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Abstract.  Diffraction of a two-dimensional optical beam from a 
resonant diffraction grating is considered. It is shown that at cer-
tain resonance parameters the diffraction grating allows for spatial 
differentiation and integration of the incident beam. The parame-
ters of the diffraction grating for spatial differentiation of optical 
beams in the transmission geometry are calculated. It is shown that 
the differentiating diffraction grating allows the conversion of the 
two-dimensional beam into the two-dimensional Hermite – Gaussian 
mode. The presented results of numerical modelling are in good 
agreement with the proposed theoretical description. The use of the 
considered resonant diffraction gratings is promising for solving the 
problems of all-optical data processing. 

Keywords: resonant grating, optical differentiation, spatial differ-
entiation. 

1. Introduction

Optical devices implementing prescribed temporal and 
spatiotemporal transformations of optical signals are of 
great interest for a wide range of applications, including 
ultrafast all-optical data processing and analogue optical 
computation. The most important operations of the ana-
logue processing of optical signals are the temporal and 
spatial differentiation. The temporal differentiation of an 
optical pulse is understood as the differentiation of the 
pulse envelope, and the spatial differentiation means the 
differentiation of the spatial profile of a light beam. For 
the temporal differentiation, multiple versions of Bragg 
gratings [1 – 8] and resonant diffraction gratings [9 – 12] 
have been proposed. The differentiation in these cases was 
implemented in both the reflection and the transmission 
geometry. The spatial differentiation was first considered 
in Ref. [13], where a phase-shifted Bragg grating was used, 
performing the operation of differentiation in the reflec-
tion geometry. Note that the Bragg grating does not allow 
the implementation of differentiation in the transmission 
geometry, which is an essential limitation of the approach, 
proposed in Ref. [13]. 

In the present paper we derive the differential equation, 
providing a general description of the spatial transformation 
of the incident beam profile as a result of diffraction from a 
resonant diffraction grating. It is shown that at certain param-
eters of the resonance the diffraction grating allows the imple-
mentation of the differentiation and integration operations 
for the incident beam. For the first time the parameters of the 
diffraction grating are calculated providing the spatial differ-
entiation of an optical beam in the transmission geometry. 
The possibility of controlling the relation between the differ-
entiation quality and the transmitted signal amplitude by 
changing the geometric parameters of the grating is demon-
strated. The conversion of a two-dimensional Gaussian beam 
into a two-dimensional Hermite – Gaussian beam is consid-
ered as an important practical application of the differentiat-
ing resonant grating.

2. Diffraction of a two-dimensional optical beam 
from a diffraction grating

Consider a two-dimensional optical beam incident on a dif-
fraction structure at an angle qu. In the coordinate system xz, 
associated with the beam and rotated with respect to the grat-
ing coordinate system xgrzgr by the angle qu (Fig. 1), the plane-
wave expansion of the incident beam has the form

( , ) ( )exp i i dP x z G k k x k n k z ksupinc x x x x0
2 2 2

= - -` jy ,	 (1)

where k0 = 2p/l is the wavenumber; nsup is the refractive index 
of the superstrate; kx and k n k ksup x z0

2 2 2
- = are the compo-

nents of the wave vectors of the incident waves; and G(kx) is 
the angular spectrum of the beam having the width Dg (|kx| £ 
Dg). The function Pinc(x, z) in Eqn (1) corresponds to the com-
ponent Ey of the electric field in the case of TE-polarisation, 
or to the component Hy of the magnetic field in the case of 
TM-polarisation. 

As a result of the beam diffraction from the grating, the 
expressions of the reflected and transmitted field in the zeroth 
diffraction order take the form

( , ) ( ) ( )P x z G k R kref ref ref x x= uy

	 exp i i dk x k n k z ksupref refx x x0
2 2 2

+ -` j ,	

(2)

( , ) ( ) ( )P x z G k T ktr tr tr x x= uy

	 exp i i dk x k n k z ktr sub trx x x0
2 2 2

- -^ h ,
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where ( )R kxu  and ( )T kxu  are the complex reflection and trans-
mission coefficients of the structure; ( )sink k nsup ux 0 q q= + =u  
cos sink ku ux zq q+  is the x component of the wave vector for 

the wave, incident on the grating at the angle q + qu in the 
coordinate system of the grating; and nsub is the refractive 
index of the substrate material. Note, that expressions (2) are 
written in the coordinate systems, associated with the reflected 
and the refracted beam (Fig. 1). We assume that the origins of 
the coordinate systems xz, xref zref, and xtr ztr coincide with the 
origin of the coordinate system xgr zgr. 

Assuming the angular spectrum of the incident beam to be 
sufficiently narrow (Dg << k0 nsup) we obtain

kxu  » kx cos qu + k0 nsup sin qu = kx cos qu + kx0,	 (3)

where kx0 = k0 nsup sin qu. Consider the relation between the 
incident beam profile Pinc(x, 0) and the profiles of the reflected 
beam Pref (xref, 0) and the transmitted beam Ptr(xtr, 0). From 
expressions (1) and (2) it follows that the transformation of 
the incident beam profile Pinc(x, 0) into the profile Ptr(x, 0) or 
Pref (x, 0) can be described in terms of passing the signal 
through a linear system with the transfer function, propor-
tional to the reflection or transmission coefficient of the dif-
fraction grating [13]:

Href (kx) = R(kxcos qu + kx0),	
(4)

Htr (kx) = T (kxcos qu + kx0).

Note, that the transfer functions (4) are formally analo-
gous to those describing the temporal transformation of an 
optical pulse [9 – 12]. 

3. Signal transformation by a resonant  
diffraction grating

Let us study the form of the transfer functions (4) in the vicin-
ity of the spatial frequencies of waveguide resonances, associ-
ated with the excitation of eigenmodes in the grating. In the 
vicinity of a resonance the following approximate representa-

tions are valid for the reflection and transmission coefficients 
[10, 13 – 16]:

( )R kxu  » a
k k
b a

k k
k k ( )

pole pole

zero
R

x

R
R

x

x
R

+
-

=
-

-
u u

u
,	

(5)
( )T kxu  » a

k k
b a

k k
k k ( )
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zero
T

x

T
T

x

x
T

+
-

=
-

-
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u
,

where aR, aT are the nonresonance reflection and transmis-
sion coefficients; kpole is the complex propagation constant 
for an eigenmode of the structure; bR, bT are the coefficients, 
describing resonance light scattering from the structure; and  

/k k b a( )
pole

T
T= -zero T , /k k b a( )

pole
R

R R= -zero  are zeros of the 
reflection and transmission coefficient, corresponding to the 
pole kpole. Note, that representations (5) fail in the vicinity of 
qu = 0 (kx0 = 0). Indeed, at kx0 = 0 the reflection and transmis-
sion coefficients of the sub-wavelength dielectric grating with 
the symmetric profile (Fig. 1) are even functions of the angle 
of incidence [17] and, therefore, functions of kx

2u  [13]. The case 
of normal incidence is not considered below. 

With Eqns (5) taken into account, the transfer functions 
(4) can be presented in the form

( )
( )
( )

cos
cos

H H H k a
k k k
k k k

ref tr
u pole

u zero
x

x x

x x

0

0

q
q

= = =
- -

- - ,	 (6)

where a = aR (T ).
Let us introduce the following notations: g(x) = Pinc(x, 0)

for the field distribution in the incident beam; f(x) = Ptr(x, 0) 
[or f(x) = Pref (x, 0)] for the field distribution in the transmit-
ted (or reflected) beam. Let G(kx) and F(kx) be the spectra of 
the functions g(x) and f(x), respectively. Then, according to 
Eqn (6), the spatial spectra of the input signal G(kx) and the 
output signal F(kx) = H(kx)G(kx) are related by the equation 

( ) ( )
cos

i ik F k
k k

F k
u

pole
x x

x
x

0

q-
-

	 ( ) ( )
cos

i ia k G k a k k G k
u

zero
x x

x
x

0

q= -
- .	 (7)

Applying the inverse Fourier transformation to the left-
hand and right-hand sides of Eqn (7), we find that the reflected 
(or transmitted) output signal after the diffraction from a 
resonant diffraction grating is a solution of the first-order 
nonhomogeneous differential equation

( )
( )

cosd
d

i
x
f x k k

f k
u

pole x
x

0

q-
-

	

	
( )

( )
cosd

d
ia

x
g x

a k k g k
u

zero x
x

0

q= -
- .	 (8)

The solution to this equation can be easily found in the 
form:

x
( )

( )
( ) ( )exp

d
d

i df x a x g
k k gzero x

C
0n

x
x
x

x x=
-

- -c m; Ey ,	 (9)

where n = icos qu/(kx0 – kpole) is the parameter, analogous to 
the time constant in the temporal differentiation of optical 
pulses [9, 11]; and C = – ¥·sgn(Im kpole). The presented expres-
sion for the lower limit of integration of C in Eqn (9) provides 
a decrease in the generated beam field at infinity [ f (±¥) = 0)]. 
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Figure 1.  Geometry of optical beam diffraction from a diffraction grat-
ing (qd is the beam refraction angle).
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Note that the possibility of solving the differential equations 
of form (8) with a resonant diffraction grating is of great 
interest, because for ‘optical’ solution of such equations only 
rather complex systems with feedback have been proposed so 
far [18]. 

Let us show that under certain conditions for the coeffi-
cients a, b (b = bR (T )) in Eqns (5), (9) the resulting signal is a 
derivative or an antiderivative of the initial signal. Indeed, 
under the condition that kx0 = kzero = kpole – b/a Î R  we obtain

x
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Under the condition that |n| << 1, we have

( )f x  » 
( )
d
d

a
x
g x

n- ,	 (11)

i.e., the resulting signal [Ptr(x, 0) or Pref(x, 0)] is proportional 
to the first derivative of the signal g(x).

The operation of integration is implemented under the 
conditions kx0 = Re kpole, a = 0. In this case

x
( ) ( )expi df x b x g

C n
x x x=

-c my

	
x

( ) ( )expi db x x1
Cn n

x x xF F= +
-c m; Ey ,	 (12)

where

x
( ) ( )dx g

C
x xF = y .

Under the condition |n| >> 1 we obtain

f (x) » ibF(x),	 (13)

i.e., the resulting signal [(Ptr(x, 0) or Pref(x, 0)] is proportional 
to the antiderivative of the initial signal g(x).

It should be noted that the implementation of exact inte-
gration or differentiation is impossible. Indeed, in the case of 
integration the condition |n| ® ¥ corresponds to a system that 
cannot be implemented physically, while in the case of differ-
entiation the condition n ® 0, according to Eqn (11), corre-
sponds to the zero amplitude of the output signal. The varia-
tion in the |n| value allows the compromise between the qual-
ity of differentiation (or integration) and the energy of the 
transmitted signal. 

4. Differentiation of an optical beam

Consider the differentiation of an optical beam in the trans-
mission geometry. As shown above, for this aim the presence 
of a zero of the transfer function (6) is necessary, correspond-
ing to the zero transmission coefficient at the centre spatial 
frequency of the incident beam kx0 = k0 nsup sin qu. It is known 
that the condition of a zero in the transmission spectrum 
holds for a sub-wavelength dielectric grating (in this case the 

solution in the form of a propagating wave exists only for the 
zeroth-order diffraction) [12, 14 – 16]. Hence, for differentia-
tion of the incident beam we will use a sub-wavelength dielec-
tric diffraction grating.

To confirm the possibility of spatial differentiation we 
carried out the numerical modelling of light diffraction from 
the grating in the arrangement presented in Fig. 1. Analogous 
structures are widely used as narrow-band spectral filters [19]. 
In the calculations we used the permittivity values esup = 1 (the 
superstrate), egr = 8.6207 (the grating material), and esub = 
2.3535 (the substrate material), which correspond to air, alu-
minium arsenide and silica. The parameters of the differenti-
ating structure (the period d, the height h and the step width 
v) were obtained as a result of minimisation of |n| under the 
condition of the presence of a zero in the transmission spec-
trum. Note that the calculation of the parameter n is reduced 
to the calculation of the pole kpole. To determine the latter, at 
each iteration the Padé approximation of the order [1/1] was 
constructed for the function ( )T kxu  in the vicinity of the point 
kx = kx0. To calculate the function ( )T kxu  we used the Fourier 
modal method as formulated in Refs  [20,  21]. The calcula-
tion was performed for the beam with the wavelength l = 
1.064 mm, the spectral width being Dg = 0.55 mm–1. The grat-
ing parameters obtained as a result of optimisation are given 
in the Fig. 2 caption. At these parameters kpole = 
1.4599 – 0.9843i mm–1 and kzero = 1.8841 mm–1. Thus, the spa-
tial differentiation of the incident beam will be implemented 
at the centre spatial frequency kx0 = kzero = 1.8841 mm–1, cor-
responding to the incidence angle qu = 0.3247 rad.

Figure 2 shows the spatial transmission spectrum for the 
diffraction grating with the calculated parameters. According 
to Fig. 2a, the transfer function (6) in the vicinity of the value 
kx = 0 demonstrates good agreement (up to a linear phase) with 
the transfer function of an ideal differentiating filter Hdif (kx) 
= ikx (kx|<Dg). The linear phase causes the shift of the 
reflected beam (Goos – Hänchen effect) and does not affect 
the quality of differentiation. Figure 2b shows the amplitudes 
of the incident Gaussian beam Pinc(x, 0) = exp(–x2/s2) (s = 
8.18.1 mm) and the transmitted beam f (x) = Ptr(x, 0), as well 
as the absolute value of the analytically calculated derivative. 
The latter is presented with magnification, providing the 
equality of the maximal values of the analytic derivative abso-
lute value and the amplitude of the transmitted beam. 
Figure  2b demonstrates high precision of differentiation, in 
particular, the absolute value of Pearson’s correlation coeffi-
cient between the amplitude of the transmitted beam and the 
absolute value of the analytically calculated derivative exceeds 
0.999. 

The proposed diffraction structure can be considered as 
an analogue of the Fourier correlator, consisting of a pair of 
lenses with a spatial filter linear in amplitude, placed in the 
Fourier plane. The transfer function of such filter has the 
form Hdif (kx) = kx /Dg (kx|<Dg). It is interesting to compare 
the energy efficiency of the calculated diffraction grating with 
the maximal possible efficiency of the abovementioned spatial 
differentiating filter. We define the energy efficiency as the 
quantity an in Eqn (11) that characterises the output signal 
amplitude. For the ideal filter an = |H'(0)| = 1/Dg = 1.818 mm. 
The energy efficiency of the calculated diffraction structure is 
an = |H'(0)| » 0.56 mm. The smaller energy efficiency of the 
proposed diffraction structure is compensated for by its 
essentially smaller spatial dimensions (a few micrometres as 
compared with tens of centimetres for the Fourier correlator). 
Moreover, the presented maximal value of the energy effi-
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ciency is not attainable in practice because of the Fresnel 
losses.

Now let us study the possibility of controlling the quality 
of differentiation by changing the geometric parameters of 
the diffraction grating. Figure 3 presents the parameter |n| in 
Eqns (9) and (10) that determines the ratio of the differentia-
tion precision and the transmitted signal energy, versus the 
step width v of the diffraction grating. In the course of calcu-
lating |n| the values of kpole, kx0, and qu were recalculated for 
the changed structure geometry. According to Fig. 3, the min-
imum of |n| is achieved at v = 0.295 mm. This value was used 
in the calculation of the dependences shown in Fig. 2.

To study the effect of the parameter |n| on the quality of 
differentiation we modelled the optical beam diffraction 

from the grating with the step width v = 0.225 mm, for which 
the parameter |n| is greater than its minimal value by 60 %. 
Figure 4 presents the transmission spectrum of such diffrac-
tion grating and the result of differentiation of the Gaussian 
beam with the parameters specified above. The zero in the 
transmission spectrum of the considered grating corresponds 
to the centre spatial frequency of the incident beam kx0 = 
2.5647 mm–1 and the angle of incidence qu = 0.4493 rad.

From the comparison of Figs 2b and 4b it is seen that the 
growth of the parameter |n| gives rise to the increase in the 

resulting beam amplitude (by two times in the considered 
case) with simultaneous worsening of the differentiation qual-
ity. Indeed, in Fig. 4b one can notice the deviations of the 
obtained beam shape from the module of the analytically cal-
culated derivative beyond the central region, in which the 
beam energy is concentrated. In particular, the mean square 
deviation of the transmitted beam amplitude from the deriva-
tive, calculated analytically, increases from 0.0007 (Fig. 2, v 
= 0.295 mm) to 0.002 (Fig. 4, v = 0.225 mm). Nevertheless, the 
grating with the changed parameters (Fig. 4) still allows 
implementation of the signal differentiation with high accu-
racy. Thus, as a result of varying the step width v of the dif-
fraction grating, it became possible to increase the amplitude 
of the resulting signal by two times with insignificant worsen-
ing of the differentiation quality. This result demonstrates 
wide capabilities of controlling the operation characteristics 
of the differentiator grating (the ratio of differentiation 
quality and energy efficiency) by changing the geometric 
parameters. 

Note that the first derivative of the Gaussian beam coin-
cides with the Hermite – Gaussian mode H1(x/s) [H1 = 2 x2  
´ exp(–x2)],which does not change its shape (to a scaling fac-
tor) in the course of free-space propagation [22]. Figure 5 
shows the amplitude of the transformed beam at different dis-
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tances ztr. In the calculation we used the transmitted beam 
with the amplitude, presented in Fig. 4b. The dependences in 
Fig. 5 confirm that the transmitted beam retains its shape to a 
scaling factor.

5. Conclusion

We have obtained the general form of the transformation of a 
two-dimensional optical beam in the process of diffraction 
from a resonant diffraction grating. The possibility of imple-
menting the operations of spatial differentiation and integra-
tion of the incident optical beam is shown. Within the frame-
work of the electromagnetic theory the parameters of the dif-
fraction grating that allows spatial differentiation in the 
transmission geometry are calculated. The possibility of con-
trolling the ratio between the differentiation precision and the 
energy of the transmitted signal by changing the geometric 
parameters of the differentiating grating is demonstrated. As 
an important practical application of the differentiating grat-
ing, the conversion of the two-dimensional Gaussian beam 
into the Hermite – Gaussian mode is considered.
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