of the absorption line. The Doppler effect for the micro-
wave field can be neglected because of the smallness of the 
wavenumber; therefore, the frequency shift of the detuning is 
neglected in the equation for the microwave coherence (20). 

The solution of integral equations (17) – (22) for the den-
sity matrix rmn (u, x) is a challenging task. In order to reduce 
the equations to algebraic ones, one needs to make use of the 
reduced density matrix by integrating the equation in u. It can 
be easily done when the fields are sufficiently small and 
weakly distort the Maxwellian velocity distribution of the 
atoms. In this case, the frequency of collisions of the atoms 
should be much higher than the Rabi frequency of the fields, 
n >> W i, U. In this approximation the collision terms in equa-
tions (17), (18) and (20) will lead to the Maxwellization of the 
velocity distribution of the populations r11,22 (u, x) of the 

lower levels and low-frequency coherences r12 (u, x). 
Therefore, they can be presented in the form [35] 

rnn (u, x) = M(u) rnn (x), n = 1, 2,	 (23)

r12 (u, x) = M(u) r12 (x).	 (24) 

Equations (21) and (22) do not contain a Maxwellian term 
and cannot be represented as in (23) and (24). In the equation 
for the populations r33 (u, x) of the excited level, the collision 
term can be compared with field terms because the optical 
fields are small and the total population is r33 (u, x) << 
r11,22 (x), which does not allow r33 (u, x) to be represented in 
the form of (23) and (24), but makes it possible to produce an 
adiabatic elimination of this quantities in equations (21) and 
(22). In order to integrate (21) and (22) in u, we should sepa-
rate the variables, by solving a system of two equations with 
respect to r13 (u, x) and r23 (u, x). Note that in the absence of 
the microwave field the U variables would be separated auto-
matically. The remaining equations (17) – (20) can be inte-
grated directly. 

As a result, the equations for the reduced density matrix 

( ) ( , )dx xmn mnr r u u= y  

have the form: 

0 i i i iU U12 21 1 13 1 31 13 33r r r r g rW W= - + - +** l

	 ( )gg
22 11n r r+ -

l ,	 (25)

0 i i i iU U12 21 2 23 2 32 23 33r r r r g rW W=- + + - +** l

	 ( )gg
11 22n r r+ -

l ,	 (26)

0 ( )i i i i1 13 1 31 2 23 2 32 13 23 33r r r r g g rW W W W=- + - + - +* * l l ,	 (27)

0 [ ( ) ] ( )i iU2 1 12 12 11 22n r r rD D G= - - + + -
uu

12l
l

( ) ( )exp expi i i i2 0 13 1 32 0 32r r rW F W F+ -* ,	 (28)

0 ( ) [ ( ) ]expi i iW13 13
13

1 2 1 11 2 0 12 13 13r r r n rG D D W W F= + + - +
uu

1l l

( ) [ ( ) ]expi i iW2
13

1 2 2 0 22 1 21 23 23r r n rD D W F W+ - + +
uul ,	 (29)

0 ( ) [ ( ) ]expi i iW23 23
23

1 2 2 22 1 0 21 23 23r r r n rG D D W W F= + + +
uu

1l l

( ) [ ( ) ]expi i iW2
23

1 2 1 0 11 2 12 13 13r r n rD D W F W+ + +
uul .	 (30)

Here, 13 13
31g g n= +l  and 23 23

32g g n= +l  are the rates of the 
population decay modified due to collisions; 
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 ( )W2
23

1 2D D

3

[ ( ) ] [ ( ) ]
( )

i i
i d

k k UU
U M

*

*

2 23 1 13

23

u u
u u

D G D G
G

=
- - - - +3- l l

ly .	 (34) 

The integrands of the coefficients ( , )W j
mn

1 2D D  determine the 
strength of interaction of the optical fields with a specific 
velocity group of the atoms. It is seen that for U = 0, the coef-
ficients ( , ) 0W mn

2 1 2D D =  and ( , )W m
1
3

1 2D D = ( )W m
m1

3 D   
become dependent on one of the detunings, and their real part 
undergoes a transition into the Voigt contour. We assume in 
expressions (31) – (34) that the wavenumbers of the optical 
fields are approximately equal to each other (k1 » k2 = k). 
Solving equations (25) – (30) for the density matrix together 
with equations (4) and (5) for the fields passing through an 
optically dense medium, we obtain the distribution of the 
density matrix and Rabi frequencies of the fields along the 
length of the gas cell. 

3. Results and discussion 

We will use 87Rb and 84Kr as a working gas and a buffer gas, 
respectively. Their masses are approximately equal, and thus 
the model of strong collisions works well for this pair. We will 
consider the low-intensity fields (up to several mW cm–2), cor-
responding to the Rabi frequencies ~105 – 106 s–1. At 84Kr 
concentrations roughly equal to 1018 cm–3 and temperatures 
above 0.1 K, the condition n >> Wi, U is met, and so these 
fields do not introduce significant distortions in the 
Maxwellian velocity distributions of the populations of the 
ground states and low-frequency coherences, which justifies 
the assumptions of (23) and (24). At temperatures below 
0.1  K, the homogeneous width of the excited level is greater 
than the Doppler broadening and the effect of the field is no 
longer selective in velocity; therefore, the Maxwellian distri-
bution in (23) and (24) is not distorted. 

The action of the microwave field U creates a closed exci-
tation contour, which makes it possible to obtain spatial 
quasi-periodic oscillations of the refractive index, as shown 
in [28] for stationary atoms. We introduce the parameter z = 
(g/2 + n)/(kut), which describes the ratio of the Lorentzian and 
Doppler half-widths of the excited level. Note that the 
Lorentzian half-width is determined by a natural half-width 
g/2 of the excited level and by a collisional homogeneous 
broadening n. In the case of low (down to 0.1 K) tempera-
tures, z > 1. At the resonant tuning of the laser carrier fre-
quencies (D1 = D2 = 0), all the 87Rb atoms in the region of the 
laser beam action effectively interact with it. Physically, this 
situation corresponds to a cloud of cold 87Rb atoms in a mag-
neto-optical trap in which collisions occur only between 
working atoms. Such clouds can be cooled down to tempera-

tures below 1 mK. Figures 3a and 3b illustrate the law of the 
intensity decay I1(x) = |W1(x)|2/|W1(0)|2 of one of the optical 
fields for the temperature of 1 mK and 30 mK of the atoms. At 
a relative phase F0 = p/4, the EIT state of the medium cannot 
exist and the energy is transferred between the laser fields, 
which is demonstrated in Figs 3a and 3b by a spatial decrease 
in the laser field intensity. The quasi-periodic field intensity in 
space induces quasi-periodic oscillations of the refractive 
index (Figs 3d and 3e). As the fields propagate through the 
medium, the relative phase relaxes to zero and the medium 
undergoes a transition into the EIT state, which is demon-
strated by a horizontal portion of the intensity decay curve in 
Figs 3a and 3b. 

At room temperatures and above, z < 1. A part of 87Rb 
atoms becomes nonresonant with the laser fields due to the 
Doppler shift, which leads to the disappearance of the spatial 
oscillations of the refractive index (Fig. 3f). Physically, this 
case corresponds to the 87Rb atomic vapour in the gas cell in 
the presence of a buffer gas. The system does not have time to 
undergo a transition into the EIT state, as in the case of cold 
atoms, and the radiation is completely absorbed (Fig. 3c). 
This increased absorption is due to the fact that at high tem-
peratures the rate of spontaneous decay of the excited level |3ñ 
significantly increases as a result of collisions of the working 
atoms with the buffer gas, the walls and each other. 

In addition, it is worth noting that even at fairly low con-
centrations of the atoms, the refractive index enhancement is 
accompanied by vanishing absorption [37]. 

4. Conclusions 

We have studied a closed excitation contour (D system) of 
three-level atoms in an optically dense medium with account 
for the motion of the atom due to nonzero temperature. We 
have derived quantum kinetic equations describing such a 
system. On the basis of the solution of these equations we 
have found that the emerging spatial quasi-periodic oscilla-
tions of the refractive index begin to damp with increasing 
temperature. We have determined the range of temperatures 
at which these oscillations are most pronounced.
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Figure 3.  (a – c) Intensity I1 of the field on the |1ñ « |3ñ transition and (d – f) real part of the coherence determining refraction as a function of the 
coordinate x at a fixed concentration for low temperatures [(a, d) 87Rb atoms in an optical trap, (b, e) 87Rb atoms in a magneto-optical trap] and 
high temperatures [(c, f) a cell filled with vapours of a working 87Rb gas and a buffer 84Kr gas]. At the entrance to the medium, W1 = W2 = 5 ´ 105  s–1, 
U = 2 ´ 103 s–1, relative phase of F 0 = p/4, field detunings of D1 = D2 = 0, nRb = 4 ´ 1011 cm–3 and nKr = 5 ´ 1018 cm–3.


