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Abstract.  An analogy between spectral-domain optical coherence 
tomography (SD OCT) data and broadband digital holography 
data is considered. Based on this analogy, a method for processing 
SD OCT data, which makes it possible to construct images with a 
lateral resolution in the whole investigated volume equal to the res-
olution in the in-focus region, is developed. Several issues concern-
ing practical application of the proposed method are discussed.

Keywords: optical coherence tomography, digital holography.

1. Introduction 

Since the time when the possibility of using optical coherence 
tomography (OCT) to construct in vivo high-quality images 
of the internal structure of biological objects was experimen-
tally demonstrated for the first time [1], the range of various 
applications of this method, which allows one to study nonin-
vasively objects with a high spatial resolution (from several 
micrometres to several tens of micrometres), in research and 
clinical practice constantly increases. The method is based on 
the interference detection of light reflected or backscattered 
from internal inhomogeneities of the effective optical refrac-
tive index of a medium under study and measurement of its 
intensity. To date, several research teams from Europe, Asia, 
Russia and the United States have performed successful 
experiments aimed at improving OCT and implementing it in 
biomedical practice. The use of fibre OCT interferometers in 
optical schemes made it possible to apply these systems in 
endoscopic studies [2, 3] and, correspondingly, make the 
range of OCT applications wider.

One of the most important characteristic of an OCT sys-
tem, as well as any other imaging systems, is its resolution. 
The axial and lateral resolutions in OCT (along and across a 
scanning beam) have different physical natures. The axial 
resolution is determined by the bandwidth (tuning range) of 
the light source used, while the lateral resolution is deter-
mined by the scanning-beam diffraction properties. The 
development of the physics of femtosecond laser sources pro-
vided an axial resolution better than 4 mm [4]. At the same 
time, the improvement of OCT lateral resolution is limited, 
because an increase in the probe-beam focusing sharpness 
reduces the depth of analysis because of the increased axial 
inhomogeneity of object illumination, which is caused by the 
scanning-beam diffraction divergence.

To date, there are several instrumental methods for 
improving the lateral OCT resolution with conservation of 
the analytical depth [5 – 7]. However, their implementation in 
the form of miniature endoscopic probes meets some techni-
cal difficulties, which hinder their use in endoscopic tools.

In recent years, researchers have been interested in the 
methods that make it possible to compensate for the influence 
of diffraction on the spatial resolution in OCT images in out-
of-focus regions [8 – 10]. Despite the progress in this field, a 
number of problems related to the use of these methods in 
OCT systems remain to be solved. The purpose of this study 
was to develop a method for processing SD OCT data that is 
expected to improve the lateral resolution in out-of-focus 
regions to the level characteristic of the in-focus region.

2. Holographic approach to processing OCT data

This approach is based on the analogy (noted in [11]) between 
any two-dimensional sample (at certain values of wave num-
bers k), selected from an array of recordings of the interfer-
ence field spectrum in the three-dimensional XYk space, 
obtained as a result of lateral scanning using a SD OCT sys-
tem, and a digital hologram, recorded by a photodetector 
array. Indeed, a scattered field recorded by a SD OCT system 
can be written as

( , , ) ( , , , ) ( , , )df x y k zg x y z k o x y zOCT
2 7= OCTy ,	 (1)

where gOCT (x, y, z, k) is the scanning-beam field distribution 
at a distance z from the focal plane of the objective (this func-
tion is squared, because the same optical path is used to illu-
minate the object and receive the field scattered by it); o(x, y, z) 
is the distribution of scatterers in the object under study; Ä is 
a convolution in the XY plane; and k = 2p/l. Note that 
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gOCT (x, y, z, k) is unambiguously determined at any distance 
from the focal plane as a convolution of the distribution in the 
focal plane and the kernel of propagation in free space. To 
make further calculations convenient, we will write the spec-
trum f (x, y, z) in the form

( , , ) ( , , , ) ( , , )df u k zFT g x y z k o u z, ,OCT OCTx y u
2u u= " u

u uy

	 ( , , , )exp i idz g u z k kz
k

u z
2OCT 0

2 2
u u D= - +u c m; E'y

( , , , ) ( , , )exp i ig u z k kz
k

u z o u z
2OCT 0

2 2
7 u u uD- +u u uc m; E1 .	 (2)

Here, the tilde sign indicates that a function (or operator) 
belongs to the Fourier-space; the transfer function of free 
space is written in the small-angle approximation (u2 + u2 << 
k2) [12]; u and u are the values of lateral wave vectors in 
the Fourier space; z0 is the position of the focal plane; and 
FTx, y ® u, u is a direct Fourier transform. For simplicity, we 
assume the scanning beam to have a Gaussian distribution. In 
this case, the field distribution in the focal plane of the objec-
tive, gOCT (x, y, z, k), as well as its spectrum, is also Gaussian. 
Thus, we can write

( , , ) 2expd i if u k z k z
k

u z
4OCT

2 2
u uD D= - +u c my

	 ( , , )exp u W o u z
2

2 2

0
2

#
u u- + uc m .	 (3)

Here, W0 = p/(NAk) is size of the scanning beam waist and 
NA is the numerical aperture of the objective (we used an 
objective with NA = 0.1 to avoid the problems related to the 
use of the small-angle approximation in systems with a large 
numerical aperture [13]).

The equation describing the spectrum of a broadband 
lensless digital holography signal has the form [14]

( , , ) ( , , )expd i if u k z k z
k

u z o u z2
2BDH

2 2

1u u uD D= - +u uc my .	 (4)

A comparison of Eqns (3) and (4) shows that the SD OCT 
signal coincides exactly with the lensless digital holography 
signal for an object having the distribution

( , , ) ( , , ) expo x y z o x y z
W
x y

1
0
2

2 2

7= -
+e o

with a change in the values of lateral wave vectors u and u by 
a factor of 2 . 

An important feature of the point-to-point recording of 
an interference pattern is the influence of the confocal charac-
ter of probing in an OCT system, which leads to a decrease in 
the total signal from each point scatterer with an increase in 
the distance from the focal plane. In addition, as was indi-
cated above, this signal is distributed in the XY plane because 
of diffraction. The methods described in this study make it 
possible to compensate for the influence of diffraction; how-
ever, they cannot prevent the attenuation of the total signal 
with an increase in the distance from the focal plane. 
Nevertheless, this circumstance allows one to use more effi-
ciently the OCT dynamic range by choosing correctly the ini-

tial position of the focal plane in the bulk of the object under 
study. In this case, the signal attenuation with increasing 
depth will be partially compensated for by an increase in the 
radiation density when approaching the focal plane.

The analogy between the SD OCT and broadband holog-
raphy signals makes it possible to process these signals by 
holographic methods. We used the method of expanding 
SD  OCT in plane waves [12] to construct a scattered-field dis-
tribution at each wavelength of the spectral expansion of 
source radiation. This method is based on the representation 
of the field in the XY plane (which is perpendicular to the field 
propagation direction Z ) in the form of a superposition of 
plane waves propagating at different angles. The field in the 
plane at a distance Z from the initial plane is a superposition 
of the plane waves forming the initial distribution and trans-
ferred at the same distance. When propagating, a plane wave 
acquires an additional phase ikzZ, where kz is the wave-vector 
component in the propagation direction. Thus, one can calcu-
late field distributions at any distance z from the initial plane 
by multiplying the two-dimensional spectrum of the field in 
the initial XY plane (z = 0) by the corresponding phase mask, 
with a subsequent inverse Fourier transform. Note that this 
way for solving the diffraction problem allows one to calcu-
late a field at any distance z from the initial XY plane (z = 0); 
in addition, it is computationally efficient because involves 
only two Fourier transforms and one multiplication.

The scattered-field distribution at one component of the 
source-radiation spectral expansion has the form 

( , , , ) iFTf x y z k , ,u x y= "u

	 ( ( , , , ))expFT i if x y k kz
k

u z0
4, ,x y u

2 2

#
u

- +
" u ; E' 1,	 (5)

where f (x, y, 0, k) and f (x, y, z, k) are the field distributions 
in the focal plane and at an optical distance Dz from it and 
iFTu, u ® x, y is the inverse Fourier transform in the plane per-
pendicular to the scanning-beam direction. When a field 
propagates at corresponding distances z, one can reconstruct 
the scattered-field distribution in the whole volume under 
study at each k. The field at one wavelength yields a pattern 
of the scatterer distribution in the object studied; the resolu-
tion throughout the entire volume is determined by the scan-
ning-beam diffraction properties. As in the case of broadband 
digital holography, one must sum field distributions at all 
wavelengths, so as to make the axial resolution be determined 
by the source radiation bandwidth [15]:

( , , ) ( ( , , , ))iFT FTF x y z f x y k0, , , ,u x y x y u
k

= " "u u6/

	 exp i ikz
k

u z
4

2 2

#
u

- +c mE.	 (6)

Equation (6) makes it possible to obtain an image with a lat-
eral resolution equal to the resolution in the scanning-beam 
focal plane, whereas the axial resolution is determined by the 
spectral properties of the source radiation.

Note that one can reconstruct an image in the entire vol-
ume studied using direct calculations based on formula (6) 
only when the initial position of the focal plane and the refrac-
tive index of the medium under study are known. Note that 
the ratio of the distances between scatterers along the Z axis 
in an OCT image is proportional to the ratio of the optical 
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distances between these scatterers in space. In view of this, 
one can consider the refractive index rather than the refrac-
tive index distribution in the medium as a parameter. 
Figure  1b shows a numerically reconstructed image of scat-
terers according to formula (6) over the entire XZ plane in the 
case of tight beam focusing for experimentally obtained OCT 
images of point scatterers (abrasive powder with a grain 
size of 10 mm), spatially fixed in a homogeneous medium 
(transparent photo glue). When these parameters differ from 
optimal by 10 %, a calculation based on formula (6) does not 
yield the desired result (Fig. 1c). To estimate the efficiency of 
the proposed methods for improving the lateral resolution of 
images, the dependences of the point-scatterer characteristic 
width on depth were investigated for experimental data. 
Although this width depends on not only the lateral resolu-
tion of the system but also on the scatterer characteristic size, 
the proposed approach allows one to compare the resolution 
before and after applying the methods under consideration. 
Since the resolution of the OCT system in the probe focal 
region is known (it is determined by the numerical aperture of 
the objective), a comparison of the characteristic width of a 

point scatterer with its width in the focal region of the initial 
distribution makes it possible to estimate the resolution of the 
system throughout the entire depth. Figures 1b, 1c and 1d 
show that the OCT image resolution obtained using formula 
(6) at optimal parameters, at a distance from the focal region 
on the order of five Rayleigh lengths, corresponds to the reso-
lution of the initial image in the focal region. This resolu-
tion is ~6 mm in air (for a wavelength of 1.3 mm and objective 
numerical aperture of 0.1). At the same time, if the algorithm 
parameters differ from optimal by 10 %, the diffraction spread 
at a significant distance from the focal plane is incompletely 
compensated for, despite the increased focus depth in this 
image.

We proposed a method for determining the parameters 
that are necessary for constructing OCT images with a resolu-
tion throughout the entire depth under study equal to the 
resolution in the focal plane. Note that for each specific Dz 
value the results of calculations based on formula (6) exactly 
coincide with the results obtained using the formula

( , , , ) ( )exp i iFTF x y z z kz , ,u x y
k

1 D = "u/

	 ( ( , , , ))expFT if x y k z
k

u0
4, ,x y u

2 2

#
uD- +

" u c m; E.	 (7)

This operation shifts the image focal region by a distance Dz 
(Fig. 1e). If the parameters specified in the algorithm based 
on formula (7) differ from optimal, the focal region also shifts 
by the corresponding optical distance; however, the position 
of this region in the OCT image is not determined beforehand 
(Figs 1d, 1f).

Taking into account that (i) at any deviation of the refrac-
tive index of a medium under study and its value specified in 
calculations from the actual value the calculations based on 
formula (7) lead to a numerical transfer of the OCT image 
focus and (ii) the refractive indices of media studied by OCT lie 
in some range, one can construct a procedure similar to the 
procedure of synthesizing a high-resolution image from a series 
of images focused at different depths, which is used in optical 
coherence microscopy [5, 6]. To this end, it is necessary to 
transfer numerically the focal plane of the initial image by sev-
eral (specified beforehand) Dz values. The shifts must be such 
as to make the focal regions of images with numerically trans-
ferred foci overlap at any refractive index that a biological 
medium may have. Actually, this means that this overlap 
should be observed at a minimally possible refractive index.

At the same time, according to the results of the numeri-
cal focus transfer, one can determine the optical distances 
corresponding to the distances in the image and find the ini-
tial position of the focal plane and then use these data to 
calculate OCT images with improved lateral resolution from 
formula (6).

Indeed, calculations based on formula (7) at some values 
of the wave-vector lateral components u and u imply multipli-
cation of the initial vector by the matrix

( )
( )

( ) ( )
exp iM N

mn N N
k km
up l2
4 min

nm i 0

2 2p a
u

D
D D

= + -
+

+= G,	 (8)

where p and l are the lateral indices of the angular spectrum; 
Du and Du are the sampling parameters of the angular spec-
trum u = Dup and u = Dul ); N is the number of spectral refer-
ences; kmin = 2pnr /lmax; Dk=(2pnr /lmin – 2pnr /lmax)/N; lmin and 
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Figure 1.  Image of an array of point scatterers in a homogeneous me-
dium, obtained by scanning a sample with a tightly focused beam using 
(a) conventional data processing, (b) processing data according to for-
mula (6) with optimal values of algorithm parameters, (c) processing 
data according to formula (6) with values of algorithm parameters dif-
fering from optimal by 10 %, and (d – f) after numerical transfer of the 
focal region according to formula (7). The images in panels (d) and (f) 
were obtained for refractive indices differing by ±20 % from the value 
specified for the image in panel (e). Panel (g) shows the characteristic 
width of point scatterers in the images in panels (a) (solid line), (b) 
(dashed line) and (c) (dotted line). The dashed lines in panels (a – c) indi-
cate approximately the initial position of the focal plane. 
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lmax are, respectively, the minimum and maximum wave-
lengths in the source radiation spectrum; m is the index in the 
wave-number space; z = a(Ni – N0); N0 is the initial position 
of the focal plane; a is the optical distance between neighbor-
ing planes (enumerated by index n in the image space); and 
aNi determines the Dzi value (the optical path at which the 
focal plane must be transferred). Note again that the depen-
dence z(n) remains linear at any distribution of the refractive 
index nr, because the measured modulation of the optical 
spectrum of OCT interference signal is determined by the 
phase intervals (controlled by the optical length). Calculations 
with the aid of matrix (8) imply multiplication of a three-
dimensional spectrum by a phase mask with a subsequent 
Fourier transform over equidistantly sampled references. 
Note also that, having replaced the Ni value in formula (8) 
with a variable n, we obtain coefficients of the matrix used to 
carry out transform (6).

Let us consider the problem of determining parameters a 
and N0. Let them be set so that, at their substitution into for-
mula (6) for calculating the distribution with improved lateral 
resolution, the resolution throughout the entire object depth 
corresponds to the in-focus resolution. Then the focal plane 
in the image calculated from formulas (7) and (8) will be 
numerically transferred onto the Ni plane. If parameters a1 
and N1 differing from a and N0 are set, the focal plane will be 
transferred onto the Nj plane with an index satisfying the con-
dition a1(Nj  – N1) = a(Ni  – N0). If an analysis of the image 
allows one to find the position of the focal plane both in the 
initial image (N0) and in the images obtained after numerical 
focus transfer (Nj), the desired dependence can be found by 
calculating the parameter a.

Unfortunately, the exact position of the focal plane is not 
determined even in an image of a relatively simple model 
object (point scatterers in a homogeneous medium). In the 
case of a biological object, which does not have a certain geo-
metric structure, the situation is even more difficult. Note also 
that it is impossible to introduce some objective (numerical) 
parameter determining the focal plane, because distributions 
at different depths may significantly differ, and the difference 
in the numerical parameters will be caused by the specific fea-
tures of the object studied rather than the quality of the OCT 
image obtained at a particular depth. Thus, both parameters, 
a and N0, must be determined.

To find the parameters of the linear dependence a(Ni  – N0), 
we must determine the optical distance from the initial 
focal plane to any two of N XY planes in the image. To this 
end, we will ‘refocus’ the initial data to two depths and 
search for the XY plane located in the middle of the optical 
distance between the initial and numerically transferred 
focal planes for each image obtained. From the physical 
point of view, at a given optical depth, the curvature of the 
parabolic phase mask in the UV Fourier space, which 
causes diffraction blurring of images, will change sign, 
while the spectral widths of the spatial distributions of the 
scattered-wave amplitude in the XY plane in the initial 
image and in the image with a numerically transferred 
focus should coincide (Fig. 2a). From the computational 
point of view, it is expedient to replace the procedure of 
comparing the phase-mask curvature in the UV Fourier 
space for each distribution in the XY plane by a procedure 
of comparing the spatial spectrum width for the distribu-
tions of scattered-wave amplitude in the XY plane in the 
initial image and in the image with a numerically trans-
ferred focus. The spectral width was determined at a level 

of 70 % of the spectral component with maximal ampli-
tude.

Thus, to determine the plane in which the phase-front cur-
vature changes its sign, we plotted a dependence of the initial-
image spectral width on the spectral width of the image with 
a numerically transferred focus. The thus obtained curve was 
passed through a low-pass filter to eliminate the influence of 
noise, and its intersection with the level of unity was sought 
for. The coordinates of this intersection correspond to the 
desired position Nj1/2 (Fig. 2b). As a result, each focus transfer 
can be described by the equation

2a(Nj1/2 – N0) = Dzj.	 (9) 

At a specified Dzj value, we determine Nj1/2 in the above-
described way. Thus, we have a system of linear equations as 
a base for finding parameters a and N0, which are necessary 
for both the controlled numerical transfer of the focal plane 
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Figure 2.  (a) Initial image (in the centre); the initial focus position is 
indicated by a filled ellipse, the images on the right and on the left are 
obtained by transferring the focal region by Dz1 and Dz2, respectively; 
the characteristic width of the scattering function of a point object re-
mains invariable at distances Dz1/2 and Dz2/2, respectively. (b) The cali-
bration curves, obtained for point scatterers in a homogeneous medium 
by numerical transfer of focus at three different depths. (c) The depen-
dence of the point-scatterer characteristic width on depth for the initial 
image (solid line) and the images with a numerically transferred focus 
(dashed and dotted lines).
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and for calculations based on formula (6). This transform can 
be calculated as a discrete Fourier transform over nonequidis-
tantly sampled data. Although the implementation of this 
transform using a fast Fourier transform gives rise to signifi-
cant artefacts [whereas O(N2) operations are necessary for its 
exact calculation], there are many schemes for its approxi-
mate calculation [16 – 18].

Note that, with allowance for the determination of the 
algorithm parameters, to reconstruct an OCT image with a 
resolution throughout the entire volume under study corre-
sponding to the in-focus resolution, it is necessary to transfer 
numerically the focal plane two times, find the dependence 
Dz(Ni), and perform a calculation based on formula (6). 

The resolution of the images obtained was determined by 
estimating images of an object in the form of a point-scatterer 
array in a homogeneous medium (i.e., an object similar to 
that described above). It was established that the resolution 
throughout the volume under study corresponds to the in-
focus resolution of the initial images.

The above-considered method was also tested on biologi-
cal objects. Figure 3a shows a distribution obtained by con-
ventional processing SD OCT data, and Fig. 3b presents an 
image produced by reconstructing the resolution correspond-
ing to the in-focus resolution in the volume under study using 
the parameters found with the aid of the proposed technique. 
Regions I – III, located at different distances from the initial 
focal plane, are selected in the images. It can be seen that 
images near the surface (beyond the focal region) became 
sharper in Fig. 3b, whereas the images near the initial focal 
plane barely changed. As a result, the image in Fig. 3b dem-
onstrates the same resolution throughout the entire depth 
studied; the lateral resolution near the surface (in the out-of-
focus region) is improved.

3. Determination and compensation  
for the two-dimensional distribution  
of phase instability

The decisive factor affecting the applicability of the above-
described methods to real-data arrays is the phase stability, 
i.e., the constancy of the distance between the reference shoul-
der and the object during recording each array element. Note 
that phase stability is called for not only in the applications 

aimed at improving the resolution in out-of-focus regions of 
OCT images but also in Doppler OCT [19], phase microscopy 
[20], polarisation-sensitive OCT [21], coherent averaging [22] 
and spectroscopic OCT [23]. The use of SD OCT with a spec-
trometer for recording data allows one to retain the phase con-
stancy at each lateral position of scanner, because data distri-
butions over the wave number are recorded simultaneously at 
all k values. Unfortunately, various thermal effects, errors in 
positioning the scanner or reference mirror and object motions 
[24] may cause phase instability during lateral scanning. A vari-
ation in the distance between the reference shoulder and object 
by l leads to addition of a scattered field with a phase 2p to the 
corresponding lateral reference measured by the OCT system. 
Such small motions can hardly be observed in the convention-
ally obtained SD OCT images [25]; however, they are destruc-
tive for all methods manipulating with the OCT data phase. 
Generally, a surface obviously immobile with respect to the 
object was generally used to obtain phase stability [20, 26]. This 
approach leads to a corresponding complication of the system, 
and its joint implementation with an endoscopic probe is a 
technically complex problem.

A measurement of the interference field scattered by an 
object and the reference-wave field at different positions of 
the reference shoulder provides the value of scattered-wave 
complex field in each lateral position of the scanner [27, 28]. 
Therefore, we will deal with a complex value of a field scat-
tered by an object in this section. To determine and compen-
sate for the phase error, it would be of interest to find the 
phase difference between two neighbouring lateral measure-
ments of the signal spectrum in the SD OCT. This value can 
be estimated by operating with the quadrature components of 
the neighbouring distributions of signal spectrum (i.e., with 
the real part of one distribution and the imaginary part of a 
neighbouring one). We assume that neighbouring lateral 
measurements of signal spectrum were made rather closely 
(with the Kotel’nikov – Nyquist criterion satisfied) and that 
there is a spurious phase difference between them. The 
quadrature components of neighbouring distributions of the 
optical spectrum obey the following relations:

Ci, j = Re[  f (x, y, 0, k)exp(iFi,j)],	
(10)

Si, j + 1 = Im [  f (x, y, 0, k)exp(iFi, j + 1)] 
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Figure 3.  (a) Initial image of orange pulp and (b) an image obtained from formula (6); (I – III) enlarged portions of the images in panels (a) and (b) 
at different distances from the initial focal plane; the dashed lines indicate approximately the initial position of the focal plane.
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	 = Im{ f (x, y, 0, k)exp[i(Fi, j + DFi, j + 1/2)]} = 

	 = sinDFi, j + 1/2 Re[  f (x, y, 0, k)exp(iFi,j)] 

	 + cosDFi, j + 1/2Im [  f (x, y, 0, k)exp(iFi, j )],

where f (x, y, 0, k) is a complex signal, manipulations with 
which allow one to perform numerical refocusing without dis-
tortions; Fi, j is the phase error, which must be found and 
compensated for; and DFi, j + 1/2 is the phase difference for ref-
erences with indices i, j and i, j + 1. If arrays Ci, j and Si, j + 1 are 
sufficiently large and a signal from many scatterers is 
observed, one can expect the inequality

å{Re[  f (x, y, 0, k)exp(iFi,j)]}2 

>> åRe[  f (x, y, 0, k)exp(iFi,j)]Im[  f (x, y, 0, k)exp(iFi,j)]

to be satisfied. Here, summation is over array elements 
and multiplication is performed elementwise. Indeed, the 
left-hand side of this inequality is a sum of nonnegative terms, 
whereas the right-hand side is a sum of alternating terms. 
The intermediate (with respect to k) values of magnitudes 
|Re[ f (x, y, 0, k)exp(iFi,j)]| and |Im[  f (x, y, 0, k)exp(iFi,j)]| are 
comparable. The phase difference of horizontally neighbour-
ing lateral measurements of signal spectrum in SD OCT is 
determined as
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The correct sign at cosDFi, j + 1/2 can be chosen from the posi-
tion of the boundary in the depth distribution of scatterers 
obtained as a result of the Fourier transform of a complex 
signal composed of Ci, j + 1 and S'i, j, after which DFi, j + 1/2 can be 
found in the range from –p to p. Similarly, one can find 
DFi + 1/2, j (the phase difference between two neighbouring dis-
tributions of optical spectrum in the vertical direction). Thus, 
the phase error gradient F' (x, y) can be determined and used 
to find the phase error. Based on the information about field 
gradients, one can write the following system of equations for 
determining the phase error:

F'i, j + 1 – F'i, j = DF i, j +1/2 (i = 0, . . . , N – 1, j = 0, . . . , N – 2),	

(12)

F'i+ 1, j  – F'i, j = DF i +1/2, j (i = 0, . . . , N – 2, j = 0, . . . , N – 1).

Here, F'i, j is the estimated the phase error; this estimation is 
obtained from the field of phase error gradients, calculated 

according to formulas (11). The system of equations (12) is 
overdetermined and can be solved by any method allowing 
one to estimate a solution to a system of linear equations in 
the sense of least rms error. It was shown in [29] that the solu-
tion minimising the functional
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is a solution to the equation

ai (F'i + 1, j – F'i, j) – a i – 1(F'i, j – F'i – 1, j) + bj (F'i, j + 1 – F'i , j)

	 – bj – 1(F'i, j – F'i , j – 1) = ai DFi + 1/2, j – ai – 1 DFi – 1/2, j

	 + bj DFi, j + 1/2 – bj – 1 DFi, j – 1/2,	 (14)

where i, j = 0, . . . , N – 1; ai = 1; i = 0, . . . , N – 2; a–1 = aN – 1 = 
0; bj = 1; j = 0, . . . , N – 2; and b–1 = bN – 1 = 0.

Equation (14) is a discrete version of the Poisson equation 
with boundary Neumann conditions [29]:

¶
¶

¶
¶

x y
s2

2

2

2
4$F F

+ =
l l . 	 (15)

Here, F' is the desired estimate of phase distribution and s is 
the experimental distribution of the field of phase error gradi-
ents obtained from formulas (11). Field s can presented as a 
superposition of the gradient of some distribution F' and the 
solenoidal part of sR (i.e., the part that cannot be presented as 
a gradient of distribution). The solution to Eqn (14) is the 
distribution F' [30]. According to [30], sR can be considered as 
the noise part of measurements. If this is an isotropic station-
ary Gaussian noise with a zero mean, F'   is an estimate 
obtained by the maximum likelihood method (actually, under 
the aforementioned conditions on the additive noise, the esti-
mates obtained by the least-squares method and the maxi-
mum likelihood method coincide). In the opposite case, as 
was shown in [30], the estimate found by the least-squares 
method yields an underestimated slope for the phase distri-
bution.

Thus, using the gradient estimates provided by formula 
(11), one can estimate the desired two-dimensional phase-
error distribution. The compensation for this error is reduced 
to multiplication of the initial data array by the correspond-
ing phase mask:

fr(x, y, 0, k) = f (x, y, 0, k)exp(–iF'i, j).	 (16)

However, one cannot reconstruct the phase error profile by 
this method if the gradient field estimated from formula (11) 
contains a solenoidal part, the statistical properties of which 
do not satisfy the coincidence conditions for the estimates 
obtained by the maximum likelihood and least-squares meth-
ods. The probability of this situation is fairly high under real 
conditions. In this study, we propose a way for determining 
and compensating for the profile of this phase error. This pro-
cess, described by Eqns (10) – (16), was applied to the data 
array fr(x, y, 0, k) and cyclically repeated:
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fr(t)(x, y, 0, k) = fr(t– 1)(x, y, 0, k)exp(–iFi,    j
(t)).	 (17)

Here, t is the iteration number. The iteration process is con-
tinued until the maximum phase gradient F (t) calculated at a 
current iteration becomes smaller than some specified thresh-
old value. Note that this condition is finally satisfied because 
of the ‘underestimated phase slope’, which was indicated in 
[30]. The total phase error is determined as the sum of the 
phase errors found in all iterations. The desired complex sig-
nal, manipulations with which allow one to perform numeri-
cal refocusing without distortions, is fr(Niter).

The method proposed was tested on numerically simu-
lated and experimental OCT data. The object of study was a 
simulated lateral distribution of scatterers with a pronounced 
structure (a number of bands in one of the directions), which 
simplified visual estimation of the method efficiency. The 
OCT data were calculated from the initial distribution of scat-
terers according to the results of [8]. To estimate the efficiency 
of the proposed method of compensating for the phase insta-
bility and demonstrate its effect on the possibility of compen-
sating for the influence of diffraction, we calculated in each 
case the overlap integral of the field distribution obtained 
after an attempt to compensate for diffraction (Figs 4c, 4e, 4f, 
4h, 4i) with the initial field distribution (Fig. 4a). The overlap 
integral was calculated from the formula

 
| | | |F F

F F F F* *

init refoc

init refoc init refoc

2 2h = / /
/ /

.	 (18)

Here, Finit and Frefoc are, respectively, the initial and final field 
distributions and the asterisk sign indicates complex conjuga-
tion; summation is over all distributions. The results of the 
corresponding calculations are given in the caption to Fig. 4. 
When comparing the value of this coefficient before and after 
applying the algorithm for finding and compensating for the 
phase error, one can note its efficiency even at a random 
change in the phase between lateral measurements of the 
interference signal spectrum in SD OCT.

The experimental study was also performed on an object 
with a pronounced structure: a deposited graduated scale ori-
ented perpendicular to the scanning-beam optical axis. The 
phase error was due to vibrations occurring during scanning. 
The experimental results are shown in Figs 4j – 4m. These 
vibrations manifest themselves as follows: the continuous 
bands obtained as a result of numerical transfer of the scale 
image appear uneven and intermittent (Fig. 4k), whereas few 
(specifically, five) iterations of the proposed algorithm pro-
vide a more reliable image of the test object (Fig. 4m). This 
experiment also makes it possible to estimate the resolution of 
the used OCT system, because the distance between neigh-
bouring scale lines is known (10 mm), and these lines are com-
pletely resolved.

Thus, based on the analogy between the SD OCT and 
broadband digital holography data, we described a method 
for processing SD OCT data, which provides images with a 
lateral resolution throughout the entire volume under study 
corresponding to the resolution in the in-focus region. A tech-
nique for determining the parameters (dependent on the 
medium studied) that are necessary for efficient application of 
the proposed methods was developed. The problem of phase 
stability between lateral measurements in SD OCT was con-
sidered and a way of compensating for possible phase insta-
bility was proposed.
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