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Abstract.  We have developed a model for the generation of Ka radi-
ation and the formation of hot electrons under vacuum heating by a 
femtosecond laser pulse near the surface of spherical clusters. The 
simulation results correspond to measurements at a cluster diame-
ter of less than or of the order of the wavelength for the cases of 
p-polarised laser radiation and radiation incident along the normal 
to the surface. We discuss a significant decrease in the conversion 
of the laser energy into the energy of Ka emission with decreasing 
wavelength from 1.24 to 0.4 mm, which is observed at an intensity of 
2 ́  1017 W cm–2. 

Keywords:  vacuum heating of electrons, clusters, generation of Ka 
radiation. 

1. Introduction 

Energy absorption in the interaction of p-polarised femtosec-
ond non-relativistically intense laser pulses with a dense 
plasma on the surface of a solid target may be caused by vac-
uum heating of electrons, if the amplitude of their oscillation 
due to the surface-perpendicular component of the laser field 
exceeds the characteristic size of the inhomogeneity of the 
plasma density near its critical density [1, 2]. In this case, elec-
trons are dragged by the laser field from the plasma into the 
vacuum for a quarter of the field cycle, and their further 
movement is determined by the incident and reflected laser 
fields, and so by the electrostatic self-consistent field [1]. The 
main part of the electrons is then sent back to the plasma dur-
ing the cycle of the laser field, gaining energy of the order of 
the oscillation energy. Because the electric field inside a 
sharply bounded overdense plasma is small, a further 
exchange of energies of these electrons with the field is negli-
gible. Electrons penetrate the cold material behind the plasma, 
causing impact ionisation of the K-shell of atoms. One of the 
channels of the de-excitation of atoms is the emission of pho-
tons of characteristic X-rays on 2p – 1s transitions. The ana-
lytical model of vacuum electron heating [1] satisfactorily 
describes the data on the measured Ka yield from massive tar-
gets with a flat surface [3, 4]. 

Local enhancement of the laser field near the surface of 
the structures that are smaller than or of the order of the 
wavelength increases the yield of hard X-rays, which is 

observed in experiments with nanospheres [5], spheres [6, 7], 
nanotubes [8] and nanorods [9] deposited on the surface of 
targets and in the formation of periodic structures on these 
surfaces [10,  11]. In particular, an increase in the Ka yield and 
temperature of hot electrons was investigated as a function of 
the size of spherical particles in the form of a hexagonally 
packed single layer on a flat surface of a silicon target [6]. 

Simulation of the Ka yield from a copper target, taking 
into account laser field energy absorption by hot electrons 
generated at the surface of the plasma clusters according to 
the mechanism of vacuum heating, showed a strong depen-
dence of this yield on the ratio of the cluster size and the wave-
length [12]. Comparison of simulation results [13] and mea-
surements [6] is difficult because the approximate analytical 
model for the generation of Ka photons by electrons in solids 
dramatically reduces the accuracy of calculations even for 
such a light element as titanium [14] and, moreover, does not 
take into account the anisotropy of the Ka yield. In this paper, 
we calculate the Ka yield from a silicon target coated with 
spherical clusters by using an analytical model [15], gener-
alised to the case of oblique incidence of electrons. The devel-
oped model of Ka generation under vacuum heating of elec-
trons is verified by comparing the results of calculations and 
measurements [16] of the Ka yield from a massive iron target 
with a flat surface. The average electron energy is calculated 
as the ratio of the energy absorbed by the electrons on the 
surface of spherical clusters to the number of these electrons, 
and is compared with the results of measurements of the tem-
perature of hot electrons [6]. 

The yield of Ka photons with an energy of 1.74 keV from 
a flat silicon target, measured at an intensity of 2 ́  1017 W cm–2 
and a laser wavelength of 0.4 mm [6], is 40 times less than that 
of Ka photons with an energy of 6.4 keV from a flat iron tar-
get, measured at a wavelength of 1.24 mm, intensity of 
1.9 ́  1017 W cm–2 and other similar experimental parameters 
[16]. In this case, the conversion coefficient of the laser energy 
into the Ka energy (into a 2p solid angle) decreases from 
8 ́  10–5 to 8 ́  10–7, i.e., by 100 times. In this paper we also 
discuss the relationship of this decrease with a decrease in the 
efficiency of vacuum electron heating by short-wavelength 
laser radiation. 

2. Model of vacuum electron heating 

According to the model of vacuum electron heating [1], the 
electric field Eossin(wt), applied perpendicularly to the surface 
of a sharply bounded dense plasma at t > 0, pulls out elec-
trons, which are then sent back to the plasma at t > p/(2w). 
The moment of electron emission 0 < ts < p/(2w) and the 
moment of its return t are related by the equation 
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where ts = wts and t = wt. The concentration and velocity of 
returning electrons at the plasma boundary are described by 
the expressions 
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where n0 = mw2/(4pe2) is the critical electron concentration;  
uos = eEos/(mw); and e and m are the absolute value of the 
charge and mass of the electron. 

The surface density of the energy absorbed by the elec-
trons during the time p/(2w) < t < 5p/(2w) is determined by 
numerical integration of the electron energy flux [1]: 
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where N = Eos/(4pe) is the surface concentration of electrons 
emitted by the time p/(2w); h = 1.57. The surface concentra-
tion of the electrons returning to the plasma within the speci-
fied time is 
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where g = 0.77. 

3. Model of generation of Ka radiation 

An electron with an initial energy E0 , falling on a flat target 
at an angle c, generates 

( )d dn p n sEK K a Kw s= a

Ka photons on a path of length ds at a distance scosc from 
the surface, where   ( )EKs  is the cross section of impact ioni-
sation of the K shell by an electron with energy E (E0 , s); na 
is the concentration of atoms; wK is the probability of radia-
tive de-excitation; and pa is the probability of Ka fluorescence 
yield. In this case, from the target at an angle a0, 
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photons are emitted into a solid angle dW, where la is the 
absorption length. Electron energy losses are described by the 
function Sp(E): 
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The path length at which the electron energy decreases from 
E0 to E  is 
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The total number of photons emitted by the electron per unit 
solid angle from a massive target at an angle a0 is given by 
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where EK is the ionisation potential of the K-shell. It is under-
stood that the massive target is thicker than s(E0, EK)cosc. 

4. Simulation of generation of Ka radiation 
under vacuum heating of electrons by 
a femtosecond laser pulse near the surface 
of a flat target 

Under vacuum heating of electrons by a p-polarised laser 
field of nonrelativistic intensity near a flat surface of a dense 
plasma, which is modelled by a permittivity ep ®  – ¥, the 
amplitude of the electric field perpendicular to the surface can 
be approximated by the expression 
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EL = (8pIL/c)1/2 is the amplitude of the laser field; IL is the 
intensity of the laser pulse; q is the angle of radiation inci-
dence; and c is the velocity of light [1, 4]. Equation (5) is 
obtained under the assumption that the reflection coefficient 
with respect to the field can be expressed as (1 – f )1/2, where 
f = ba3 is the coefficient of laser radiation absorption by hot 
electrons. 

Electrons with energy E0 = mue2/2, falling perpendicularly 
to the target surface (c = 0) per unit area during a laser cycle, 
result in the emission of 
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photons per unit solid angle. Here the electron velocity ue (1) 
is determined by the field (5), and their energy E0 is propor-
tional to 
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By taking into account the dependence of the intensity on 
the radius and time and neglecting its change along the laser 
beam axis, we obtain the total number of photons generated 
by a laser pulse per unit solid angle in a given direction: 
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In the case of a Gaussian intensity distribution 
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the number of photons is 
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where wnph is determined by formula (6). The upper limit of 
integration in Z is found from the condition 
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according to which the maximum electron energy at the mini-
mum intensity Imin = IL(Zmax) is equal to the ionisation poten-
tial. 

The Ka yield from a massive iron target was calculated for 
a laser pulse with a wavelength of 1.24 mm under the experi-
mental parameters corresponding to [16]. Electron energy 
losses in iron, Sp(E ), were calculated using the ESTAR data-
base [17]. The ionisation cross section of the K-shell, sK(E ), 
was found from the analytical expression [18]. In the calcula-
tions we used the following parameters: probabilities wK = 
0.34 [19] and pa = 0.882 [20], concentration of atoms na = 
8.5 ́  1022  cm–3, ionisation potential EK = 7.11 keV and 
absorption length la = 18.6 mm of Ka radiation with energy 
6.4 keV [21], which correspond to iron under normal condi-
tions. 

Calculations by formula (8) lead to the values of the Ka 
yield that are close to those measured at laser pulse energies 
E p = 14 – 27 mJ (Fig. 1), which corresponds to the intensities  
I0 = E p/(p3/2r02t0) = (1.45 – 2.8) ́  1017 W cm–2.

5. Simulation of generation of Ka radiation 
under vacuum heating of electrons by a laser 
pulse near the surface of spherical clusters 

Under vacuum heating of electrons by the laser field near the 
surface of a dense ionised cluster the electromagnetic field of 
a scattered wave can be described by the expression Es = rsEs0, 
Bs = rsBs0, where Es0 and Bs0 are the electric and magnetic 
fields of the wave scattered by a sphere with a permittivity 
ep ® – ¥, and rs < 1 is a coefficient taking into account the 
absorption of laser energy by hot electrons. This approach is 
similar to that discussed in the previous section in the case of 
flat plasma [12, 13]. 

If the laser field is described by a plane wave EL = 
exELexp(ik0z  –  iwt), polarised along the unit vector ex and 

propagating along the z axis, then the radial component of 
the total field E = EL + Es on the cluster surface is given by 
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where r = k0R; k0 = w/c; R is the radius of the cluster; jn( r) 
and hn

(1)( r) are the spherical Bessel functions of the first and 
third kinds; and Pn

1(cosq1) are the associated Legendre poly-
nomials. In spherical coordinates the angle q1 is measured 
from the direction of the wave vector k0||ez, and the angle j1 
– from the direction of the polarisation vector ex. The expres-
sions for the coefficients of the field expansion Es0 in vector 
spherical wave functions have the form 
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If aL << r, the electrons are emitted from the cluster to a 
distance that is small compared to its radius. The power 
absorbed by the electrons on the cluster surface is 
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The surface density of the energy Wa (2), absorbed by elec-
trons during the field cycle is given by 

| ( , , , , )|E E r Eos s Lr 1 1q j r= .	 (10)

On the other hand, the power absorbed by the cluster is calcu-
lated by integrating the radial component of the energy flux 
density of the total field S = cRe(E ́  B*)/(8p) over a sphere of 
large radius in the wave zone [22]: 
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The coefficient rs(aL,  r) is determined by solving the equation 
Pe(rs, aL,  r) = PW (rs, aL,  r).

In calculating the Ka yield from a flat massive target 
coated by spherical clusters, the field on the upper hemisphere 
of the cluster, which determines the speed ue (1) and energy 
E0 = mue

2/2 of the electrons incident on the target was assumed 
equal to Eos(rs(aL,  r), q1, j1, EL,  r) (10). Electrons, falling per-
pendicularly to the cluster surface per unit area during the 
laser cycle, cause the emission of 
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photons per unit solid angle. In a spherical coordinate system 
( c, j2), associated with the upper hemisphere of the cluster, 
the angle c is measured from the normal to the target surface, 
and is the angle of incidence of the electrons on the target. If 
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Figure 1.  Ka yield from an iron target at an angle a0 = 45° as a function 
of laser pulse energy (l = 1.24 mm; p-polarisation; q = 45°; and diameter 
of the focal spot and laser pulse duration at half intensity, respectively, 
10 mm and 80 fs). Curve ( 1 ) is the calculation by formula (8) with Zmax 
determined from condition (9), and curve ( 2 ) is the results of measure-
ments of the Ka yield [16] recalculated per laser shot. 
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the angle j2 is measured from the axis belonging to the plane 
of incidence of a p-polarised laser field, then 
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which makes it possible to express the quantities Eos (10) and, 
consequently, nph (11) in variables c and j2. Neglecting the 
change in intensity along the laser beam axis and taking into 
account its dependence on the radius and time (7) under the 
condition R << r0, we obtain the number of photons per unit 
solid angle, which are generated by a laser pulse interacting 
with one cluster, 
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where ncl is the surface density of clusters on the target. In the 
case of densely packed clusters [ncl » 1/(pR2)], by neglecting 
the contribution from the flat surface we obtain for the 
Gaussian pulse (7) the yield of photons per unit solid angle in 
a given direction 
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Here wnph is defined by expression (11). The upper limit of 
integration Zmax is related with a condition 

[ ( , , , ( ), )]max IE EmaxL K0 2c j t rZ = ,	 (14)

according to which the maximum energy of the electrons gen-
erated on the upper hemisphere of the cluster at a minimum 
intensity is equal to the ionisation potential. 

The Ka yield from a massive flat silicon target coated by 
closely packed spherical clusters was calculated for a 0.4-mm 
laser pulse at a peak intensity I0 = 2 ́  1017 W cm–2 and other 
experimental parameters corresponding to [6] (see also 
[7, 23]). The energy losses of electrons in silicon, Sp(E), were 
calculated using the ESTAR database [17]. The ionisation 
cross section of the K-shell, sK(E), was determined by the 
analytical expression from paper [18]. In the calculations we 
used the following parameters: probabilities wK = 0.05 [19] 
and pa = 0.974 [20], concentration of atoms na = 5 ́  1022 cm–3, 
ionisation potential EK = 1.84 keV and absorption length la = 
12.24 mm of Ka radiation with an energy of 1.74 keV [21], 
which correspond to silicon under normal conditions. 

The calculation of the Ka yield from a flat target by for-
mula (8) at Zmax = 3.37, determined by the ionisation poten-
tial of silicon (9), gave a value that exceeds by approximately 
20 times the measured value indicated in Fig. 2a for r = 0. 
Note that in the case of long-wavelength laser radiation with 

l = 1.24 mm, the result of a similar calculation for a close-to-
peak intensity 1.9 ́  1017 W cm–2, which in Fig. 1 is equal to the 
pulse energy of 18 mJ, corresponds to the measured value 
with an accuracy of no worse than 30 %. If we consider Zmax 
at l = 0.4 mm as a fitting parameter, the Ka yield is described 
at small values of this parameter: 0.12 (p-polarisation, flat 
target), 0.18 (p-polarisation, target with clusters) and 0.13 (q 
= 0, target with clusters) (Fig. 2). Therefore, in the case of 
short-wavelength radiation, the Ka photons are generated at 
close-to-peak intensities (1.7 – 2) ́  1017 W  cm–2, and at l = 
1.24 mm the minimum intensity determined by the ionisation 
potential of iron (9) is Imin = I0exp(– Zmax) = 2.8 ́  1015 W cm–2 
at Zmax = 4.26. 

The mechanism of vacuum heating is effective if the oscil-
lation amplitude of hot electrons, Aos = uos/w, exceeds the 
characteristic size of the inhomogeneity of the plasma density, 
Lc, near the critical concentration of thermal electrons, nc [1]. 
Because the oscillation amplitude is strongly dependent on 
the wavelength, Aos ? IL

1/2l2, and the scale of the density inho-
mogeneity is weakly dependent on it, Lc ? IL

4/27l–1/27t29/27  [24], 
then at close durations of laser pulses the condition 

Aos > Lc	 (15)
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Figure 2.  Ka yield from a flat (at r = 0) silicon target coated with spher-
ical clusters in the cases of (a) p-polarised (q = 45°) radiation and (b) 
radiation normally incident to the surface (q = 0). Curves are the calcu-
lations by formulas (8) (at r = 0) and (13) for the values of Zmax indi-
cated in the text. Open squares are the results of measurements [6] at l 
= 0.4 mm,  Ep = 12 mJ, laser pulse duration at half intensity of 100 fs, 
focal spot radius at 1/e2 of intensity equal to 6 mm, and a0 = 40°. 
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can be fulfilled for long-wavelength radiation in the range of 
intensities from Imin to I0 and only in a small range near I0 for 
short-wavelength radiation. Indeed, the calculation of the 
size, 

/( / )d dL n N xc c e N ne c
=

=
,

where Ne is the concentration of thermal electrons, by a one-
dimensional hydrodynamic model [25] using the Virtual Laser 
Laboratory code [26] shows that when an aluminium target is 
irradiated by a laser pulse with high contrast [6], intensity I0 = 
2 ́  1017 W cm–2 and wavelength of 0.4 mm, the characteristic 
size of the density inhomogeneity, Lc, is ~10 nm at the maxi-
mum intensity. At the same time, the oscillation amplitude 
of hot electrons becomes equal to a close value: Aos = 13 nm. 
For long-wavelength radiation (1.24 mm) at the minimum 
intensity Imin = 2.8 ́  1015 W cm–2, the oscillation amplitude is 
15 nm, i.e., indeed, the Ka yield in this case is determined by 
the ionisation potential (9) rather than condition (15). 

6. Calculation of the temperature of hot 
electrons 

The average energy of electrons falling into the target coated 
by closely packed clusters was found as the ratio of the energy 
absorbed by the electrons on the upper hemispheres of clus-
ters to the number of these electrons at a certain value of Zmax: 
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Taking into account the dependences of the surface density of 
the absorbed energy, Wa (2), and the surface density of the 
electrons, n (3), on the field Eos (10), we obtain 
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where 
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and cos q1 and |cos j1| are defined by (12). At normal inci-
dence of laser radiation (q = 0), the expression for the mean 
energy (16) has the form 
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Sumeruk et al. [6] measured the temperature of hot elec-
trons simultaneously with the Ka yield at normal incidence of 
laser radiation on the target caoted with clusters. The tem-
perature was taken equal to that of bremsstrahlung hard 

X-rays from the target, which has an exponential spectrum. 
Figure 3 shows that the measured values of the temperature at 
different diameters of the clusters correspond to the values of 
the mean electron energy calculated by formula (17) at Zmax = 
0.13 defined in the previous section by comparing the results 
of calculations and measurements of the Ka yield from a sili-
con target with clusters under normal incidence of laser radia-
tion. 

7. Conclusions 

The calculation of the temperature of hot electrons sup-
ports the conclusion that under the experimental condi-
tions [6] hot electrons and, therefore, Ka radiation are pro-
duced at close-to-peak intensities. The constructed model 
of generation of Ka radiation under vacuum heating of 
electrons by a femtosecond laser pulse near the surface of 
spherical clusters describes the measurements [6] at a clus-
ter diameter of less than or of the order of the wavelength 
for both p-polarised radiation and radiation normally inci-
dent to the surface. 

When flat targets are irradiated by femtosecond laser 
pulses with an intensity 2 ́  1017 W cm–2, the observed decrease 
(by 100 times) in the coefficient of conversion of the laser 
energy into the energy of Ka radiation with decreasing wave-
length from 1.24 to 0.4 mm [6, 16] cannot be explained only by 
a decrease in energy of hot electrons, which is proportional to 
l2, and by a decrease in probability of radiative de-excitation 
of atoms and an increase in self-absorption in silicon as com-
pared with iron. In the case of short-wavelength laser radia-
tion the efficiency of vacuum electron heating at the given 
intensity was limited by condition (15). 
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